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Abstract. We report on event recognition within the life logging application
IYOUIT for the automatic creation of static diary-like Blogs. Based on the quali-
tative context histories produced by IYOUIT, we developed pragmatic event mod-
eling and recognition techniques using technology available today. Our approach
combines Description Logics with queries and rules to model event recognizers
in terms of context ontologies and Allen’s temporal interval algebra. We found
the ability to efficiently compute Allen relations between events to be crucial for
the performance and scalability of the whole approach. Therefore, we evaluate a
set of modeling alternatives and give some practical guidance.

1 Introduction

Social Web applications like Facebook and Twitter allow people to socialize over a dis-
tance by sharing notes, photos and other personal information with their buddies or the
public. By automating the data gathering via the mobile phone, the IYOUIT4 system
is realizing a sophisticated life logging platform [1]. The mobile application gathers
context data by the multitude of sensors available on modern handsets (e.g., GPS, ac-
celerometer,...) and transmits it to components in the network. These components ex-
tend the given context streams by making use of external data sources (e.g., mapping
locations to weather information) and internal computations (e.g., detecting important
places). Eventually, context data is transformed into status updates, like listening to mu-
sic or just arrived home, which are distributed via the mobile application or any of the
connected Web 2.0 services like Facebook.

To increase the level of abstraction, IYOUIT uses knowledge formalized as OWL
DL ontologies to classify qualitative context w.r.t. situation concepts [2, 3]. For exam-
ple, a business meeting may be derived based on the people in proximity, their social
relations and the actual place. While the derived (static) situations allow for the gen-
eration of more meaningful status updates, the navigation in context histories requires
an event model based on situation changes. In a previous work, we exploited simple
ontology-based event recognition with Description Logic (DL) [4]. The work reported
here improves this initial approach by providing additional pragmatic solutions for DL-
based event recognition, solving some of the encountered scalability issues.

We are assuming familiarity with basic DL notions and Semantic Web query lan-
guages [5]. Those notions will be used without formally introducing them.
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2 Situational Reasoning

Previous work introduced the notion situation [3] as a vector of context attribute-value
pairs describing the circumstances of a person: (CA1 : CV1, . . . , CAn : CVn), where
CA stands for context attribute, and CV for context value concept. A situation was
represented as an ABox individual sit and an assertion such as

sit : (∃CA1.CV1) u · · · u (∃CAn.CVn)

There is one OWL ontology for each CA5, structuring the possible CV s in a taxonomy,
e.g., for CA = at place, we might have CV ∈ {home, office, restaurant , . . .}. The
CAs are not necessarily functional (e.g., the near by CA).

In order to recognize a situation, defined concepts are exploited, e.g., a business
meeting could be detected with a defined concept such as business meeting ≡̇ ≥3

near by .colleague u ∃at place.office . Such concepts are called recognizer concepts
in the following. Whereas simple situations can be recognized in the ABox by means
of recognizer concepts, exploiting the standard instance realization service, we prefer a
slightly different representation of situations in the ABox, as in

{sit : situation, (sit, val1) : CA1, val1 : CV 1, . . . , (sit, valn) : CAn, valn : CV n}
because this more explicit representation allows us to exploit a – concerning the rela-
tional expressivity – much more powerful recognition mechanism, namely grounded
queries and rules.6 Due to the explicit individuals, a standard grounded conjunctive
query [6–9] is then sufficient to detect those business meetings in which at least three
people are involved which mutually dislike each other:

ans(x)← business meeting(x),near by(x, y),near by(y, z),near by(z, x),
hates(x, y), hates(y, z), hates(z, x).

Such a query (rule) is called a recognizer query (rule), and it is well-known that it is not
possible to recognize such situations by means of concepts in standard DLs or OWL,
due to a lack of relational expressivity. These queries (rules) can be written in SPARQL,
SWRL, SQWRL [10] . . . We are using NRQL [9].

A NRQL rule is basically a NRQL query, but the query head predicate ans is re-
placed by a so-called generalized ABox, which is an ABox whose assertions may ref-
erence variables from the body of the rule. The rule conclusion hateful meeting(x)
would add the concept assertion sit : hateful meeting given the binding x = sit
satisfies the rule body. Similar effects can be achieved in SWRL or SPARQL (using
construct). But unlike SWRL or SPARQL, NRQL also allows to introduce new
ABox individuals. This feature will be exploited in the following. Even more important
in our scenario, NRQL offers some form of epistemic first-order queries [11]. Univer-
sal closed domain quantification can be expressed by combining the negation-as-failure
(NAF) operator and the projection operator. This expressivity is indispensable here.

We call the IYOUIT component which creates an ABox representing the accumu-
lated context data per day the Day Description Generator (DDG) and the generated
ABox the Day Description ABox (DDA). The DDG is an external program outside of

5 We are using distinct CA ontologies instead of one big ontology for reasons of modularity.
6 A query can be considered as a special rule whose conclusion consists of a single ans head

predicate.
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the DL system. Whereas in many cases, the value concept is explicitly asserted via
vali : CV , sometimes ABox realization and thus inference is required to recognize the
CV s. To facilitate this kind of CV inference, the DDA not only contains situation de-
scriptions, but also user profile data, e.g., the social network of a user, as well as other
mostly static information, e.g. home country, typical office hours, etc.

3 Event Recognition with Description Logics

In [4] we shifted the focus from recognizing static situations which are conceptually
instantaneous “snapshots in space-time” to so-called events which also take the dy-
namic and temporal aspects of situational changes into account. Events have a temporal
duration. Recognized structures can be exploited for the creation of static diary-like
day summaries (Blogs), but also for querying and data mining purposes. As such, the
famous Allen’s temporal relations [12] play an important role, not only for query for-
mulation and natural language generation for Blogs, but also as vocabulary for defining
event recognizers. By enabling IYOUIT to recognize situational changes rather than
just static situations, a deeper level of context awareness can be achieved. For example,
an ordinary office day event could be defined as a sequence of consecutive events, which
stand in the Allen relation “meets”: 〈at home, moving, in office, moving, in restaurant,
moving, in office, moving, at home〉, together with some additional restrictions regard-
ing certain fixed day time intervals, such as “in restaurant during noon”, etc. Thus,
the DDA also contains these day time intervals. An ordinary office day is therefore a
complex event aggregating a series of subevents and should thus be recognizable from
the types of its subevents and from the temporal relations holding between them. The
challenging questions are:

a) How to represent events?
b) How to define event recognizers?
c) Where do events come from?

Note that we are only interested here in technology that builds on existing DL or OWL
reasoners (such as RACERPRO) to get a working system with good performance today.
Regarding a), the least “ontological commitment” we can make is saying that we want
to represent actual events in the ABox which satisfy the following axiom:

event ≡̇ ∃start state.state u ∃end state.state
We simply state that an event is an “aggregate” which has a start state and an end state,
and that states are basically the situations just described, but augmented with some
temporal information which allows to determine the temporal order between states.
We assume a linear discrete time model, e.g. (IN, <). There are various options for
the representation of the temporal relations between the states; these options will be
discussed in the next section. It is also assumed that start state < end state holds,
for all events. In addition, complex events are composed of (one or several) subevents:

complex event ≡̇ event u ∃has part .event
Non-complex events are called simple events. Two important specializations are change
events and constancy events. The former witnesses a change of some CV value of some
CA from start state to end state , e.g., if the value of CA = at place changes from
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CV = home to CV = office, then this change will be reflected by a home2office
change event. The witnessing end state should be the smallest successor w.r.t. the tem-
poral order <. Hence, a change event should have a minimal temporal duration. In con-
trast, a constancy event should have maximal duration, and must also be homogeneous
[13], i.e., there may be no state in between the start and end state for which the CA×CV
attribute value pair does not hold. An example is the staying in the office event, which
is a constant and thus maximal and homogeneous event. These event properties are very
important, since otherwise the definition of more complex events based on subevents
becomes infeasible if one never knows in how many “segments” a subevent is split.

By exploiting the epistemic first-order properties of NRQL, maximal and homoge-
neous events for some some condition are recognized by the following query:

ans(s1, s2)← state(s1), state(s2), future(s1, s2),
some condition(s1), some condition(s2),
\π(s1) (state(s0),next(s0, s1), some condition(s0)),
\π(s2) (state(s3),next(s2, s3), some condition(s3)),
\π(s1, s2) ( state(s3), future(s1, s3), future(s3, s2),

\some condition(s3))

We assume that future holds between s1 and s2 iff s1 precedes s2 on the time line,
i.e. s1 < s2, and next between s1 and s2 iff s2 is the direct successor of s1 w.r.t.
<. The \ is the NAF operator, and π is the projection operator. The semantics of
these operators if formally exemplified in terms of FOPL just below. The \π . . . con-
struction realizes a first-order epistemic closed-domain quantifier. The first \π . . . en-
sures maximality of the interval to the left, the second occurrence maximality of the
interval to the right, and the third occurrence verifies homogeneity, i.e., there is no
state s3 in between s1 and s2 for which one cannot prove some condition, hence,
\some condition(s3) shall not hold. Note that replacing \some condition(s3) by
¬some condition(s3) would be too strong, since absence of some condition(s3)
does not imply ¬some condition(s3). We refer to [9, 14] for more details.

The semantics of the NRQL query above is given by evaluating the following first-
order query over the relational structure SA=(∆I , CI , ..., RI , ...), with∆I = inds(A),
CI = { i | i ∈ inds(A),A |= C(i) } , RI = { (i, j) | inds(A),A |= R(i, j) }, for all
relevant roles R and all relevant (not only atomic!) concepts C. By construction of SA,
NAF negation (\) can be replaced by classical negation (¬) as follows, and the universal
quantifications ¬∃ . . . stemming from the \π . . . occurrences become apparent:

{ (s1, s2) | ∃s1, s2 : state(s1) ∧ state(s1) ∧ future(s1, s2) ∧
some condition(s1) ∧ some condition(s2) ∧
¬∃s0 : state(s0) ∧ next(s0, s1) ∧ some condition(s0) ∧
¬∃s3 : state(s3) ∧ next(s2, s3) ∧ some condition(s3) ∧
¬∃s3 : state(s3) ∧ future(s1, s3), future(s3, s2) ∧

¬some condition(s3) }
Events can be recognized by recognizer concepts, queries or rules. Recognizer concepts
solely rely on the ABox individual realization service and thus on explicit ABox indi-
viduals and relations between them, which need to be, at least to some extent (modulo
inference), explicitly given in the ABox in forms of role assertions, since, with the ex-
ception of transitive relations, OWL DL offeres no defined roles. In addition to taking
the obvious inferred role assertions into account, a NRQL rule can easly add new ABox
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(role) assertion, or even introduce new individuals. Moreover, intensional relation are
available for queries and rules by means of so-called defined queries which are simi-
lar to intensional database relations defined as Datalog rules. For example, the binary
recognizer rule for the Allen relation before

before(x, y)← event(x), event(y), end state(x, s1), start state(y, s2), future(s1, s2)

can either be understood as a rule which adds (“materializes”) before role assertions
to the ABox, or as a definition of the query before (i.e., a “query macro”) which is
expanded and replaced by its definition whenever it is referenced in some other query
body, e.g., in an event recognizer query or rule.7 Hence, a query or rule body referencing
before does not necessarily require explicit before role assertions in the ABox, but can
work with implicit before relations. As a result of the body expansion, the bodies of the
referencing rules can get very complex and become demanding for the query optimizer
and processor (an exponential blowup is possible). Defined queries must be acyclic
in NRQL. If recursion is required, NRQL rules have to be used instead, and a rule
application strategy has to be provided (see below).

In principle it is possible to define complex event recognizers as defined queries
rather than rules. But, as there would be no ABox individual representing the complex
event itself, these queries would either be n-ary predicates (returning the n subevents
which make up the complex event), or binary predicates such as ordinary office day
(s1, s2) on the states s1 and s2. The n-ary solution is obviously bad, and the binary
solution makes it impossible to refer to the individual subevents – only the states would
be available (which are obviously required for the computation of Allen relations be-
tween the complex event and the other events). Consequently, also the simple events
should be modeled as binary predicates. To sum up, this results in an entirely different
modeling and is thus not considered further in this paper. Even Allen relations could
no longer be understood as roles holding between events, but would become quadrary
defined queries for pairs of endpoints of events.

Summary: In principle, Allen relations as well as the events can be recognized by rules
or defined queries. As we want events to be represented explicitly in the ABox, the
later option is dissatisfactory for recognizing events. Recognizing Allen relations
via defined queries was also already investigated in [4] where we have observed a
rather bad performance, which was partly caused by the unavoidable recomputation
of relations, and partly by the blowup resulting from unfolding Allen definitions.

Here we decided to materialize Allen relations via rules at the price of larger ABoxes,
a decision evaluated further in Section 4. First, however, we want to analyze some
potential answers to question c) “Where do events come from?”.

3.1 Approach 1: Pre-Constructing Events

The set of states of a given day is finite. Therefore, one might ask whether it is an
option to pre-construct all possible events in the DDA and to rely as much as pos-
sible on standard ABox individual realization for the classification of events. For n
states, there are at most m0 = n(n − 1)/2 simple events. Hence, there are at most

7 This does not work in concepts, e.g., ∃before. . . . would not be aware of the defined query.
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m1 =
∑

2≤k≤m0

(
m0
k

)
= 2m0 −m0 − 1 complex events that can be constructed from

these m0 simple events. These events can in turn become subevents of more complex
events, and so on. For 3 states, we already get 120 events for m0 + m1 + m2, and
1329227995784915872903807060280344455 events on the next level. The set of pre-
constructible events is in fact infinite, but it may be possible to compute an upper bound
based on the definitions of the recognizers. Although it seems reasonable to stop at,
say, level 3, still the constructed ABoxes are not manageable. With the more realistic
assumption of approx. 30 states per day and user in case of IYOUIT, already level 1
becomes infeasible. Even worse, m2

i additional Allen relations have to be asserted.
Since all relevant event aggregates are already explicitly present in the ABox, rec-

ognizer concepts become possible:

home2office ≡̇ ∃start state.∃at place.home u ∃end state.∃at place.office

Unfortunately, certain important event properties, such as maximality and homogeneity,
cannot be expressed with concepts. But at least for the basic context attribute values that
require no reasoning, these properties can directly be assured and asserted by the DDG.

In most cases, recognizer concepts are insufficient for the representation of complex
events. The main limitation is the inability of concepts to describe anything else but tree
structures (regarding the role successors). For example, it is impossible to specify that
during an in office event, a meeting with boss event occurred directly before (meets
relation) an meeting with customer event. A modeling attempt:

stressful office day ≡̇
∃has part .( in office u

∃during−1 .( meeting with boss u
∃meets.meeting with customer u . . .))

Obviously, this definition has the defect that it cannot be taken for granted that the
meeting with customer event still takes place during the in office event. Other at-
tempts to define such a concept will have similar defects. Although it is impossible to
fix the start state and end state by means of existentials, the temporal duration of the
complex event as well as the Allen relations to other (possibly complex) events are in
fact known, since the aggregate was constructed by the DDG which asserted start state
and end state . This motivates the has part role. Without the additional individual rep-
resenting the complex event, start and end state of the aggregate could not be fixed, and
consequently, Allen relations could not be computed. Moreover, one of its subevents
would have to act as a proxy for the whole aggregate [15]. This seems inadequate.

Although many temporal constellations between subevents cannot be reliably rec-
ognized with defined concepts since a lot of false positives will be detected, some com-
plex events can indeed be realized in that way, e.g., those complex events for whose
description a tree-like temporal Allen network is sufficient. Another required provision
to minimize the amount of false positives is that one has to restrict the visibility of Allen
relation successors to those events which are part of the same aggregate – otherwise
the traversal of an Allen role assertion R via ∃R. . . . could lead into an event being
subevent of some other complex event, yielding another false positive. However, this
forces the DDG to create copies of subnetworks in order to isolate ABox individuals in
different events and thus increases the ABox size by an additional order of magnitude.
Hence, the approach does not seem reasonable.
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Again, a query or rule can help to overcome the expressivity problems:
stressful office day(x)← has part(x, p1), has part(x, p2), has part(x, p3),

in office(p1),meeting with boss(p2),
meeting with customer(p3),
meets(p2, p3), during(p2, p1), during(p3, p1)

Summary: For complex events, the pre-construction by the DDG causes two prob-
lems. First, the number of precomputed events and Allen relations gets enormous,
and second, it is not always possible to define reasonable expressive recognizer
concepts for complex events. The latter point is not resolvable unless specialized
temporal logics are used, or certain OWL extensions are accepted [16]. For sim-
ple events some recognizer concepts can be defined. This is an advantage, since
rule management in DL systems has not yet reached the same level of maturity as
concept management. Since in general reasoning is required in order to detect the
temporal extent of some CA × CV pair, it becomes clear that first-order facilities
are required if recognizer queries (rules) shall rely on properties such as homogene-
ity. DL-safe rules are sufficient by now, since all events have been pre-constructed.

3.2 Approach 2: Constructing Events on Demand

In contrast to the approach just described, the other extreme is to have no pre-constructed
events at all in the DDA, but only states with their temporal relations. As a consequence,
the number of recognizer rules gets very large, and rule management becomes an im-
portant issue. The first-order capabilities of the NRQL rules are a big advantage in this
setting. We already demonstrated how to recognize maximal and homogeneous events.
Since only states together with their temporal relations are present in the DDA, non-safe
rules which can introduce new event individuals have to be used. NRQL offers the new
operator that can be understood as a (FOPL) function symbol. A typical basic event
recognizer rule constructing event instances, looks as follows:

start state(new(e, s1, s2), s1), end state(new(e, s1, s2), s2), event(new(e, s1, s2))
← state(s1), state(s2), future(s1, s2), . . .

For example, given states s1 = i, s2 = j, it constructs the ABox assertions
{ei,j : event , (ei,j , i) : start state, (ei,j , j) : end state}. Non-safe rules are in prin-
ciple subject to termination problems, since new individuals are introduced (on which
rules may fire which introduce individuals, on which rules may fire which introduce
individuals, on which . . . ). In NRQL, this termination problem is delegated to the
client program which has to drive the rule application, since NRQL does not offer
an automatic rule application strategy. The client program thus has to run a loop of
the form “while (applicable-rules()) {execute-applicable-rules();}”
calling the NRQL rule API functions. Hence, all possible termination problems are
caused by the client which runs the loop. Using NRQL’s non-monotonic features, even
non-safe individual constructing rules can be written in a way which ensures termina-
tion.8 For example, the above rule can disable itself after all constructible events have
been constructed by adding the following conjunct to its precondition:

\π(s1, s2) (event(x), start state(x, s1), end state(x, s2))

8 Note that this would not be possible in a monotonic rule language such as SWRL.
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The need for an external client program driving the rule application can be seen as a
drawback. However, recently the MINILISP functional expression language for server-
side programming has been added and reached a mature state [17]. It is thus possi-
ble to implement a rule application strategy directly on the RACERPRO server. Since
MINILISP is termination safe it does not allow unbounded loops. But it allows bounded
loops. In case of non-recursive rules, a fixed upper limit on the number of required rule
application cycles can be computed from the rule bodies and number of states.

The recognizer rules for complex events look very similar to the stressful office day
example rule already given above. However, its conclusion has to construct a new event
individual and also cannot rely on has part(x, p) for its parts p in the precondition.
Note that for each freshly constructed event, the corresponding Allen relations have to
be computed. The universal closed-domain quantifier of NRQL is also important for
complex event recognizer rules, since the maximality and the absence of certain other
events between two subevents has to be enforced.

From a theoretical perspective, this approach is the cleanest and most powerful one.
Only events which have actually been recognized are constructed, in contrast to the pre-
vious approach, where also all kinds of meaningless events are pre-constructed. The ap-
proach described in this section was also chosen in [4]. As explained above, the bad per-
formance observed was partly caused by Allen relations formulated as defined queries.
Having to construct and check homogeneity and maximality even for simple events in-
troduces a big number of universal closed-domain quantifications which are expensive
to evaluate. Hence, we are arguing that the DDG should already pre-construct the basic
events and take care of these properties whenever it is capable to do so, thus leaving
only the hard recognition problems for the reasoner. This approach will be pursued in
the following.

Summary: Constructing events with non-safe rules is conceptually very clean. The
whole process is driven solely by the ontology (considering rules being part of
the ontology). But, this approach does not perform well with current state-of-the-
art technology. The number of rules becomes very large and thus issues not well-
supported by current DL systems (e.g., rule management) become predominant.
Furthermore, Allen relations can no longer be computed in advance by the DDG,
but rather have to be recomputed after each rule application cycle.

3.3 Approach 3: The Best of Both Worlds
Having analyzed both extremes, we proceed as follows. The DDG pre-constructs all
relevant simple events, and only the complex events as well as those simple events
whose recognition requires ontology reasoning are constructed via rules. Note that the
Allen relations can already be asserted by the DDG for those pre-constructed events.
In addition, Allen relations must be computed dynamically after each rule application
cycle.

For every s1, s2, CA and CV , the DDG pre-constructs a simple event if and only
if time(s1) < time(s2), the event is homogeneous, and has a maximal temporal extent
w.r.t. the CA× CV attribute-value pair. In case the recognition of CA× CV requires
reasoning, the event cannot be pre-constructed, and recognition rules (or concepts) have
to be written. In the current IYOUIT scenario, recognizer rules are only required for
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complex events. The number of simple events is bounded by |CA||CV |n(n − 1)/2,
where n is the number of states. Since all simple events in the DDA are now maximal
and homogeneous, it becomes reasonable to attach the CA attributes to the event indi-
viduals instead of the states, and use them as primitives instead of the states. For every
possible CA× CV pair, a simple event recognizer concept is defined:

eventCA,CV ≡̇ event u ∃CA.CV .

Consequently, the CV taxonomy is automatically inherited to the taxonomy of sim-
ple events (something we would not get automatically with recognizer rules, although
NRQL is able to compute query and rule subsumption [14]). These auxiliary concepts
facilitate the modeling of complex event recognizer rules.

The DDG does not pre-construct change events. Their absence is not really a draw-
back. They can still be recognized, e.g. the change of CA from CV1 to CV2 can be
detected with a rule such as

. . .← eventCA,CV1(e1), eventCA,CV2(e2),meets(e1, e2)
if required. Still, some code is needed to drive the rule application. The remarks from
the previous paragraph apply.

Summary: This approach seems promising and combines the best of both worlds. It
keeps the number of rules maintainable, allows to employ defined concepts as rec-
ognizer for simple events and does not lose expressivity. As for the previous ap-
proach, the efficient computation of Allen relations is very important.

4 Computation of Allen Relations

Since the set of states is fixed, the DDG can precompute the temporal order between any
two states by means of role assertions using the roles next , equal (with next ≡̇ prev−1),
and a transitive superrole future, nextv̇future, future+ ≡̇ future, past ≡̇ future−1.
Note that the explicit relation representation in terms of next and equal requires n +
n(n − 1)/2 role assertions (and even more if also prev , future and past are made ex-
plicit in case one wanted to get rid of the TBox axioms for the roles). Alternatively, the
DDG can attach a filler of the concrete domain (CD) attribute time to each state. A
NRQL rule can make the next relation explicit, or a defined query could be used:

next(s1, s2)← < (time(s1), time(s2)),
\π(s1, s2) (< (time(s1), time(s3)), < (time(s3), time(s2)))

The <-atom is a so-called CD constraint checking atom. While the evaluation of this
atom requires concrete domain unsatisfiability checks which may be expensive, there is
also a cheaper option in NRQL, a so-called data substrate query which can check such
constraints on a set of data literals much faster by model checking some data substrate
structure [18].

In case next is materialized, we also automatically get the relations prev , future,
and past , due to the role declarations. However, if the rule is used as a defined query,
then some more definitions are required for the other roles, e.g. for future we can simply
remove the “\π . . .” line from the next definition. The implicit and intrinsic relations
between states keep the ABox small in number of role assertions, they are thus worth of
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Fig. 1. Benchmark Results

consideration, and should be subject to a benchmark. On the other hand, the explicit re-
lation representation requires bigger ABoxes, but have the benefit to also provide index
structures for query answering, and moreover can be used to avoid repeated computa-
tions of relations. It is not clear how to proceed without an evaluation of the alternatives.
Allen relations are computed from the relations between the states of the events, as al-
ready explained in terms of the before relation. The ability to efficiently compute Allen
relations is crucial for the performance and scalability of the whole approach. Thus,
for the benchmark, we are first evaluating the performance of the Allen computation. A
DDA with 50 random intervals is created, which is reduced to 40 intervals by removing
10 intervals, and so on, until only 10 intervals remain. We are considering four different
settings for the benchmark:

Allen 1: explicit state relations as next role assertions, 7 Allen rules
(one rule per Allen relation and its converse)

Allen 2: implicit state relations via defined query next and CD atom <

Allen 3: implicit state relations via defined query next and data substrate atom <

Allen 4: implicit state relations and computation of the Allen relations with one rule
instead of 7, by means of a MINILISP λ expression which analyzes the values of the
time attributes of the states of the events e1, e2 and computes the corresponding
Allen relation programmatically (with a simple conditional expression expr that
we do not explicate here in more detail):

λ(e1, e2) • expr ← event(e1), event(e2)
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Figure 1 speaks a clear language (note the logarithmic scale). The procedural solution
(Allen 4) is by far the fastest with approx. 600 Allen relations per second (ARPS), then
comes the data substrate solution with 170 ARPS, then the solution with explicit state
relations in the ABox with approx. 66 ARPS, and finally the CD solution with only
1.8 (!) ARPS. Note that the biggest ABox contains 4225 Allen role assertions. The
benchmark results make clear that the decision to formulate Allen relations as defined
queries based on concrete domains in our previous work [4] was bad.

It is also important to know how much time is spend for Allen computation if a new
event is introduced into the existing network. We thus added 5 random intervals into
an existing network of 25 intervals and measured the times required for Allen relation
computation: Allen 1 = 12.4s, Allen 2 = 612s, Allen 3 = 5.7s, Allen 4 = 1.5s. The bigger
the network gets, the more time is required.

5 Conclusion
While lots of temporal logics have been designed [19–24] which could have been ap-
plied in this scenario, few of them have been implemented, less have implementations
with good performance, and thus, none of these can be used for practical applications to-
day. In contrast, DL systems have made tremendous progress. Still, realizing DL-based
event recognition which exhibits good performance is a highly demanding task. There
are no simple answers to most of the modeling questions. With nowadays quite complex
DL and Semantic Web technology, there are often various realization and representa-
tion options. Even for experts, the consequences of certain design decisions can be very
hard to oversee. Without performing benchmarks and evaluations, no solid ground can
be reached in applying this technology to real world application problems. We argue
that case studies like ours are important since they conserve and convey a lot of “how
to” knowledge which may prevent users from reinventing the wheel, and make model-
ing alternatives explicit which is equally important. Although we have used RACERPRO
in this work, we argue that the discussed problems and solutions generalize.

In future work, alternative (but implemented) approaches should be checked out,
e.g., instead of using unsafe rules, recent progress regarding multimedia and image in-
terpretation with horn rules in an abduction framework shall be exploited [25, 26] where
new individuals and corresponding assertions are abducted rather than constructed (a
technology brought to a mature state in the BOEMIE9 EU project). Moreover, in the
spirit of the classical event recognition system NAOS [27], a new temporal represen-
tation and querying engine, called time net, has been integrated into RACERPRO that
offers an alternative way to define complex event recognizers. The feasibility of these
options for IYOUIT should be evaluated.

Regarding IYOUIT, there are open challenges. To exploit events for the offering of
context dependent services on a mobile phone, the events have to be recognized incre-
mentally and online, not offline [28]. As such, the work on incremental plan recognition
is relevant [29]. Ideally, this must happen immediately as in [30]. Also there is work in
progress regarding the handling of events spanning multiple days, e.g., an oversea busi-
ness trip. This is challenging since events get “split” at day boundaries and have to be
re-merged, etc.

9 www.boemie.org
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