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Abstract
We address two problems in underspecified graph-
structured knowledge bases (GSKBs): the co-
reference and the provenance problem. Both prob-
lems are important for a variety of reasons. The for-
mer asks “Which existentially quantified variables
in different but related axioms of a GSKB possibly
denote identical domain individuals?”, and the lat-
ter “From which axioms in a GSKB is a piece of
knowledge getting derived?” To decide the former,
we need to be able to prove equality between dif-
ferent variables – a GSKB in which this is possible
is called a strenghtened GSKB, and an underspec-
ified GSKB otherwise. The latter occur naturally
in many knowledge acquisition contexts, and are
also easier to author. We hence present an algo-
rithm which rewrites an underspecified GSKB into
a strengthened GSKB, by virtue of Skolemization
and addition of equality atoms such that the co-
reference information can be drawn from it. This
enlarges the logical theory (the deductive closure)
of the GSKB and strengthens its inferential power,
hence affecting the provenance information. Our
algorithm is model-theoretic in nature and exploits
a novel class of desirable, preferred models, which
capture the desired co-references. The algorithm
is a logical reconstruction of an implemented algo-
rithm that we successfully applied to a large-scale
biological knowledge base, in which it identified
more that 22,000 equality atoms.

1 Introduction
Graph-structured underspecified knowledge bases occur nat-
urally, for example, if biological knowledge is modelled
graphically by virtue of concept graphs as in the AURA
project [Gunning, D. and Chaudhri, V. K. et al., 2010], see
Fig. 1, or if knowledge is formulated in natural language:

S1 Every Cell has part a Ribosome and a Chromosome.
S2 Every EukaryoticCell is a Cell .
S3 Every EukaryoticCell has part a EukaryoticRibosome,

a EukaryoticChromosome, a Nucleus , such that the
EukaryoticChromosome is inside the Nucleus .

S4 Every EukaryoticRibosome is a Ribosome .
S5 Every EukaryoticChromosome is a Chromosome.
Here the question arises - is the EukayoticChromosome that
S3 is talking about actually the Chromosome from S1? Such
assumptions are often reasonable. We are calling a knowl-
edge base which does not answer this question definitely un-
derspecified. These kinds of question are studied to some
extent in the field of computational linguistics under the term
anaphora resolution [Carpenter, 1994], [Cohen, 2007]. We
will use co-reference resolution in the following.

From a logical point of view, these sentences correspond to
FOPL formulas (the comma in consequents denotes conjunc-
tions, and we combine S2, S3 into S23):

S1 ∀x : Cell(x)⇒ ∃x1, x2 :
hasPart(x, x1),Ribosome(x1),
hasPart(x, x2),Chromosome(x2)

S23 ∀x : EukaryoticCell(x)⇒ ∃x3, x4, x5 : Cell(x),
hasPart(x, x3),Euk .Ribosome(x3),
hasPart(x, x4),Euk .Chromosome(x4),
hasPart(x, x5),Nucleus(x5), inside(x4, x5)

S4 ∀x : Euk .Ribosome(x)⇒ Ribosome(x)
S5 ∀x : Euk .Chromosome(x)⇒ Chromosome(x)

In the following, unary predicates are called concepts, and
binary predicates relations. The concept D is called a super-
concept of C if ∀x : C(x) ⇒ D(x), . . . holds, and conse-
quently, C is called a subconcept of D.

Co-references are, in general, tedious or even impossible
to specify at knowledge authoring time (e.g., if the input is
underspecified in the first place) and hence, an automatic co-
reference resolution algorithm is often desirable. It will nec-
essarily have to rely on some sort of guessing or hypothet-
ical (logically unsound) reasoning. Related motivation and
mechanisms can be found in the literature, e.g., in the reason-
ing system “Knowledge Machine” (KM) [Clark and Porter,
1997] a so-called unification operator is employed for this
purpose. A KM-like unification operator has also been stud-
ied in the context of underspecified object-oriented knowl-
edge bases formalized in Answer Set Programming (ASP)
[Chaudhri and Tran, 2012]. These and related approaches
(e.g., based on Description Logics) are discussed in more de-
tail in Section 5.

We consider co-reference resolution in GSKBs an impor-
tant problem to solve because of its potential to reduce mod-



Figure 1: (Simplified) Concept Graphs for Cell and EukaryoticCell in AURA.

eling effort. For example, if we extend Ribosome(x1) in S1
by saying that it is inside Cytosol(x6), resulting in

S1b ∀x : Cell(x)⇒ ∃x1, x2, x6 :
hasPart(x, x1),Ribosome(x1),
hasPart(x, x2),Chromosome(x2),
inside(x1, x6),Cytosol(x6)

then we would like to derive that this also holds for the
Euk .Ribosome(x3) in EukaryoticCell – it is reasonable to
assume that the Euk .Ribosome got inherited from Cell as a
Ribosome which then got specialized. However, this requires
that x3 in S23 and x1 in S1b are co-referential. We can en-
force this as follows, using Skolem functions and equalities:

S1b’ ∀x : Cell(x)⇒
hasPart(x, f1(x)),Ribosome(f1(x)),
hasPart(x, f2(x)),Chromosome(f2(x)),
inside(f1(x), f0(x)),Cytosol(f0(x))

S23’ ∀x : EukaryoticCell(x)⇒ Cell(x),
hasPart(x, f3(x)),Euk .Ribosome(f3(x)),
hasPart(x, f4(x)),Euk .Chromosome(f4(x)),
hasPart(x, f5(x)),Nucleus(f5(x)),
inside(f4(x), f5(x))),
f3(x) = f1(x), f4(x) = f2(x)

In this strengthened GSKB, we have {S1b′, S23′, S4, S5} |=
∀x : EukaryoticCell(x) ⇒ ∃x3, x6 : hasPart(x, x3),
Euk .Ribosome(x3), inside(x3, x6),Cytosol(x6),
as desired, due to f3(x) = f1(x) in S23′.
Note that this does not hold in the underspeci-
fied original GSKB: {S1b, S23, S4, S5} 6|= ∀x :
EukaryoticCell(x) ⇒ ∃x3, x6 : hasPart(x, x3),
Euk .Ribosome(x3), inside(x3, x6),Cytosol(x6). Hence,
inside(x3, x6) would be redundant (implied) if added to S23′

in the strengthened GSKB, but would not be redundant if
added to the underspecified original GSKB. This shows that
the provenance of an atom is affected by the co-references.
Redundant / implied atoms can be removed from the GSKB,
keeping its size smaller and more managable, simplifying
also retraction (if each atom is local / asserted).

The contribution of this paper is the presentation of a
novel GSKB rewriting algorithm. It rewrites a GSKB such
as {S1b, S23, S4, S5} into a strengthened GSKB, similar to
{S1b′, S23′, S4, S5}. From the strengthened GSKB we com-
pute the provenance of atoms and co-references. We will use
a model theoretic notion of preferred models to characterize
the additional desirable inferences that we wish to get from
the underspecified GSKB. The information in the preferred
model is used to rewrite a Skolemized version of the GSKB
into a strengthened version of the GSKB, and its models are
preferred – they include at least the preferred model. Ob-
viously, deciding entailment of atoms, and hence the prove-

nance problem, are in general undecidable in FOPL(=), but
decidable in the considered fragment.

The paper is structured as follows: We first formally de-
fine the GSKB framework and required notions of GSKB
and strengthened GSKB, and the semantic notion of pre-
ferred models. We then present the algorithm and show
that the strengthened GSKB (produced by the algorithm)
has models which are preferred which hence gain the re-
quired additional conclusions in order to decide the prove-
nance and co-reference problems. Next we evaluate the al-
gorithm on a large-scale biological graph-structured GSKB
from the AURA project [Gunning, D. and Chaudhri, V. K. et
al., 2010]. Finally we conclude and discuss related and future
work.

2 Graph Structured Knowledge Bases
In the following, we denote an atom or a conjunction of atoms
with free variables {x, x1, . . . , xn} as ϕ(x, ~x), with ~x =
(x1, . . . , xn). Graph-structured knowledge bases (GSKBs)
are formulated in first order-logic with equality, FOPL(=).
We assume that there is a function terms which returns the
terms in a formula, e.g. terms(R(t1, t2))

∆
= {t1, t2}:

Definition 1. Basic Definitions. Let C (R) be a countably
infinite set of unary (binary) predicate names, and F =
{f1, f2, . . .} be a countably infinite set of unary function
names – hence, (C ∪ R,F) is the signature. Elements in
C (R) are called concepts (relations). Moreover, let X =
{x, x1, x2, . . .} be a countably infinite set of variables. A
GSKB term is a term t such that t ∈ X , or t = fi(x), or
t = fi(fj(x)), with {fi, fj} ⊆ F . Let t, t1, t2 be GSKB
terms:

GSKB atoms: Let {C,D} ⊆ C, R ∈ R, {v, w} ⊆ X . Then,
C(v) and C(fi(x)) are concept atoms, and R(v, w),
R(x, fi(x)) are relation atoms. Moreover, there are
equality and inequality atoms of the following form:
fi(x) = fj(x), fi(x) = fj(fk(x)), fj(fk(x)) = fi(x),
and fi(x) 6= fj(x), with i, j, k pairwise unequal.

GSKB rule: For a concept C, a formula ρC
∆
= ∀x :

C(x) ⇒ ∃!~x : ϕ(x, ~x) is called a GSKB rule,
where ϕ(x, ~x) =

∧
i∈1...m αi is finite conjunc-

tion of GSKB atoms. This is shorthand for ∀x :
C(x) ⇒ ∃~x : pairwise unequal(x, ~x) ∧ ϕ(x, ~x), ~x =

(x1, . . . , xn), with the macro pairwise unequal(x, ~x)
∆
=∧

1≤i<j≤n xi 6= xj ∧
∧

1≤i≤n xi 6= x.
For a concept C with ρC = ∀x : C(x) ⇒ ∃!~x :

ϕ(x, ~x), denote ϕ(x, ~x) =
∧
i∈1...m αi as a set by τC

∆
=

{α1, . . . , αm}, and terms(C)
∆
=

⋃
α∈τC terms(α).

We require that the terms in terms(ρC) are connected to
x: for all t ∈ terms(C), connected(x, t) holds, where



connected is defined as follows: connected(t1, t2) holds
if {R(t1, t2), R(t2, t1)} ∩ τC 6= ∅, or there is some t s.t.
connected(t1, t) and connected(t, t2) holds.

GSKB: A finite set of GSKB rules Σ in which there is at most
one rule per concept.

Input GSKB: A GSKB which is function-free and without
equality atoms.

Auxiliary notions: Given a GSKB Σ, we refer to the set of
concepts used in Σ as concepts(Σ), and τC,Σ to refer to
the consequent of ρC ∈ Σ. We extend the other defini-
tions to accept a Σ argument as well, e.g., terms(C,Σ),
etc.

For example, {S1b, S23, S4, S5} is an (underspecified) in-
put GSKB, and {S1b′, S23′, S4, S5} is a strengthened (out-
put) GSKB; however, we need to replace the ∃ quantifier with
∃!. The formal definition of strengthened GSKB is given be-
low. Note that sometimes the strengthening algorithm will
not add anything, and hence output will equal input, e.g. for
{S4, S5}.

We require that an input GSKB must be coherent:
Definition 2. Coherent GSKB and coherent model. A GSKB
Σ is coherent if there is standard first-order model I =
(∆I , ·I), I |= Σ, in which every concept C mentioned in
Σ is interpreted in a non-empty way: CI 6= ∅. Such a model
is called a coherent model.
Moreover, we define standard notions such as superconcepts
as follows:
Definition 3. Auxiliary Definitions. Let C be a concept, Σ
be a GSKB. We then define the following functions and pred-
icates w.r.t. Σ:
• asserted types(C,Σ)

∆
= {D | D(t) ∈ τC,Σ}

• has asserted typeΣ(C,D)
iff D ∈ asserted types(C,Σ)

• asserted superconcepts(C,Σ)
∆
= {D | D(x) ∈ τC,Σ}

• has asserted superconceptΣ(C,D)
iff D ∈ asserted superconcepts(C,Σ)

• superconcepts(D,Σ)
∆
= {E | has asserted superconcept+

Σ(D,E) }
• has superconceptΣ(C,D)

iff D ∈ superconcepts(C,Σ)

• all typesΣ(C)
∆
= {E | D ∈ asserted types(C,Σ),

E ∈ superconcepts(D ,Σ )}
∪ superconcepts(C,Σ)

• has typeΣ(C,D) iff D ∈ all types(C,Σ)

where R+ denotes the transitive closure of relation R.
We require that the relations has superconceptΣ and
has typeΣ are irreflexive and define:
Definition 4. Admissible GSKB. An input GSKB Σ is
called admissible if Σ is coherent, has superconceptΣ and
has typeΣ are irreflexive, and if there are no implied concept
atoms in the rules: for all C ∈ concepts(Σ), if D(t) ∈ τC,Σ,
then for all E ∈ superconcepts(D,Σ): E(t) 6∈ τC,Σ.
The following is straightforward:

Proposition 1. Every admissible GSKB Σ has a coherent,
finite model.

Proof. Given that we do not support negation of concepts or
relations, and given that inequality atoms are only introduced
by the ∃! quantor, inconsistencies such as x 6= x cannot occur.
Moreover, since GSKB has superconceptΣ and has typeΣ
are irreflexive, the GSKB is acyclic, and the consequent of
every rule can be “unfolded”, analog to the unfolding of an
acyclic TBox in description logics [Baader et al., 2003]. This
produces a finite consequent for every rule. Next, for every
ρC ∈ Σ, C can be instantiated s.t. iC ∈ CI holds, and we
can easily satisfy the existentials in the consequent by cre-
ating one instance per variable. The process terminates and
produces a model of Σ which is coherent and finite.

We need a notion of connectedness on models:

Definition 5. Predicate connected on models. Let I =
(∆I , ·I) be a model of Σ. For i, j ∈ ∆I , we define
connectedI(i, j) if, for some R ∈ R, {(i, j), (j, i)} ∩ RI 6=
∅, or there is some k ∈ ∆I s.t. connectedI(i, k) and
connectedI(k, j).

In the following we are considering admissible GSKBs only,
and we are interested in their preferred models. The intuition
behind the notion of a preferred model is the following: for
every concept C, there should be a prototypical model of C
which is not also a model of some non-superconcept of C,
in the form of a connected graph that “mirrors” the atoms in
τC,Σ – due to the pairwise unequal macro there will be at
least one individual per variable in ρC in this model. More-
over, the prototypical model for C also contains inherited
“graphs” from concepts in all typesΣ(C). Hence, the graph
satisfying the atoms τC,Σ is only a subgraph of the full model
for C. Most importantly, the notion of a preferred model cap-
tures the intuition that inherited content can be specialized,
and hence should give rise to co-references: in the prototyp-
ical model for EukaryoticCell , the Chromosome inherited
from its superclass Cell will be represented by the same in-
dividual as its own local Euk .Chromosome. Note that this
minimizes the extension of Chromosome. The same argu-
ment applies to arbitrary conjunctions: we will not identify
the inherited Chromosome with the local Euk .Ribosome ,
as this would result in a model in which Chromosome ∧
Euk .Ribosome is interpreted non-empty, and there are mod-
els in which this conjunction is interpretated by the empty set.
These intuitions are formalized as follows:

Definition 6. Preferred model of admissible GSKB Σ. Let
Σ be an admissible GSKB, and I |= Σ be a coherent finite
model. Then, I is called preferred if the following holds:

1. for every concept C ∈ concepts(Σ), there is (at least)
one i ∈ CI s.t. for all D, if has superconcept(D,C),
then i 6∈ DI – hence, there is at least one element which
is “unique” to C, and denoted by iC .

2. for C ∈ concepts(Σ), define participantsI(C)
∆
=

{j | connectedI(iC , j)}. Then, for all C,D ∈
concepts(Σ), with C 6= D, the following holds:
participantsI(C) ∩ participantsI(D) = ∅.



3. for every non-empty subset CS ⊆ concepts(Σ), there
is no preferred model I 6= I ′, with ∆I′ ⊆ ∆I s.t.⋂
C∈CS C

I′ ⊂
⋂
C∈CS C

I .

Consider the preferred models of {S1, S23, S4, S5}. We
are forced to have at least one “unique” Cell which is not
a EukaryoticCell , due to 1. Otherwise, every Cell would
acquire the properties of EukaryoticCells, which is not de-
sirable. Moreover, none of the individuals connected to that
unique Cell are shared by another concept, due to 2. Hence,
the concept models have the forms of “non-overlapping
graphs”, and inherited content is “mapped in”. We are forced
to minimize the extension of every concept, as well as of
every conjunction of concepts. This prevents models in
which, for example, RibosomeI ∩ Euk .ChromosomeI 6= ∅
holds, as there are smaller models in which they are inter-
preted disjointly: RibosomeI ∩ Euk .ChromosomeI = ∅.
Note that the inequality atoms in Σ only prevent “merg-
ing” of variables within the same formula, but the individual
for Chromosome(x2) inherited from Cell could in princi-
ple be made co-referential with the local Euk .Ribosome(x3)
in EukaryoticCell . This is prevented in a preferred model.
Also, looking at the model of EukaryoticCell , the co-
reference between the from Cell inherited Chromosome(x2)
and its own local Euk .Chromosome(x4) is made ex-
plicit, since this will result in the smallest (extension of)
ChromosomeI . A model in which a EukaryoticCell would
have two different Chromosomes would be larger and in vi-
olation to 3. So, we only make those conjunction true in a
preferred model that we have to make true - for example,
CellI ∩ EukaryoticCellI 6= ∅, due to S23, and there is no
model in which this conjunction is interpreted by a smaller
set.

Note that a preferred model is not a “minimal” model
in the classical sense. Consider ∀x : C(x) ⇒
∃!x1 : R(x, x1), D(x1), ∀x : SubC(x) ⇒ ∃!x2 :
C(x), R(x, x2), E(x2). In the classical minimal model I,
we would have #∆I = 2, and it would satisfy D ∧ E. Also,
CI = SubCI . But this is not what we want. It violates 1, 2,
as well as 3. The preferred model will need at least 5 nodes.

In principle, there can be more than one preferred model
and hence, more than one strengthened version of the GSKB.
For example, consider the GSKB

C(x)⇒ ∃!x1 : R(x, x1), E(x1)
SubC(x)⇒ ∃!x2, x3 : C(x),

R(x, x2), E(x2), F (x2),
R(x, x3), E(x3), G(x3).

Here, x1 in C can be co-referential with either x2 in SubC,
or with x3.

In the next section, we will show the following construc-
tively, by specifying an algorithm which constructs a pre-
ferred model for a given admissible GSKB Σ:

Proposition 2. Every admissible GSKB has a preferred
model.

We can now state the purpose of the GSKB strengthening al-
gorithm more clearly. Given an admissible GSKB Σ (note
that this is an input GSKB), we are interested in finding a
strengthened version of Σ:

Definition 7. Strengthened version of Σ. Given an admissi-
ble (input) GSKB Σ, we are calling Σ′ a strengthened version
of Σ if the following holds:

1. for every rule ρC ∈ Σ, there is a rule ρ′C ∈ Σ′ that uses
only the variable x: terms(ρ′C) ∩ X = {x}.

2. if I ′ |= Σ′ is a standard first-order model of Σ′ which is
coherent, then I ′ |= Σ, and I ′ is a preferred model for
Σ. Hence, Σ′ |= Σ.

From a strengthened GSKB, we can decide provenance and
co-reference as follows:
Definition 8. Provenance and co-reference determination.
Let C be a concept, Σ′ be a strengthened GSKB, and P ⊆
τC,Σ′ . With β =

∧
α∈P α, we then say that β (and hence all

the atoms in P) are

• local (or asserted) in C if
Σ′ \ {ρC} ∪ {∀x : C(x)⇒

∧
α∈τC,Σ′\P α}

6|= ∀x : C(x)⇒ β,

• and inherited otherwise. More specifically, β (and P)
is inherited from D, iff D(t) ∈ τC,Σ′ , and β′ =∧
α∈P′ α with P ′ = {α[fi(t)⇒fi(x)] | α ∈ P} is lo-

cal in D, and there is no more general SupD with
has superconceptΣ′(D,SupD) such that β (and P) is
inherited from SupD.

Moreover, given concepts C,D, two GSKB terms t1 ∈
terms(C), t2 ∈ terms(D) are said to be co-referential in
Σ′ iff either t1 = t2 = x, t1 = fi(x), t2 = fj(fk(x)),
or t2 = fi(x), t1 = fj(fk(x)), and Σ′ |= (∀x : C(x) ⇒
fi(x) = fj(x) ∨ (∀x : D(x)⇒ fi(x) = fj(x)).
Note that a conjunction β is local as soon as some atom is
already local. Hence, if a complex conjunction β (resp. P) is
local, this does not mean that all its atoms have to be local –
some atoms may be inherited.
Proposition 3. Provenance and co-reference are decidable
in a strengthened GSKB Σ′.
The proof is given in the next Section.

3 Constructing a Strengthened GSKB
The algorithm works by performing the following steps:

1. Produce the skolemized version of Σ, ΣS , by bring-
ing every rule in Σ into Skolem normal form. The
Skolemized axioms contain no nested function terms,
only terms of the form fi(x) and x. Let O ∆

=
{oC | C ∈ concepts(Σ)} be a set of constants, and also
add {C(oC) | C ∈ concepts(Σ)} to ΣS .

2. Construct the minimal Herbrand model IH =
(∆H, ·IH) of ΣS . The minimal Herbrand model is
unique and finite, given that Σ is admissible (and does
not contain disjunctions in the consequents). Note that
the minimal Herbrand model will automatically satisfy
the inequality atoms, and it will also satisfy points 1 and
2 from Definition 6, due to the set of constants O which
are instantiated as {C(oC) | C ∈ concepts(Σ)} ⊆ ΣS ,
and with the exception of x, there are no shared terms
in the rules of ΣS , as Skolemization creates fresh func-
tion symbols for every variable. Thus, oC represents the



root individual of the unique model for concept C, with
oIHC = iC , iC ∈ CIH .

3. Transform IH into a preferred model of Σ, IA =
(∆A, ·IA). ∆A is the quotient set of ∆H under the
= equivalence relation, ∆A = ∆H\ =. Hence, the
elements of ∆A represent the equivalence classes of
equated Skolem ground terms from the Herbrand uni-
verse ∆H. This step is non-deterministic, as there may
be more than one preferred model for Σ.

4. Use IA to construct a strengthened GSKB Σ′ from ΣS
which is satisfied by that model. Use the equivalent clus-
ters in ∆A to generate equality atoms.

5. From Σ′ it is possible to decide the provenance and the
co-reference problem, on a syntactic basis.

Since steps 1 and 2 are standard and well-know [Hedman,
2004], let us define the algorithm for step 3. We need two
more utility notions before we can proceed:

Definition 9. Relations E and U , and equivalence classes.
Let IH = (∆H, ·IH) be the minimal unique Herbrand
model after step 2 of ΣS above. Let E be a binary rela-
tion over terms from the Herbrand universe ∆H, and define
closure(E)

∆
=

⋃
C∈concepts(Σ),k∈∆H

{(f1(k), f2(k)) | (f1(oC), f2(oC)) ∈ E~} ∪
{(f1(f2(k)), f3(k)) | (f1(f2(oC)), f3(oC)) ∈ E~} ∪
{(f1(f2(k)), f3(f4(k))) | (f1(f2(oC)), f3(f4(oC))) ∈ E~}

and ·~ denotes the reflexive, symmetric, and transitive clo-
sure of a relation. Let [i]E

∆
= {j | (i, j) ∈ closure(E)}.

Moreover, let U ∆
= {[i]E 6= [j]E | i1 ∈ [i]E , j1 ∈ [j]E , C ∈

concepts(Σ), (i1 6= j1) ∈ τC,ΣS
} be the set of inequality

atoms.

Intuitively, (i, j) ∈ E represents i = j, and [i]E represents the
equivalence class of i. The relation E (and hence the equiva-
lence classes) will grow as pairs of equated individuals / terms
are added by the algorithm given below. Intuitively, the clo-
sure operator makes sure that whenever two terms starting
from the same root node oC are equated in the unique model
ofC, that then this equality will also hold for all itsC instanti-
ations in other parts of the model. Note that also U will grow,
representing inferences such as i 6= j, k 6= l, j = k ⇒ i 6= l.

The algorithm can now be stated as follows:

Algorithm 1. Construction of a preferred model for Σ. Let
IH = (∆H, ·IH) be the minimal unique Herbrand model of
ΣS after step 2 above.

1. define hasRoot(i)
∆
= oC iff connectedIH(oC , i) holds,

for every C ∈ concepts(Σ).
2. then, non-deterministically apply the following merging

rule on the model as long as it is applicable:
if there are individuals i, j ∈ ∆H, i 6= j,
with hasRoot(i) = hasRoot(j) = oC and
ind types(i) ⊆ ind types(j), i 6∈ [j]E ,
[i]E 6= [j]E 6∈ U , then E ∆

= E ∪ {(i, j)}.
Assume the rule application stops with a global maxi-
mum of inequality atoms s.t. #U is maximized. Since
this is a non-deterministic algorithm, such a run exists,

and we can assume that the non-deterministic algorithm
will produce it.

3. define IA = (∆A, ·IA) as follows:
∆A

∆
= {[i]E | i ∈ ∆H}, and for all C ∈ concepts(Σ) :

CIA
∆
= {[i]E | i ∈ CIH}, for all R ∈ R : RIA

∆
=

{([i]E , [j]E) | (i, j) ∈ RIH}.
The algorithm terminates, since IH is finite, so there is a fi-
nite number of merging possibilities in the rule. The solution
which maximizes #U can obviously be found by search in a
deterministic version.

Lemma 1. IA = (∆A, ·IA) is a preferred model for Σ.

Proof. Obviously, IA is finite and coherent, as it was con-
structed by the algorithm based on the unique finite Herbrand
model. Assume that IA is not a preferred model for Σ. By
construction, IA is a model of ΣS , as the merging rule pre-
serves the model character of IH. Since IH is a model of the
Skolemized version, it is also a model of Σ, since ΣS |= Σ
for the Skolemized GSKB [Hedman, 2004]. Hence, IA is a
model of Σ, also.

It remains to show that it is preferred. Assume that it is not.
Since points 1 and 2 from Definition 6 are already satisfied
by construction, only 3 can be violated. Then, there must be
some other model I ′ and some CS ⊆ concepts(Σ) such that⋂
C∈CS C

I′ ⊂
⋂
C∈CS C

I , witnessed by [i]E ∈
⋂
C∈CS C

I

with [i]E 6∈
⋂
C∈CS C

I′ .

1. If
⋂
C∈CS C

I′ = ∅, then this violates the assumption
that ΣH was a minimal Herbrand model (which does not
make things true without need). Hence,

⋂
C∈CS C

I = ∅
as well, which contradicts [i]E ∈

⋂
C∈CS C

I .
2. Assume CS = {D} is a single concept name. As IH

was a minimal model, the existence of i, with i ∈ [i]E ,
is somehow enforced by ΣS , hence there is some term
ti ∈ terms(C,ΣS) with D ∈ ind types(ti). Moreover,
for the same reason, DI

′ 6= ∅, as otherwise it wouldn’t
be a model, but i 6∈ DI

′
. Consequently, there is some

j ∈ DI′ with i 6= j. Then, there must also be some tj ∈
terms(C,ΣS) with D ∈ ind types(tj), with ti 6= tj .
There are a couple of cases:

(a) Assume ind type(ti) ⊆ ind types(tj)
i. if C ′ = C and hence hasRoot(i) =

hasRoot(j) = C, then (ti 6= tj) 6∈ τC,ΣS
and

[i]E 6= [j]E 6∈ U , as otherwise I would not
be a model. But then, the merging rule would
have been applied and merged i and j, such
that [i]E = [j]E = {i, j}. Rule application
could not have been blocked by the precondition
[i]E 6= [j]E 6∈ U , because IA was produced by
a run in which #U was maximized. This means
that the rule will be applicable and equate i and j,
contradicting the assumption that the algorithm
has terminated.

ii. otherwise, C 6= C ′, then we don’t have to worry:
as stated in Definition 6, participantsIA(C) ∩
participantsIA(C ′) = ∅.



(b) Assume ind type(tj) ⊆ ind types(ti): analog to
the previous case.

(c) Assume ind type(ti) 6⊆ ind types(tj). Then
there is some E ∈ ind type(ti), E 6∈
ind types(tj). As IA was a minimal Herbrand
model, and there is no way for [i]E to “vanish”
from EIA , there must be [i]E ∈ EIA and hence
[i]E ∈

⋂
C∈CS C

I′ . Contradiction.
3. If CS = {D1, . . . , Dn}, then there must already be

some CS ′ = {Dm, Dn}, CS ′ ⊆ CS for which we
have such an i. If has superconcept(Dm, Dn) or vice
versa, then there is already some CS ′ = {Dm}, and
this is handled by 2. Otherwise, Dm, Dn are not in
a sub/superconcept relationship, and corresponding in-
stances are not getting merged by the merging rule.
But similar to 2c), this will lead us to conclude that
[i]E ∈

⋂
C∈CS C

I′ , contradicting the assumption.
Hence, IA is a preferred model. Note that this proves Propo-
sition 2.

For what remains to be shown is how we can compute a
strengthened GSKB from ΣS and IA.
Definition 10. Construction of strengthened GSKB Σ′. Let
ΣS be the skolemized version of the admissible GSKB, and
IA be a preferred model of Σ. We then rewrite the rules in
ΣS as follows; note that α[t1⇒t2] means “in α, substitute all
occurrences of t1 with t2”:

Σ′
∆
= {rewrite(ρC , terms(C,ΣS)) | ρC ∈ ΣS},with

rewrite(ρC , terms)
∆
= C(x)⇒∧

α∈τC,ΣS
α ∧∧

t∈terms,t6=oC hasRoot(t, x)[oC→x] ∧∧
t1,t2∈terms,t1 6=t2 t1 6= t2[oC→x] ∧∧
t1∈terms,t2∈[t1] t1 = t2[oC→x]

In addition, we need the following axioms:

1. Σ′
∆
= Σ′ ∪ {C(oC) | C ∈ concepts(Σ)}

2. Σ′
∆
= Σ′ ∪ {oC 6= oD | C,D ∈ concepts(Σ), C 6= D}

3. Σ′
∆
= Σ′ ∪ {∀x, y, z :
hasRoot(x, y), hasRoot(y, z)⇒ hasRoot(x, z) }

4. Σ′
∆
= Σ′ ∪ {∀x, y :
hasRoot(x, oC), hasRoot(y, oD)⇒ x 6= y },

for all C,D ∈ concepts(Σ), C 6= D.
Lemma 2. If I |= Σ′, then I is a preferred model for Σ.

Proof. As Σ′ has been constructed from ΣS by adding equal-
ity atoms to explicitly represent the co-references with inher-
ited Skolem function successors, which have been identified
by the merging rule from a preferred model of Σ, it is clear
that any model of Σ′ will force the same co-references, and
hence, satisfy point 3 in Definition 6. Moreover, point 1 in
Definition 10 makes sure that we have non-empty concept
models for every concept by requiring an instance, hence sat-
isfying condition 1 in Definition 6. Point 2 in Definition 10
enforces distinctness between those constants, and point 3 de-
clares hasRoot as a transitively closed relation. In combina-
tion with the added hasRoot atoms in Σ′, and with the ax-
ioms in point 4 of Definition 10, this ensures that condition 2

in Definition 6 is satisfied, requiring that the unique concept
models do not overlap (no sharing of participants).

Let us return to our example. For Σ =
{S1b, S23, S4, S5} we will get ΣS as follows:
Cell(x)⇒

hasPart(x, f1(x)),Ribosome(f1(x)),
hasPart(x, f2(x)),Chromosome(f2(x)),
inside(f1(x), f0(x)),Cytosol(f0(x)),
pairwise unequal({x, f0(x), f1(x), f2(x)})

EukaryoticCell(x)⇒ Cell(x)
hasPart(x, f3(x)),Euk .Ribosome(f3(x)),
hasPart(x, f4(x)),Euk .Chromosome(f4(x)),
hasPart(x, f5(x)),Nucleus(f5(x)),
inside(f4(x), f5(x)),
pairwise unequal({x, f3(x), f4(x), f5(x)})

Cell(oCell),Euk .Cell(oEuk .Cell),Ribosome(oRibosome) . . .

If we look at the minimal Herbrand model of ΣS , we
find that the following atoms are satisfied for oEuk .Cell :
hasPart(oEuk .Cell , f1(oEuk .Cell)),
hasPart(oEuk .Cell , f2(oEuk .Cell)),
inside(f1(oEuk .Cell), f0(oEuk .Cell)),
Ribosome(f1(oEuk .Cell)),
Chromosome(f2(oEuk .Cell)),
Cytosol(f0(oEuk .Cell)),
hasPart(oEuk .Cell , f3(oEuk .Cell)),
hasPart(oEuk .Cell , f4(oEuk .Cell)),
hasPart(oEuk .Cell , f5(oEuk .Cell)),
inside(f4(oEuk .Cell), f5(oEuk .Cell)),
Euk .Ribosome(f3(oEuk .Cell)),
Euk .Chromosome(f4(oEuk .Cell)),
Nucleus(f5(oEuk .Cell)),

Moreover, there are pairwise inequality atoms between
oEuk .Cell , f3(oEuk .Cell), f4(oEuk .Cell), f5(oEuk .Cell) and
between oEuk .Cell , f0(oEuk .Cell), f1(oEuk .Cell), f2(oEuk .Cell).

If we next look at IA, we will find that [f3(oEuk .Cell ]) =
[f1(oEuk .Cell)] = {f3(oEuk .Cell), f1(oEuk .Cell)} holds,
and likewise [f4(oEuk .Cell ]) = [f2(oEuk .Cell)] =
{f2(oEuk .Cell), f4(oEuk .Cell)}. Hence, the desired co-
references have been established, e.g., the from Cell inherited
Ribosome(f1(oEuk .Cell)) is identified as being co-referential
with the “local” Euk .Ribosome(f3(oEuk .Cell)).

The abridged strengthened GSKB Σ′ then looks as follows:
Cell(x)⇒

hasPart(x, f1(x)),Ribosome(f1(x)),
hasPart(x, f2(x)),Chromosome(f2(x)),
hasRoot(f1(x), x), hasRoot(f2(x), x),
pairwise unequal({x, f1(x), f2(x)})

EukaryoticCell(x)⇒ Cell(x),
hasPart(x, f3(x)),Euk .Ribosome(f3(x)),
hasPart(x, f4(x)),Euk .Chromosome(f4(x)),
hasPart(x, f5(x)),Nucleus(f5(x)),
inside(f4(x), f5(x)), f3(x) = f1(x), f4(x) = f2(x),
hasRoot(f3(x), x), hasRoot(f4(x), x),
hasRoot(f5(x), x),
pairwise unequal({x, f3(x), f4(x), f5(x)})

Ribosome(oRibosome),Chromosome(oChromosome)
. . . oCell 6= oEuk .Cell . . . (axiom sets 2–4 from Def. 10)



We claim that we can decide the provenance problem for the
strengthened GSKB Σ′ syntactically as follows; also recall
that in an admissible KB, the consequents do not contain re-
dundant concept atoms:

Definition 11. Syntactic provenance of atoms in Σ′. In a
strengthened GSKB Σ′, for C ∈ concepts(Σ), let α ∈ τC,Σ′

be an atom:

• α = C(f(x)) is inherited from D if D(fs(x)) ∈
τC,Σ′ with D ∈ {C} ∪ all superclasses(C,Σ′) and
f ′(fs(x)) = f(x) ∈ τC,Σ′ with C(f ′(x)) ∈
τD,Σ′ , and there is no more general class SupD with
has superconcept(D,SupD) for which this is also the
case.
• α = R(f1, f2) is inherited from D if D(fs(x)) ∈
τC,Σ′ with D ∈ {C} ∪ all superclasses(C,Σ′) and
{f ′1(fs(x)) = f1(x), f ′2(fs(x)) = f2(x)} ⊆ τC,Σ′ with
R(f ′1, f

′
2) ∈ τD,Σ′ , and there is no more general class

SupD with has superconcept(D,SupD) for which this
is also the case.

If α is not inherited from some concept, it is called local to C.

Looking at the example GSKB Σ′, we see
that the atoms hasPart(x, f3(x)) are inher-
ited from Cell , due to f3(x) = f1(x), and
hasPart(x, f4(x)), due to f4(x) = f2(x). Consequently,
hasPart(x, f5(x)),Nucleus(f5(x)), inside(f4(x), f5(x))
are local to EukaryoticCell . Hence, for the original GSKB
Σ, hasPart(x, x3) and hasPart(x, x4) were inherited from
Cell , and hasPart(x, x5),Nucleus(x5), inside(x4, x5) are
local to EukaryoticCell .

We claim that we can decide the co-reference problem for
the strengthened GSKB Σ′ syntactically as follows:

Definition 12. Syntactic co-reference of terms in Σ′. Two
terms with t1 ∈ terms(C,Σ′), t2 ∈ terms(D,Σ′) are co-
referential, if t1 = t2 = x, or t1(x) = t2(t) ∈ τC,Σ′ , or
t2(x) = t1(t) ∈ τD,Σ′ (note that t = x, or t = fs(x)).

Looking at the example GSKB Σ′, we see that f3(x) = f1(x)
are co-referential and hence the Ribosome in Cell is the same
as the Euk .Ribosome in EukaryoticCell , and likewise for
the Chromosome due to f4(x) = f2(x).

Lemma 3. Syntactic provenance according to Def. 11 is
sound and complete for deciding semantic provenance ac-
cording to Def. 8. Syntactic co-reference according to Def.
12 is sound and complete for deciding semantic co-reference
according to Def. 8.

Proof. Soundness is immediate. Completeness is a straight-
forward too, as Skolem functions are not shared by different
consequents in Σ′, and Σ was admissible. Moreover, for two
different Skolem functions fi, fj , with i 6= j, fi(t) = fj(t)
will hold for a certain term t in all models of Σ′ if and only
if this was explicitly enforced by an equality atom. Note that
this also proves Proposition 3.

We can generalize these results to the original GSKB Σ as
follows. To check the provenance of τC,Σ we need to keep
track during Skolemization which atom α′ ∈ τC,Σ′ corre-
sponds to α, and check the provenance of α′ in Σ′. Likewise,

to check to co-referentiality of two variables, let t1 and t2 be
its corresponding (Skolem function) terms in the Skolemized
versions. Now, x1 and x2 are co-referential in Σ iff t1 and
t2 are co-referential in Σ′. Looking at the example GSKB Σ,
we see that x1 from S1 is co-referential with x3 in S23 since
f3(x) = f1(x) in Σ′, and x2 from S1 is co-referential with
x4 in S23 due to f4(x) = f2(x) in Σ′.

However, given that a GSKB may have more than one
strengthened version, “to decide” should be understood in
a credulous way here. Only in case a provenance informa-
tion or co-reference holds in all strengthened GSKBs, this
would be a skeptical conclusion; it is clear that all strength-
ened GSKBs can in principle be constructed, due to finiteness
of IH. We can hence present the main result of this paper as
follows:
Corollary 1. Given a strengthened GSKB Σ′, we can decide
the provenance and co-reference problem on a syntactic ba-
sis. For an admissible (input) GSKB Σ, we can decide the
credulous provenance and credulous co-reference problem by
constructing a strengthened GSKB Σ′ first, and check there.
The skeptical provenance and skeptical co-reference problem
can be decided by constructing all strengthened GSKBs, and
checking if a positive answer holds in all of them.

4 Implementation & Evaluation
For the sake of implementability, the implemented algorithm
does not really construct a Skolemized version of Σ and nei-
ther its Herbrand model. Rather, it works directly on the level
of formulas, by considering graph morphisms between con-
cept graphs. The operations performed on these graphs can be
understood as operations on the minimal Herbrand model and
hence, the given logical framework provides a partial logical
reconstruction of what this algorithm is doing.

We have applied the algorithm to the AURA GSKB [Gun-
ning, D. and Chaudhri, V. K. et al., 2010], which currently
contains 5662 graph-structured concepts, with a number of
141,909 atoms. The GSKB strengthening algorithm identi-
fies 116,442 of these triples as inherited, which amounts to
≈ 82 %. Moreover, 22,667 equality atoms were hypothe-
sized, and 2858 cases of variable specialization in a subcon-
cept were found (e.g., the Chromosome in Cell got special-
ized to Euk .Chromosome in EukaryoticCell ). The required
runtime is ≈ 15 hours on a Intel Xeon E5607 2.2 GHz PC
with 8 GB of RAM running Windows 7 64 Bit with a 64
Bit Common Lisp implementation. The implementation has
≈ 6100 lines of code.

The actual deterministic implementation of the non-
deterministically specified algorithm requires search in order
to maximize the number of inequality assertions. The search
space (number of possible individual mergings) is tremen-
dously large, and can only be tackled by employing a large
number of search heuristics, including time outs and pruning
of the search space.

The achieved progress is good enough from a practical
point of view – approx. 82 % of all atoms are identified as be-
ing inherited. We have given the strengthened GSKBs to the
subject matter experts in the knowledge factory [Chaudhri, V.
and Dinesh, N., et al, 2011] for evaluation by spot-checking
the provenance of atoms. So far, the results are encouraging,



and only a small percentage of atoms is falsely given a local
provenance, which is caused by the heuristics that prune the
search space. The identified co-references were correct to a
very large extent. A more precise and complete study should
be carried out in the future. Since we do not have reliable
ground truths for the provenance and co-reference informa-
tion (otherwise we wouldn’t have to compute it), we cannot
automatically check the reconstructed GSKB, i.e., in terms of
precision and recall.

5 Related Work, Conclusions, and Outlook
The problem of anaphora resolution has been studied in the
NLG literature to some extent; for example, [Carpenter, 1994;
Cohen, 2007] use default rules to hypothesize equality asser-
tions between variables (NLG referents).

The work of [Chaudhri and Tran, 2012] uses answer set
programming (ASP) to add so-called UMap atoms to the
GSKB specified as an ASP program. They rely on a compli-
cated axiomatic system encoded as ASP rules to capture the
semantics of object-oriented knowledge bases, inheritance
etc. The semantics is given by the rules of the ASP program,
whereas our approach starts with a notion of desirable models
and is hence model-theoretic in nature. Moreover, constants
are distinct by definition in ASP programs, so equality needs
to be modeled on the meta-level. Scalability of the ASP ap-
proach has not been demonstrated yet.

The reasoning system KM [Clark and Porter, 1997] uses
a so-called unification mechanism, but the lack of a formal
semantics makes it difficult to understand and to debug its in-
ferences. One problem with the approach is that unifications
are not represented explicitly as (equality or Umap) atoms in
the KM GSKB; instead, unficiations are performed by irre-
versible GSKB-global substitutions. Retraction and compre-
hension is very difficult and time consuming, especially in
case heuristically generated bad unifications have to be re-
vised. Dealing with the effects of such destructive heuristic
unifications was very time consuming in AURA.

It is well-known that the modeling of graph structures is
challenging in description logic (DL), as derivations from the
tree-model property usually result in decidability problems
[Vardi, 1996] which can often only be regained by impos-
ing severe artificial modeling restrictions. Although some
progress has been made on modeling graph structures with
DLs [Motik et al., 2009], those extensions are still too re-
stricted to be used here. Our experience is that graph struc-
tures are central to biology, and approximating them by trees
results in coarse models. Our framework allows us to express
the graph structures truthfully, but comes with other restric-
tions, too. To the best of our knowledge, there is no body
of work in the DL community that provides answers to the
problems addressed in this paper, and we are not aware of
any abduction or hypothesization algorithm which has ever
successfully been applied to a GSKB of this size.

The AURA system and the actual implementation of the
algorithm covers additional expressive means that we have
not formally reconstructed yet (transitive, functional, hierar-
chical relations, number restrictions, and disjointness axioms,
cyclical GSKBs, etc.) This is future work.

The strengthened GSKB is also the basis for a cou-
ple of AURA knowledge base exports in SILK, ASP,
FOPL, and TPTP FOF syntax. We also have an
OWL2 translation, in which the graphs are approximated
(equality atoms are omitted). These GSKBs can be
downloaded from http://www.ai.sri.com/halo/
halobook2010/exported-kb/biokb.html after a
license agreement. It is interesting to note that many of our
OWL2 exports (we have several variants, in increasing com-
plexity) cannot even be checked for consistency by contem-
porary DL reasoners within reasonable time bounds. This
also rationalizes our work on alternative reasoning methods.
Acknowledgements: This work was funded by Vulcan
Inc.
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