
Automatic Strengthening of
Graph-Structured Knowledge Bases

Or: How to Identify Inherited Content in Concept Graphs

Vinay Chaudhri, Nikhil Dinesh, Stijn Heymans, Michael Wessel†

SRI International
Artificial Intelligence Center

333 Ravenswood Avenue, Menlo Park, CA 94025-3493, USA
firstname.lastname@sri.com

(† = corresponding author)

Abstract. We consider the problem of identifying inherited content inknowl-
edge representation structures calledconcept graphs (CGraphs). A CGraph is a
visual representation of a concept; in the following, CGraphs and concepts are
used synonymously. A CGraph is a node- and edge-labeled directed graph. La-
beled (binary) edges represent relations between nodes, which are considered in-
stances of the concepts in their node labels. CGraphs are arranged in a taxonomy
(is-a hierarchy). The taxonomy is a directed acyclic graph,as multiple inheri-
tance is allowed. A taxonomy and set of CGraphs is called a graph-structured
knowledge base (GSKB).
A CGraph can inherit content from other CGraphs – intuitively, if C andD are
CGraphs, thenC may contain content inherited fromD, i.e. labeled nodes and
edges “fromD” can appear inC, if D is a direct or indirect superconcept ofC,
or if C contains a node being labeled with eitherD or some subclass ofD. In
both cases,C is said to refer toD.
This paper contains three contributions. First, we describe and formalize the prob-
lem from a logical point of view and give a first-order semantics for CGraphs.
We show that the identification of inherited content in CGraphs depends on some
form of hypothetical reasoning and is thus not a purely deductive inference task,
as it requires unsound reasoning. Hence, this inference is different from the stan-
dard subsumption checking problem, as known from description logics (DLs)
[1]. We show that theprovenance problem(from where does a logical atom in
a CGraph get inherited?) strongly depends on the solution tothe co-reference
problem(which existentials in the first-order axiomatization of concepts as for-
mulas denote identical domain individuals?) We demonstrate that the desired in-
ferences can be obtained from a so-calledstrengthened GSKB, which is an aug-
mented variant of the input GSKB. We present an algorithm which augments and
strengthens an input GSKB, using model-theoretic notions.Secondly, we are ad-
dressing the problem from a graph-theoretic point of view, as this perspective is
closer to the actual implementation. We show that we can identify inherited con-
tent by computing so-calledconcept coverings,which induce inherited content
from superconcepts by means ofgraph morphisms.We argue that the algorithm
solves a challenging (NP-hard) problem. Thirdly, we apply the algorithm to the
large-scale biological knowledge base from the AURA project [2], and present a
preliminary evaluation of its performance.

1 Introduction

Graph-structured knowledge bases(GSKBs) occur naturally in many application do-
mains, for example, if biological knowledge is modeled graphically by means ofcon-
cept graphs (CGraphs)as in the AURA project [2], see Fig. 1:

Fig. 1. (Simplified) Concept Graphs forCell andEukaryoticCell in AURA.

In the AURA project, such CGraphs were modeled by subject-matter experts (SMEs)
from the pages of a biology college textbook [3], following adetailed “text to CGraph”
encoding process [4]:

S1 EveryCell has part aRibosome and aChromosome .
S2 EveryEukaryoticCell is aCell .
S3 EveryEukaryoticCell has part aEukaryoticRibosome , aEukaryoticChromosome ,

aNucleus, such that theEukaryoticChromosome is inside theNucleus.
S4 EveryEukaryoticRibosome is aRibosome.
S5 EveryEukaryoticChromosome is aChromosome .

The CGraphs in Fig. 1 naturally representS1 andS3. However, the taxonomic infor-
mation expressed byS2, S4 andS5, is visualized in a separate taxonomy view (hence,
the superconcepts are not explicit in the CGraphs in Fig. 1).

Intuitively, a CGraphC can inherit contentfrom a CGraphD if D is either a direct
or indirect superconcept ofC, or if C contains a node with eitherD or some subconcept
of D in its label.

In this paper, we are addressing the following question:Given a GSKB with a
fixed taxonomy, which content in the CGraphs is inherited, and from where?
For example, if we assume thatEukaryoticCell hasCell as a superconcept, as ex-
pressed byS2, then it also seems plausible to assume that itsEukaryoticChromosome

part was inherited fromCell as aChromosome which then gotspecialized. Under
this assumption it seems reasonable to assume that the individual represented by the
EukaroticChromosome node inEukaryoticCell is hence identical to the individual
represented by theChromosome node inCell – we are saying that those nodes should
beco-referential. However, this co-reference is not explicit in the CGraphs.We might
consider the graphs asunderspecifiedas it is neither possible to prove nor to disprove
equality of those nodes resp. individuals represented by them in the logical models.

Similar questions of co-referentiality related to inherited content do arise if we use
natural language as our primary means of knowledge representation, e.g. consider the
sentencesS1 andS3. Is theEukaryoticChromosome thatS3 is talking about actually

thesameChromosome that is mentioned inS1? These kinds of question are studied to
some extent in the field of computational linguistics under the termanaphora resolu-
tion [5], [6]. We will use the termco-reference resolutionin the following. Obviously,
natural language is also underspecified in that sense.

From a logical point of view,the sentencesS1 to S5 (and their corresponding
CGraphs) naturally correspond to FOPL formulas of the following kind (in the fol-
lowing, we will be using the comma in consequents to denote conjunctions); thegraph-
structured knowledge base (GSKB)of S1 to S5 (and the corresponding CGraphs) then
looks as follows:

S1 ∀x : Cell(x) ⇒ ∃x1, x2 :
hasPart(x, x1),Ribosome(x1),
hasPart(x, x2),Chromosome(x2)

S2 ∀x : EukaryoticCell (x) ⇒ Cell (x)
S3 ∀x : EukaryoticCell (x) ⇒ ∃x3, x4, x5 :

hasPart(x, x3),Euk .Ribosome(x3),
hasPart(x, x4),Euk .Chromosome(x4),
hasPart(x, x5),Nucleus(x5), inside(x4, x5)

S4 ∀x : Euk .Ribosome(x) ⇒ Ribosome(x)
S5 ∀x : Euk .Chromosome(x) ⇒ Chromosome(x)

Unary predicates representconcepts, and binary predicates predicatesrelations. The
conceptD is called asuperconceptof C, with C 6= D, if ∀x : C(x) ⇒ D(x), . . .
holds. Vice versa,C is called asubconceptof D then.

Following our example, we would like to prove that aEukaryoticCell has a
Chromosome part which gets inherited fromCell, and indeed, the following entail-
ment holds:

{S1, S2, S4, S5} |=
∀x : EukaryoticCell (x) ⇒ ∃y : hasPart(x, y),Chromosome(y),

with S3 being removed here, as the entailment would hold true trivially otherwise,
of course. This testifies that “having a Chromosome part” is inherited fromCell to
EukaryoticCell .

However, a closer look reveals that our question was a bit toogeneral, and that
we really ought to be able to prove thatthe Chromosome part inside the Nucleus of a
EukaryoticCellshould betheChromosome inherited fromCell ; intuitively, the atoms
hasPart(x, x4), Chromosome(x4) in S3 should be “inherited” fromS1 (theirprove-
nanceshould beCell), and hence, be logically redundant in a sense. In order to check
if those atoms fromS3 are indeed inherited from some other concept in the GSKB
to EukaryoticCell and hence redundant, we can tentatively remove the atoms under
question fromS3, yieldingS3−, and then check if the originalS3 axiom is entailed.
Following this procedure,S3− reads

S3− ∀x : EukaryoticCell (x) ⇒ ∃x3, x4, x5 :
hasPart(x, x3),Euk .Ribosome(x3),

Euk .Chromosome(x4),
hasPart(x, x5),Nucleus(x5), inside(x4, x5)

Note that of the two atoms to be removed fromS3, namely hasPart(x, x4),
Chromosome(x4), only the former is actually present inS3 – obviously, we do not
want to removeEuk.Chromosome(x4) fromS3 for this test. UsingS3− in the GSKB
instead ofS3 unfortunatelyyields:

{S1, S2, S3−, S4, S5} 6|= S3

since already

{S1, S2, S3−, S4, S5} 6|=
∀x : EukaryoticCell (x) ⇒ ∃y1, y2 :

hasPart(x, y1),Chromosome(y1), inside(y1, y2).

The reason that the desired consequencedoes nothold is obviously that there isno way
to prove the co-referentiality / equalitybetween theChromosome inherited fromCell ,
denoted byx2 in S1, and theEukaryoticChromosome denoted byx4 in S3− inside
the Nucleusx5, and hence, the corresponding model individuals cannot be used for
satisfaction / interpretation ofy1, y2 in the above entailment query. If we could prove
thatx2 fromS1 must be equal tox4 in S3− in the context ofEukaryoticCell, then the
entailment would hold. But all we can say is that there is some(potentially different)
Chromosome part inherited fromCell to EukaryoticCell , which is not necessarily
inside itsNucleus . So, we do not get the desired inferenceunlesswe strengthenthe
axiomatic content of our GSKB somehow such that those equalities hold.

One way ofstrengtheningthis GSKB in order toget the desired inferencesis to
skolemizethe existentials, and establish co-references by virtue ofequality atoms be-
tween (“local and inherited”) Skolem function terms, as shown below. We hence call
the following GSKB astrengthened versionof the original GSKB:

S1’ ∀x : Cell (x) ⇒
hasPart(x, f1(x)),Ribosome(f1(x)),
hasPart(x, f2(x)),Chromosome(f2(x))

S3’ ∀x : EukaryoticCell (x) ⇒
hasPart(x, f3(x)),Euk .Ribosome(f3(x)),
hasPart(x, f4(x)),Euk .Chromosome(f4(x)),
hasPart(x, f5(x)),Nucleus(f5(x)),
inside(f4(x), f5(x))),
f3(x) = f1(x), f4(x) = f2(x)

Note that we are now getting the desired inference as follows. First we again remove
the atoms under investigation fromS3′ to getS3′−:

S3’− ∀x : EukaryoticCell (x) ⇒
hasPart(x, f3(x)),Euk .Ribosome(f3(x)),

Euk .Chromosome(f4(x)),
hasPart(x, f5(x)),Nucleus(f5(x)),
inside(f4(x), f5(x))),
f3(x) = f1(x), f4(x) = f2(x)

and then we observe that the following entailment holds:

{S1′, S2, S3′−, S4, S5} |= S3′

because for anx satisfying EukaryoticCell, we can inherithasPart(x, f2(x)),
Chromosome(f2(x)) from Cell , and due to the equality atomf4(x) = f2(x), we can
establish co-referentiality / equality of the inheritedChromosome with the
Euk .Chromosome in EukaryoticCell and hence, the restrictions modeled inS3′− for
f4(x) apply to the inheritedf2(x), hence satisfying all of the necessary conditions in
S3′. This shows that thehasPart(x, f4(x)),Chromosome(f4(x)) is redundant inS3′,
or inherited from somewhere. More specifically, we can also verifyfrom wherethese
atoms are inherited, by removing axioms tentatively from the GSKB one by one, and
re-checking the entailment after each removal – for example, if the entailment stops to
hold as soon as we removeS1′ from the KB, then we know thatS1 plays a crucial role
in entailing these atoms, and that those atoms are, in that sense, “inherited” fromCell .
Thus,Cell should be their provenance then. This gives us a procedure for computing
the provenance of atoms; see below for more details.

We have just demonstrated that inherited content can frequently only be recognized
correctly in CGraphs if the GSKB was strengthened, i.e., equality between existentials /
Skolem function terms can be proven. Shouldn’t it then beobligatorythat the equalities
required for establishing the desired inferences areexplicitly specified in the first place?
We believe that the answer can beno.Certainly, the required equalities could be added
by hand as in the examples above, but this is often tedious, even if there is some tool
support (e.g. a graphical CGraph editor). However, as demonstrated, the input may also
be considerednaturally underspecifiedin the sense thatco-references are not explicit.
We therefore propose anautomatic co-reference resolution algorithmwhich hypoth-
esizes and adds these equality atoms automatically. This algorithm necessarily has to
rely onsome sort of guessing,and is hence in the realm ofhypothetical / logically un-
sound inference procedures. The presented algorithm produces a strengthened GSKB
in which these co-references are explicit.

Another benefit of a GSKB is that it oftenreduces modeling effort.For example,
suppose we updatedCell by saying that itsRibosome is insideCytosol :

S1b ∀x : Cell (x) ⇒ ∃x1, x2, x6 :
hasPart(x, x1),Ribosome(x1),
hasPart(x, x2),Chromosome(x2),
inside(x1, x6),Cytosol (x6)

We would like to derive that this also holds for theEuk .Ribosome(x3) inEukaryoticCell

in S3 – analog to the case of theChromosome andEukraryoticChromosome it is
reasonable to assume thatRibosome andEukaryoticRibosome are co-referential as
well, and indeed, we are getting this inference automatically with

S1b’ ∀x : Cell (x) ⇒
hasPart(x, f1(x)),Ribosome(f1(x)),
hasPart(x, f2(x)),Chromosome (f2(x)),
inside(f1(x), f0(x)),Cytosol (f0(x))

as follows:

{S1b′, S2, S3′, S4, S5} |=
∀x : EukaryoticCell (x) ⇒
∃y1, y2 : hasPart(x, y1),Euk .Ribosome(y1), inside(y1, y2),Cytosol (y2)

Note again that this entailment doesnot hold for {S1b, S2, S3, S4, S4}. the utility of
the strengthened GSKB{S1b′, S2, S3′, S4, S4} is hence that we do not need to re-
model the fact that theEukaryoticRibosome of aEukaryoticCell is insideCytosol –
we can simply inherit it fromCell , and it would belogically redundantto add these
atoms toS3′.

In this paper, we first present thelogical perspectiveon this problem. We present a
so-called GSKB strengthening algorithm, which, given an input GSKB such as
{S1b, S2, S3, S4, S5}, produces a strengthened GSKB similar to
{S1b′, S2, S3′, S4, S5}, by using Skolemization and equality atoms between Skolem
terms. From the strengthened GSKB we can compute theprovenance of atomsandco-
references, hence answering the questionfrom where did content get inherited?We will
use a model-theoretic notion ofpreferred modelsin order to characterize the desired
inferences that we wish to obtain from the underspecified GSKB, as illustrated by the
examples above. The information in the preferred model(s) is then used to produce the
strengthened GSKB. Obviously, deciding entailment of atoms, and hence the prove-
nance problem, are in general undecidable in FOPL(=), but decidable in the considered
fragment of FOPL(=).

A further contribution of this paper is a description of theactual implementation,
which is best understood and described from a graph-theoretic perspective.It is obvious
that we can define CGraphs as node- and edge labeled graphs. Wewill argue that the
problem of identifying inherited content (the provenance problem) and the co-reference
problem can also be understood as solving a variant of the well-knownmaximum com-
mon subgraph isomorphism (MCS) problem. This problem, which is NP-hard, can be
stated as follows:

Input: Two graphs G1 and G2.
Output: The largest subgraph of G1 isomorphic to a subgraph of G2.

We are considering morphisms instead of isomorphisms, as the node mappings do not
have to be injective in our case.1 Moreover, we also need to be more flexible regarding
the node- and edge-label matching conditions, as inheritedlabels can be specialized in
subconcepts. The resulting morphism-based graph algorithm is called theGSKB cover-
ing algorithmin the following.

We have implemented this novel GSKB covering in a scalable way, and have suc-
cessfully applied it to the AURA GSKB [2], [4]. The AURA GSKB is the basis of the
intelligent question answering textbook Inquire, see [7]2, and currently contains around

1 There is a possibility that two inherited nodes get equated /merged into one node, which means
that those two (or more) nodes will be mapped to one node by themorphism – the mapping is
obviously no longer injective then.

2 This video won the AAAI 2012 video award.

6430 concept graphs, with a total of 93,254 edges and 53,322 nodes, hence on aver-
age 14.5 edges and 8.2 nodes per concept. The biggest graph has 461 nodes and 1,308
edges. A third contribution of this paper is hence a preliminary evaluation and critical
review of the performance of this algorithm on the AURA GSKB.

The paper is structured as follows: We first address the problem from a logical point
of view. We formally define CGraphs and the GSKB framework, aswell as the required
notions of strengthened GSKBs, and the semantic notion of preferred models. We then
present the GSKB-strengthening algorithm and show that a strengthened GSKB has
models which are preferred models of the original GSKB, hence giving us the desired
additional conclusions required to solve the co-referenceand provenance problems.
We then introduce the graph-based framework underlying theactual implementation.
We formally define CGraph morphisms, as well as so-called CGraph patchworks and
GSKB coverings, which describe how content is inherited from other CGraphs via mor-
phisms throughout the whole GSKB. We present an algorithm for computing such a
GSKB covering, and illustrate that the computed CGraph morphisms can be used to
decide provenance and co-referentiality. Next we apply theGSKB covering algorithm
to the AURA GSKB and evaluate its performance. We then discuss related work, and
conclude with a summary and an outline for future work.

2 Graph Structured Knowledge Bases – The Logical Perspective

As outlined in the Introduction, in this Section we formalize the notion of GSKBs from
a first-order logic perspective, and show how provenance of atoms and co-referentiality
of variables can be formalized and computed from a strengthened GSKB. We present
the so-called GSKB strengthening algorithm.

2.1 Definitions

In the following, we denote an atom or a conjunction of atoms with free variables
{x, x1, . . . , xn} asϕ(x,x), with x = (x1, . . . , xn). Graph-structured knowledge bases
(GSKBs) are formulated in first order-logic with equality, FOPL(=). We assume that
there is a functionterms which returns the terms in a formula, e.g.terms(R(t1, t2))

∆
=

{t1, t2}:

Definition 1. Basic Definitions. LetC (R) be a countably infinite set of unary (binary)
predicate names, andF = {f1, f2, . . .} be a countably infinite set of unary function
names – hence,(C ∪ R,F) is the signature. Elements inC (R) are called concepts
(relations). Moreover, letX = {x, x1, x2, . . .} be a countably infinite set of variables.
A GSKB term is a termt such thatt ∈ X , or t = fi(x), or t = fi(fj(x)), with
{fi, fj} ⊆ F . Let t, t1, t2 be GSKB terms:

GSKB atoms: Let {C,D} ⊆ C, R ∈ R, {v, w} ⊆ X . Then,C(v) andC(fi(x))
are concept atoms, andR(v, w), R(x, fi(x)) are relation atoms. Moreover, there
are equality and inequality atoms of the following form:fi(x) = fj(x), fi(x) =
fj(fk(x)), fj(fk(x)) = fi(x), andfi(x) 6= fj(x), with i, j, k pairwise unequal.

GSKB rule: For a conceptC, a formulaρC
∆
= ∀x : C(x) ⇒ ∃!x : ϕ(x,x) is called

a GSKB rule, whereϕ(x,x) =
∧

i∈1...m αi is finite conjunction of GSKB atoms.
This is shorthand for∀x : C(x) ⇒ ∃x : pairwise unequal(x,x) ∧ ϕ(x,x),
x = (x1, . . . , xn), with the macropairwise unequal(x,x)

∆
=

∧
1≤i<j≤n xi 6=

xj ∧
∧

1≤i≤n xi 6= x.
For a conceptC with ρC = ∀x : C(x) ⇒ ∃!x : ϕ(x,x), denoteϕ(x,x) =
∧

i∈1...m αi as a setbyτC
∆
= {α1, . . . , αm}, andterms(C)

∆
=

⋃
α∈τC

terms(α).
We require that the terms interms(ρC) areconnected tox: for all t ∈ terms(C),
connected(x, t) holds, where connected is defined as follows:connected(t1, t2)
holds if {R(t1, t2), R(t2, t1)} ∩ τC 6= ∅, or there is somet s.t. connected(t1, t)
andconnected(t, t2) holds.

GSKB: A finite set of GSKB rulesΣ in which there is at most one rule per concept.
Input GSKB: A GSKB which is function-free and without equality atoms.
Auxiliary notions: Given a GSKBΣ, we refer to the set of concepts used inΣ as

concepts(Σ), andτC,Σ to refer to the consequent ofρC ∈ Σ. We extend the other
definitions to accept aΣ argument as well, e.g.,terms(C,Σ), etc.

For example, {S1b, S2, S3, S4, S5} is an (underspecified) input GSKB, and
{S1b′, S2, S3′, S4, S5} is astrengthened(output) GSKB; however, we need to replace
the∃ quantifier with∃!. The formal definition ofstrengthenedGSKB is given below.
Note that sometimes the strengthening algorithm will not add anything, and hence out-
put will equal input, e.g. for{S4, S5}.

We require that an input GSKB must becoherent:

Definition 2. Coherent GSKB and coherent model. A GSKBΣ is coherent if there is
standard first-order modelI = (∆I , ·

I), I |= Σ, in which every conceptC mentioned
in Σ is interpreted in a non-empty way:CI 6= ∅. Such a model is called acoherent
model.

Moreover, we define standard notions such assuperconcepts as follows:

Definition 3. Auxiliary Definitions. LetC be a concept,Σ be a GSKB. We then define
the following functions and predicates w.r.t.Σ:

– asserted types(C,Σ)
∆
= {D | D(t) ∈ τC,Σ}

– has asserted typeΣ(C,D)
iff D ∈ asserted types(C,Σ)

– asserted superconcepts(C,Σ)
∆
= {D | D(x) ∈ τC,Σ}

– has asserted superconceptΣ(C,D)
iff D ∈ asserted superconcepts(C,Σ)

– superconcepts(D,Σ)
∆
= {E | has asserted superconcept+Σ(D,E) }

– has superconceptΣ(C,D)
iff D ∈ superconcepts(C,Σ)

– all typesΣ(C)
∆
= {E | D ∈ asserted types(C,Σ),

E ∈ superconcepts(D ,Σ)}
∪ superconcepts(C,Σ)

– has typeΣ(C,D) iff D ∈ all types(C,Σ)

whereR+ denotes the transitive closure of relationR.

We require that the relationshas superconceptΣ andhas typeΣ are irreflexive and
define:

Definition 4. Admissible GSKB. An input GSKBΣ is called admissible ifΣ is co-
herent,has superconceptΣ andhas typeΣ are irreflexive, and if there are no implied
concept atoms in the rules: for allC ∈ concepts(Σ), if D(t) ∈ τC,Σ , then for all
E ∈ superconcepts(D,Σ): E(t) 6∈ τC,Σ .

The following is straightforward:

Proposition 1. Every admissible GSKBΣ has a coherent, finite model.

Proof. Given that we do not support negation of concepts or relations, and given that
inequality atoms are only introduced by the∃! quantor, inconsistencies such asx 6= x
cannot occur. Moreover, since GSKBhas superconceptΣ andhas typeΣ are irreflex-
ive, the GSKB is acyclic, and the consequent of every rule canbe “unfolded”, analog to
the unfolding of an acyclic TBox in description logics [1]. This produces a finite conse-
quent for every rule. Next, for everyρC ∈ Σ, C can be instantiated s.t.iC ∈ CI holds,
and we can easily satisfy the existentials in the consequentby creating one instance
per variable. The process terminates and produces a model ofΣ which is coherent and
finite.

We need a notion of connectedness on models:

Definition 5. Predicateconnected on models. LetI = (∆I , ·I) be a model ofΣ. For
i, j ∈ ∆I , we defineconnectedI(i, j) if, for someR ∈ R, {(i, j), (j, i)} ∩RI 6= ∅, or
there is somek ∈ ∆I s.t.connectedI(i, k) andconnectedI(k, j).

In the following we are considering admissible GSKBs only, and we are interested in
their preferred models. The intuition behind the notion of a preferred model is the fol-
lowing: for every conceptC, there should be aprototypical modelof C which is not
also a model of some non-superconcept ofC, in the form of a connected graph that
“mirrors” the atoms inτC,Σ – due to thepairwise unequal macro there will be at least
one individual per variable inρC in this model. Moreover, the prototypical model for
C also contains inherited “graphs” from concepts inall typesΣ(C). Hence, the graph
satisfying the atomsτC,Σ is only a subgraph of the full model forC. Most impor-
tantly, the notion of a preferred model captures the intuition that inherited content can
be specialized, and hence should give rise to co-references: in the prototypical model
for EukaryoticCell , theChromosome inherited from its superclassCell will be repre-
sented by the same individual as its own localEuk .Chromosome . Note that this mini-
mizes the extension ofChromosome . The same argument applies to arbitrary conjunc-
tions: we will not identify the inheritedChromosome with the localEuk .Ribosome,
as this would result in a model in whichChromosome ∧ Euk .Ribosome is interpreted
non-empty, and there are models in which this conjunction isinterpreted by the empty
set. These intuitions are formalized as follows:

Definition 6. Preferred model of admissible GSKBΣ. LetΣ be an admissible GSKB,
and I |= Σ be a coherent finite model. Then,I is called preferredif the following
holds:

1. for every conceptC ∈ concepts(Σ), there is (at least) onei ∈ CI s.t. for allD, if
has superconcept(D,C), theni 6∈ DI – hence, there is at least one element which
is “unique” to C, and denoted byiC .

2. forC ∈ concepts(Σ), defineparticipantsI(C)
∆
= {j | connectedI(iC , j)}. Then,

for all C,D ∈ concepts(Σ), withC 6= D, the following holds:participantsI(C)∩
participantsI(D) = ∅.

3. for every non-empty subsetCS ⊆ concepts(Σ), there is no preferred modelI 6=
I ′, with∆I′ ⊆ ∆I s.t.

⋂
C∈CS C

I′

⊂
⋂

C∈CS C
I .

Consider the preferred models of{S1, S2, S3, S4, S5}. We are forced to have at least
one “unique”Cell which is not aEukaryoticCell , due to 1. Otherwise, everyCell
would acquire the properties ofEukaryoticCells, which is not desirable. Moreover,
none of the individuals connected to that uniqueCell are shared by another concept,
due to 2. Hence, the concept models have the forms of “non-overlapping graphs”, and
inherited content is “mapped in”. We are forced to minimize the extension of every
concept, as well as of every conjunction of concepts. This prevents models in which,
for example,RibosomeI ∩ Euk .ChromosomeI 6= ∅ holds, as there are smaller mod-
els in which they are interpreted disjointly:RibosomeI ∩ Euk .ChromosomeI = ∅.
Note that the inequality atoms inΣ only prevent “merging” of variables within the
same formula, but the individual forChromosome(x2) inherited fromCell could in
principle be made co-referential with the localEuk .Ribosome(x3) in EukaryoticCell .
This is prevented in a preferred model.Also, looking at the model ofEukaryoticCell ,
the co-reference between the fromCell inheritedChromosome(x2) and its own local
Euk .Chromosome(x4) is made explicit, since this will result in the smallest (exten-
sion of)ChromosomeI . A model in which aEukaryoticCell would have two different
Chromosomes would be larger and in violation to 3. So, we only make those con-
junction true in a preferred model that wehave to make true- for example,CellI ∩
EukaryoticCellI 6= ∅, due toS2, and there is no model in which this conjunction is
interpreted by a smaller set.

Note that a preferred model is not a “minimal” model in the classical sense. Con-
sider∀x : C(x) ⇒ ∃!x1 : R(x, x1), D(x1), ∀x : SubC(x) ⇒ ∃!x2 : C(x), R(x, x2),
E(x2). In the classical minimal modelI, we would have#∆I = 2, and it would sat-
isfy D ∧ E. Also,CI = SubCI . But this is not what we want. It violates 1, 2, as well
as 3. The preferred model will need at least 5 nodes.

In principle, there can be more than one preferred model and hence, more than one
strengthened version of the GSKB. For example, consider theGSKB

C(x) ⇒ ∃!x1 : R(x, x1), E(x1)
SubC(x) ⇒ ∃!x2, x3 : C(x),

R(x, x2), E(x2), F (x2),
R(x, x3), E(x3), G(x3).

Here,x1 in C can be co-referential with eitherx2 in SubC, or with x3.
In the next section, we will show the following constructively, by specifying an

algorithm which constructs a preferred model for a given admissible GSKBΣ:

Proposition 2. Every admissible GSKB has a preferred model.

We can now state the purpose of the GSKB strengthening algorithm more clearly. Given
an admissible GSKBΣ (note that this is an input GSKB), we are interested in finding
a strengthened version ofΣ:

Definition 7. Strengthened version ofΣ. Given an admissible (input) GSKBΣ, we are
callingΣ′ a strengthened versionofΣ if the following holds:

1. for every ruleρC ∈ Σ, there is a ruleρ′C ∈ Σ′ that uses only the variablex:
terms(ρ′C) ∩ X = {x}.

2. if I ′ |= Σ′ is a standard first-order model ofΣ′ which is coherent, thenI ′ |= Σ,
andI ′ is a preferred model forΣ. Hence,Σ′ |= Σ.

From a strengthened GSKB, we can decide provenance and co-reference as follows:

Definition 8. Provenance and co-reference determination. LetC be a concept,Σ′ be a
strengthened GSKB, andP ⊆ τC,Σ′ . Withβ =

∧
α∈P α, we then say thatβ (and hence

all the atoms inP) are

– local (or asserted) inC if
Σ′ \ {ρC} ∪ {∀x : C(x) ⇒

∧
α∈τC,Σ′\P α}

6|= ∀x : C(x) ⇒ β,
– and inherited otherwise. More specifically,β (andP) is inherited fromD, iffD(t) ∈
τC,Σ′ , andβ′ =

∧
α∈P′ α with P ′ = {α[fi(t)⇒fi(x)] | α ∈ P} is local inD, and

there is no more generalSupD with has superconceptΣ′(D,SupD) such thatβ
(andP) is inherited fromSupD.

Moreover, given conceptsC,D, two GSKB termst1 ∈ terms(C), t2 ∈ terms(D) are
said to be co-referential inΣ′ iff either t1 = t2 = x, t1 = fi(x), t2 = fj(fk(x)), or
t2 = fi(x), t1 = fj(fk(x)), andΣ′ |= (∀x : C(x) ⇒ fi(x) = fj(x) ∨ (∀x : D(x) ⇒
fi(x) = fj(x)).

Note that a conjunctionβ is local as soon assomeatom is already local. Hence, if a
complex conjunctionβ (resp.P) is local, this doesnot mean thatall its atoms have to
be local – some atoms may be inherited.

Proposition 3. Provenance and co-reference are decidable in a strengthened GSKB
Σ′.

The proof is given in the next Section.

2.2 Constructing a Strengthened GSKB

The algorithm works by performing the following steps:

1. Produce the skolemized version ofΣ,ΣS , by bringing every rule inΣ into Skolem
normal form. The skolemized axioms contain no nested function terms, only terms
of the formfi(x) andx. LetO

∆
= {oC | C ∈ concepts(Σ)} be a set of constants,

and also add{C(oC) | C ∈ concepts(Σ)} toΣS .

2. Construct theminimal Herbrand modelIH = (∆H, ·IH) of ΣS . The minimal
Herbrand model is unique and finite, given thatΣ is admissible (and does not
contain disjunctions in the consequents). Note that the minimal Herbrand model
will automatically satisfy the inequality atoms, and it will also satisfy points 1
and 2 from Definition 6, due to the set of constantsO which are instantiated as
{C(oC) | C ∈ concepts(Σ)} ⊆ ΣS , and with the exception ofx, there are no
shared terms in the rules ofΣS, as Skolemization creates fresh function symbols
for every variable. Thus,oC represents the root individual of the unique model for
conceptC, with oIH

C = iC , iC ∈ CIH .
3. TransformIH into a preferred model ofΣ, IA = (∆A, ·

IA). ∆A is the quotient
set of∆H under the= equivalence relation,∆A = ∆H\ =. Hence, the elements
of ∆A represent the equivalence classes of equated Skolem groundterms from the
Herbrand universe∆H. This step is non-deterministic, as there may be more than
one preferred model forΣ.

4. UseIA to construct a strengthened GSKBΣ′ fromΣS which is satisfied by that
model. Use the equivalent clusters in∆A to generate equality atoms.

5. FromΣ′ it is possible to decide the provenance and the co-referenceproblem, on a
syntactic basis.

Since steps 1 and 2 are standard and well-know [8], let us define the algorithm for step
3. We need two more utility notions before we can proceed:

Definition 9. RelationsE andU , and equivalence classes. LetIH = (∆H, ·IH) be the
minimal unique Herbrand model after step 2 ofΣS above. LetE be a binary relation
over terms from the Herbrand universe∆H, and define

closure(E)
∆

=
⋃

C∈concepts(Σ),k∈∆H

{(f1(k), f2(k)) | (f1(oC), f2(oC)) ∈ E⊛} ∪
{(f1(f2(k)), f3(k)) | (f1(f2(oC)), f3(oC)) ∈ E⊛} ∪
{(f1(f2(k)), f3(f4(k))) | (f1(f2(oC)), f3(f4(oC))) ∈ E⊛}

where ·⊛ denotes thereflexive, symmetric, and transitive closureof a relation. Let
[i]E

∆
= {j | (i, j) ∈ closure(E)}. Moreover, letU

∆
= {[i]E 6= [j]E | i1 ∈ [i]E , j1 ∈

[j]E , C ∈ concepts(Σ), (i1 6= j1) ∈ τC,ΣS
} be the set of inequality atoms.

Intuitively, (i, j) ∈ E representsi = j, and[i]E represents the equivalence class ofi.
The relationE (and hence the equivalence classes) will grow as pairs of equated indi-
viduals / terms are added by the algorithm given below. Intuitively, the closure operator
makes sure that whenever two terms starting from the same root nodeoC are equated in
the unique model ofC, that then this equality will also hold for all itsC instantiations
in other parts of the model. Note that alsoU will grow, representing inferences such as
i 6= j, k 6= l, j = k ⇒ i 6= l.

The algorithm can now be stated as follows:

Algorithm 1 Construction of a preferred model forΣ. Let IH = (∆H, ·IH) be the
minimal unique Herbrand model ofΣS after step 2 above.

1. definehasRoot(i)
∆
= oC iff connectedIH

(oC , i) holds, for everyC ∈ concepts(Σ).
2. then, non-deterministically apply the followingmerging ruleon the model as long

as it is applicable:
if there are individualsi, j ∈ ∆H, i 6= j, withhasRoot(i) = hasRoot(j) =
oC and ind types(i) ⊆ ind types(j), i 6∈ [j]E , [i]E 6= [j]E 6∈ U , then
E

∆
= E ∪ {(i, j)}.

Assume the rule application stops with a global maximum of inequality atoms s.t.
#U is maximized. Since this is a non-deterministic algorithm,such a run exists,
and we can assume that the non-deterministic algorithm willproduce it.

3. defineIA = (∆A, ·IA) as follows:
∆A

∆
= {[i]E | i ∈ ∆H}, and for allC ∈ concepts(Σ) : CIA

∆
= {[i]E | i ∈ CIH},

for all R ∈ R : RIA
∆
= {([i]E , [j]E) | (i, j) ∈ RIH}.

The algorithm terminates, sinceIH is finite, so there is a finite number of merging
possibilities in the rule. The solution which maximizes#U can obviously be found by
search in a deterministic version.

Lemma 1. IA = (∆A, ·IA) is a preferred model forΣ.

Proof. Obviously,IA is finite and coherent, as it was constructed by the algorithm
based on the unique finite Herbrand model. Assume thatIA is not a preferred model
for Σ. By construction,IA is a model ofΣS , as the merging rule preserves the model
character ofIH. SinceIH is a model of the skolemized version, it is also a model ofΣ,
sinceΣS |= Σ for the skolemized GSKB [8]. Hence,IA is a model ofΣ, also.

It remains to show that it is preferred. Assume that it is not.Since points 1 and 2
from Definition 6 are already satisfied by construction, only3 can be violated. Then,
there must be some other modelI ′ and someCS ⊆ concepts(Σ) such that

⋂
C∈CS C

I′

⊂
⋂

C∈CS C
I , witnessed by[i]E ∈

⋂
C∈CS C

I with [i]E 6∈
⋂

C∈CS C
I′

.

1. If
⋂

C∈CS C
I′

= ∅, then this violates the assumption thatΣH was a minimal Her-
brand model (which does not make things true without need). Hence,

⋂
C∈CS C

I =
∅ as well, which contradicts[i]E ∈

⋂
C∈CS C

I .
2. AssumeCS = {D} is a single concept name. AsIH was a minimal model, the

existence ofi, with i ∈ [i]E , is somehow enforced byΣS , hence there is some
termti ∈ terms(C,ΣS) with D ∈ ind types(ti). Moreover, for the same reason,
DI′

6= ∅, as otherwise it wouldn’t be a model, buti 6∈ DI′

. Consequently, there is
somej ∈ DI′

with i 6= j. Then, there must also be sometj ∈ terms(C,ΣS) with
D ∈ ind types(tj), with ti 6= tj .
There are a couple of cases:
(a) Assumeind type(ti) ⊆ ind types(tj)

i. if C′ = C and hencehasRoot(i) = hasRoot(j) = C, then(ti 6= tj) 6∈
τC,ΣS

and[i]E 6= [j]E 6∈ U , as otherwiseI would not be a model. But then,
the merging rule would have been applied and mergedi andj, such that
[i]E = [j]E = {i, j}. Rule application could not have been blocked by the
precondition[i]E 6= [j]E 6∈ U , becauseIA was produced by a run in which
#U was maximized. This means that the rule will be applicable and equate
i andj, contradicting the assumption that the algorithm has terminated.

ii. otherwise,C 6= C′, then we don’t have to worry: as stated in Definition 6,
participantsIA

(C) ∩ participantsIA
(C′) = ∅.

(b) Assumeind type(tj) ⊆ ind types(ti): analog to the previous case.
(c) Assume ind type(ti) 6⊆ ind types(tj). Then there is some

E ∈ ind type(ti), E 6∈ ind types(tj). AsIA was a minimal Herbrand model,
and there is no way for[i]E to “vanish” fromEIA , there must be[i]E ∈ EIA

and hence[i]E ∈
⋂

C∈CS C
I′

. Contradiction.
3. If CS = {D1, . . . , Dn}, then there must already be someCS ′ = {Dm, Dn}, CS ′ ⊆

CS for which we have such ani. If has superconcept(Dm, Dn) or vice versa,
then there is already someCS ′ = {Dm}, and this is handled by 2. Otherwise,
Dm, Dn are not in a sub/superconcept relationship, and corresponding instances
are not getting merged by the merging rule. But similar to 2c), this will lead us to
conclude that[i]E ∈

⋂
C∈CS C

I′

, contradicting the assumption.

Hence,IA is a preferred model. Note that this proves Proposition 2.

For what remains to be shown is how we can compute a strengthened GSKB fromΣS

andIA.

Definition 10. Construction of strengthened GSKBΣ′. LetΣS be the skolemized ver-
sion of the admissible GSKB, andIA be a preferred model ofΣ. We then rewrite the
rules inΣS as follows; note thatα[t1⇒t2] means “inα, substitute all occurrences oft1
with t2”:

Σ′ ∆
= {rewrite(ρC , terms(C,ΣS)) | ρC ∈ ΣS},with

rewrite(ρC , terms)
∆

= C(x) ⇒∧
α∈τC,ΣS

α ∧
∧

t∈terms,t6=oC
hasRoot(t, x)[oC→x] ∧∧

t1,t2∈terms,t1 6=t2
t1 6= t2[oC→x] ∧∧

t1∈terms,t2∈[t1]
t1 = t2[oC→x]

In addition, we need the following axioms:

1. Σ′ ∆
= Σ′ ∪ {C(oC) | C ∈ concepts(Σ)}

2. Σ′ ∆
= Σ′ ∪ {oC 6= oD | C,D ∈ concepts(Σ), C 6= D}

3. Σ′ ∆
= Σ′ ∪ {∀x, y, z :
hasRoot(x, y), hasRoot(y, z) ⇒ hasRoot(x, z) }

4. Σ′ ∆
= Σ′ ∪ {∀x, y :
hasRoot(x, oC), hasRoot(y, oD) ⇒ x 6= y },

for all C,D ∈ concepts(Σ), C 6= D.

Lemma 2. If I |= Σ′, thenI is a preferred model forΣ.

Proof. As Σ′ has been constructed fromΣS by adding equality atoms to explicitly
represent the co-references with inherited Skolem function successors, which have been
identified by the merging rule from a preferred model ofΣ, it is clear that any model
of Σ′ will force the same co-references, and hence, satisfy point3 in Definition 6.

Moreover, point 1 in Definition 10 makes sure that we have non-empty concept models
for every concept by requiring an instance, hence satisfying condition 1 in Definition
6. Point 2 in Definition 10 enforces distinctness between those constants, and point
3 declareshasRoot as a transitively closed relation. In combination with the added
hasRoot atoms inΣ′, and with the axioms in point 4 of Definition 10, this ensures that
condition 2 in Definition 6 is satisfied, requiring that the unique concept models do not
overlap (no sharing of participants).

Let us return to our example. ForΣ = {S1b, S2, S3, S4, S5} we will getΣS as fol-
lows:

Cell (x) ⇒
hasPart(x, f1(x)),Ribosome(f1(x)),
hasPart(x, f2(x)),Chromosome(f2(x)),
inside(f1(x), f0(x)),Cytosol (f0(x)),
pairwise unequal({x, f0(x), f1(x), f2(x)})

EukaryoticCell (x) ⇒ Cell (x)
hasPart(x, f3(x)),Euk .Ribosome(f3(x)),
hasPart(x, f4(x)),Euk .Chromosome(f4(x)),
hasPart(x, f5(x)),Nucleus(f5(x)),
inside(f4(x), f5(x)),
pairwise unequal({x, f3(x), f4(x), f5(x)})

Cell(oCell),Euk .Cell (oEuk .Cell),Ribosome(oRibosome) . . .
If we look at the minimal Herbrand model ofΣS , we find that the following atoms are
satisfied foroEuk .Cell :

hasPart(oEuk .Cell , f1(oEuk .Cell)),
hasPart(oEuk .Cell , f2(oEuk .Cell)),
inside(f1(oEuk .Cell), f0(oEuk .Cell)),
Ribosome(f1(oEuk .Cell)),
Chromosome(f2(oEuk .Cell)),
Cytosol (f0(oEuk .Cell)),
hasPart(oEuk .Cell , f3(oEuk .Cell)),
hasPart(oEuk .Cell , f4(oEuk .Cell)),
hasPart(oEuk .Cell , f5(oEuk .Cell)),
inside(f4(oEuk .Cell), f5(oEuk .Cell)),
Euk .Ribosome(f3(oEuk .Cell)),
Euk .Chromosome(f4(oEuk .Cell)),
Nucleus(f5(oEuk .Cell)),

Moreover, there are pairwise inequality atoms betweenoEuk .Cell , f3(oEuk .Cell),
f4(oEuk .Cell), f5(oEuk .Cell) and between oEuk .Cell , f0(oEuk .Cell), f1(oEuk .Cell),
f2(oEuk .Cell).

If we next look atIA, we will find that [f3(oEuk .Cell]) = [f1(oEuk .Cell)] =
{f3(oEuk .Cell), f1(oEuk .Cell)} holds, and likewise[f4(oEuk .Cell]) = [f2(oEuk .Cell)] =
{f2(oEuk .Cell), f4(oEuk .Cell)}. Hence, the desired co-references have been established,

e.g., the from Cell inherited Ribosome(f1(oEuk .Cell)) is identified as being
co-referential with the “local”Euk .Ribosome(f3(oEuk .Cell)).

The abridged strengthened GSKBΣ′ then looks as follows:

Cell(x) ⇒
hasPart(x, f1(x)),Ribosome(f1(x)),
hasPart(x, f2(x)),Chromosome(f2(x)),
hasRoot(f1(x), x), hasRoot(f2(x), x),
pairwise unequal({x, f1(x), f2(x)})

EukaryoticCell (x) ⇒ Cell (x),
hasPart(x, f3(x)),Euk .Ribosome(f3(x)),
hasPart(x, f4(x)),Euk .Chromosome(f4(x)),
hasPart(x, f5(x)),Nucleus(f5(x)),
inside(f4(x), f5(x)), f3(x) = f1(x), f4(x) = f2(x),
hasRoot(f3(x), x), hasRoot(f4(x), x),
hasRoot(f5(x), x),
pairwise unequal({x, f3(x), f4(x), f5(x)})

Ribosome(oRibosome),Chromosome(oChromosome)
. . . oCell 6= oEuk .Cell . . . (axiom sets 2–4 from Def. 10)

We claim that we can decide the provenance problem for the strengthened GSKBΣ′

syntactically as follows; also recall that in an admissibleKB, the consequents do not
contain redundant concept atoms:

Definition 11. Syntactic provenance of atoms inΣ′. In a strengthened GSKBΣ′, for
C ∈ concepts(Σ), letα ∈ τC,Σ′ be an atom:

– α = C(f(x)) is inherited fromD if D(fs(x)) ∈ τC,Σ′ with D ∈ {C}∪
all superclasses(C,Σ′) andf ′(fs(x)) = f(x) ∈ τC,Σ′ with C(f ′(x)) ∈ τD,Σ′ ,
and there is no more general classSupD with has superconcept(D,SupD) for
which this is also the case.

– α = R(f1, f2) is inherited fromD if D(fs(x)) ∈ τC,Σ′ with D ∈ {C}∪
all superclasses(C,Σ′) and{f ′

1(fs(x)) = f1(x), f
′
2(fs(x)) = f2(x)} ⊆ τC,Σ′

with R(f ′
1, f

′
2) ∈ τD,Σ′ , and there is no more general classSupD with

has superconcept(D,SupD) for which this is also the case.

If α is not inherited from some concept, it is calledlocal toC.

Looking at the example GSKBΣ′, we see that the atomshasPart(x, f3(x)) are inher-
ited fromCell , due tof3(x) = f1(x), andhasPart(x, f4(x)), due tof4(x) = f2(x).
Consequently,hasPart(x, f5(x)),Nucleus(f5(x)), inside(f4(x), f5(x)) are local to
EukaryoticCell . Hence, for the original GSKBΣ, hasPart(x, x3) andhasPart(x, x4)
were inherited fromCell , andhasPart(x, x5),Nucleus(x5), inside(x4, x5) are local
toEukaryoticCell .

We claim that we can decide the co-reference problem for the strengthened GSKB
Σ′ syntactically as follows:

Definition 12. Syntactic co-reference of terms inΣ′. Two terms witht1 ∈ terms(C,Σ′),
t2 ∈ terms(D,Σ′) are co-referential, ift1 = t2 = x, or t1(x) = t2(t) ∈ τC,Σ′ , or
t2(x) = t1(t) ∈ τD,Σ′ (note thatt = x, or t = fs(x)).

Looking at the example GSKBΣ′, we see thatf3(x) = f1(x) are co-referential and
hence theRibosome in Cell is the same as theEuk .Ribosome in EukaryoticCell , and
likewise for theChromosome due tof4(x) = f2(x).

Lemma 3. Syntactic provenance according to Def. 11 is sound and complete for decid-
ing semantic provenance according to Def. 8. Syntactic co-reference according to Def.
12 is sound and complete for deciding semantic co-referenceaccording to Def. 8.

Proof. Soundness is immediate. Completeness is a straightforwardtoo, as Skolem func-
tions are not shared by different consequents inΣ′, andΣ was admissible. Moreover,
for two different Skolem functionsfi, fj , with i 6= j, fi(t) = fj(t) will hold for a cer-
tain termt in all models ofΣ′ if and only if this was explicitly enforced by an equality
atom. Note that this also proves Proposition 3.

We can generalize these results to the original GSKBΣ as follows. To check the prove-
nance ofτC,Σ we need to keep track during Skolemization which atomα′ ∈ τC,Σ′

corresponds toα, and check the provenance ofα′ in Σ′. Likewise, to check to co-
referentiality of two variables, lett1 and t2 be its corresponding (Skolem function)
terms in the skolemized versions. Now,x1 andx2 are co-referential inΣ iff t1 andt2
are co-referential inΣ′. Looking at the example GSKBΣ, we see thatx1 from S1 is
co-referential withx3 in S3 sincef3(x) = f1(x) inΣ′, andx2 fromS1 is co-referential
with x4 in S3 due tof4(x) = f2(x) in Σ′.

However, given that a GSKB may have more than one strengthened version, “to
decide” should be understood in acredulousway here. Only in case a provenance in-
formation or co-reference holds inall strengthened GSKBs, this would be askeptical
conclusion; it is clear that all strengthened GSKBs can in principle be constructed, due
to finiteness ofIH. We can hence present the main result of this paper as follows:

Corollary 1. Given a strengthened GSKBΣ′, we can decide the provenance and co-
reference problem on a syntactic basis. For an admissible (input) GSKBΣ, we can
decide thecredulous provenance and credulous co-reference problemby constructing
a strengthened GSKBΣ′ first, and check there. Theskeptical provenance and skepti-
cal co-reference problemcan be decided by constructingall strengthened GSKBs, and
checking if a positive answer holds in all of them.

3 Graph Structured Knowledge Bases – The Graph-Based
Perspective

As outlined in the Introduction, in this Section we address the provenance and co-
reference problems from a graph-theoretic perspective. GSKB and CGraphs are defined
as graph-based notions, and the so-called GSKB covering algorithm is presented as an
algorithm which establishes graph morphisms between CGraphs. Those morphisms de-
scribe how content is inherited from other CGraphs, throughout the GSKB. The actual

implementation of the algorithm is also discussed, together with implementation tricks
which make it scalable.

A major drawback of the previously given logic-based framework was the disal-
lowance ofcyclical concepts,i.e. of concepts in which the transitive closure of the
refers to(or uses) relation is not irreflexive. In the AURA GSKB many concepts are
actually cyclical in that sense, for example, the conceptAnimalCell refers toAnimal ,
and vice versa. We disallowed cyclical concepts in the logic-based formalization in or-
der to ensure the existence offinite Herbrand models. In the followinggraph-based
formalizationweallow cyclical concepts and describe a strategy for dealing with them.
In addition, we will also show how to handle a relation hierarchy (something which
could have been done in the logical formalization, too, but was omitted for the sake of
brevity – the same applies to disjointness axioms and other straight-forward represen-
tation means).

Intuitively, in case of a refers-to cycle, the algorithm will make a non-deterministic
choice, as illustrated by the following example. Consider it is stated inAnimal that
Animals have AnimalCells as parts, and conversely withinAnimalCell, that
AnimalCells arepartOf Animals. In this case the algorithm will tell us that the fact
“Animals haveAnimalCell parts” is either inherited fromAnimal to AnimalCell,
or vice versa, but not both. Hence, a fact (atom, triple) is always owned or local to one
concept.

3.1 Definitions

Definition 13. Graph-Structured Knowledge Base. A graph-structured knowledge base
(GSKB) is a tuple(C,R,OC ,OR, IR,G), whereC is a set of concepts,R is a set of
binary relations,OC ⊆ C × C is the concept taxonomy, andOR ⊆ R × R is the
relation hierachy. Both are strict partial orders. For a relationR, (R,S) ∈ IR means
thatS is the inverse relation ofR, and vice versa:IR = IR

−1, soIR is closed under
the symmetric closure. We denote the inverse ofR with R−1 – note that for everyR,
either (R,S) ∈ IR, for someR 6= S, or (R,R−1) ∈ IR. Moreover,G is the set of
CGraphsfor C, one per concept. WithGC we denote the CGraph of conceptC.

Intuitively, (C,D) ∈ OC
+ means thatD is a superconcept or a more general con-

cept thanC, and that it is possible that the CGraph ofC contains inherited content
from the CGraph ofD. But note thatC may also contain inherited content from non-
superconcepts, which are instantiated inC. CGraphs are defined as follows:

Definition 14. CGraph of a conceptC. A CGraph of a conceptC, GC , is a node-
and edge-labeled graph(NC , EC , L

N
C , L

E
C), with nodesNC and edgesEC . There is a

special noderootC ∈ NC , theroot node.Two edges(n1, n2) and(n3, n4) are called
adjoinedif they share a node:{n1, n2} ∩ {n3, n4} 6= ∅. We require that every noden
is connected to therootnoderootC : (rootC , n) ∈ E⊗

C , andE⊗
C denotes the symmetric

and transitive closure ofEC .
The labeling functionsLN

C : NC 7→ 2C andLE
C : EC 7→ 2R are total functions;

labeling with∅ is permitted.
Theaugmented CGraphof GC is AGC , which is a CGraph that satisfies the follow-

ing:

– EC = E−1
C , soEC is closed under symmetric closure.

– for all (n1, n2) ∈ EC , if R ∈ LE
C(n1, n2), thenR−1 ∈ LE

C(n2, n1).
– LN

C (n) = L, thenL is closed under implied superconcepts: ifD ∈ L, and(D,E) ∈
OC

+, thenE ∈ L.
– LE

C(n1, n2) = {S |R ∈ LE
C(n1, n2), andS = R or (R,S) ∈ OR

+}.

As a shorthand, we say thatF (n) is a concept atomin C if n ∈ NC andF ∈
LN
C (n). Analogously, we are saying thatR(n1, n2) is a relation atomin C if (n1, n2) ∈

EC andR ∈ LE
C((n1, n2)). Two relation atomsR(n1, n2) andS(n3, n4) are adjoined

if {n1, n2} ∩ {n3, n4} 6= ∅.
We refer to the set of concept (relation) atoms inAGC asCAC (RAC).

Note that a CGraph ofC can be trivial, i.e. ifC has no further structure, thenNC =
{rootC}, LN

C = {(rootC , {C})}, EC = ∅, LE
C = ∅. We also use the atom notation to

denote graphs, e.g.,C = {C(rootC)}.

3.2 Concept Graph Morphisms and Inherited Atoms

Definition 15. CGraph Morphism fromC into D. Let GC , GD be theaugmented
CGraphs forC, D, with C 6= D. A CGraph morphism (morphism for short) from
C into D, or GC into GD, is a partial functionµC D : NC → ND (denoted asµ in
caseC,D are clear from the context or irrelevant) such that

1. µ(rootC) = n is defined -n will also be called aC expansion start node.
2. for all t ∈ NC s.t.µ(t) is defined: ifLN

C (t) = L, thenLN
D(µ(t)) = L′ withL ⊆ L′.

3. if µ(mk) = n, mk 6= rootC , k ≥ 1, then there is a sequence of adjoining relation
atoms〈R1(m0,m1), . . . , Rk(mk−1,mk)〉 in C withm0 = rootC such that there is
a corresponding sequence of adjoining relations atoms in D:
〈R1(µ(m0), µ(m1)), . . . , Rk(µ(mk), n)〉 in D.

More specifically, the morphism withµC D(rootC) = n is denoted asµC D|n.
Note thatn is a node inD for whichC ∈ LN

D(n) holds, or equivalently,C(n) ∈ CAD,
and thatµC D|n(rootC) = n. If n is irrelevant, we only writeµC D.

C is called the domain (or source) concept, andD the range (or target) concept;
we also use domain (or source) and range (or target) CGraph.

A morphismµC D is more generalthanµSubC D iff (SubC,C) ∈ OC
+.

Hence, the labels of the nodes in the source CGraph have to be subsets of the labels
of the corresponding nodes in the target CGraph which are, hence, more specific (or
identical). Note that the analog doesnothold for the edges. Rather, a morphisminduces
inherited edges in the target CGraph, to be defined below.

We say that a morphisminduces atoms:

Definition 16. Induced / Inherited and Local Atoms. LetµC D|n be a morphism. Then,
the morphism induces the following atoms:

– E(m) ∈ CAD is induced if there isµ(m′) = m withE(m′) ∈ CAC .

Fig. 2. Illustration of closure and inconsistency.

– R(m1,m2) ∈ RAD is induced if there isµ(m′
1) = m1, µ(m

′
2) = m2 with

R(m′
1,m

′
2) ∈ RAC .

Induced atoms are also calledinherited atoms.More specifically, we say that an
atom is induced by C into D, or inherited from C to D. The set of induced atoms is
denoted byψC D|n. An atom inD which is not induced is called alocal atom, more
specifically:local toD.

3.3 Concept Patchworks and Coverings

Obviously, a complex CGraph may have more than one concept atom, and content may
be inherited from any of those. Thus,multiple morphismsare required to describe all
inherited content. For example, ifD containsC(n1) andC(n2) with n1 6= n2, we
already require two morphisms:µC D|n1

, µC D|n2
(µ is a function). A morphisms

is hence already associated with theexpansion start node, heren1 andn2. A CGraph
patchworkdescribes howdifferent parts of the concept are “patched” together:

Definition 17. CGraph patchwork intoD, induced atoms, unified nodes. ACGraph
patchwork (patchwork for short)intoD for a subset of its concept atomsT ⊆ CAD \

{D(rootD)} is a set of morphisms intoD, PWD
∆
= {µE D|n | E(n) ∈ T }.

The set ofinduced or inherited atomsisψ(PWD) =
⋃

µ∈PW ψµ.
LetIα = {µ | α ∈ ψµ, µ ∈ PWD} be the set of morphism that induces the atomα.

We say thatα is inheritedbyµC D ∈ Iα if µC D is a (or the)most general morphism
in Iα. GivenPWD, we hence say thatα is inherited from C.

If {µE1 D, µE2 D} ⊆ PWD with µE1 D(n1) = µE2 D(n2) = n, then we say
thatn1 andn2 have beenunified (merged, equated) inton, andn1 andn2 are said to
be co-referential.Note that possiblyE1 = E2.

Theclosure of a set of morphismsis defined as some kind of transitive closure over
the different morphisms. Consider the conceptsC, SubC, andD, with (SubC,C) ∈
OC

+, and the morphismsµC SubC , µSubC D with µC SubC(rootC) = rootSubC ,

henceµC SubC|rootSubC
(note thatC(rootSubC) is a concept atom inSubC, because

of (SubC,C) ∈ OC
+!) , andµSubC D(rootSubC) = nSubC , henceµSubC D|nSubC

.
Moreover, assume thatµC SubC|rootSubC

(n1) = n2. Then, if alsoµSubC D|nSubC
(n2)

= n3 holds, we have to ensure thatµC D|nSubC
(n1) = n3 holds (note thatC(nSubC)

is a concept atom inD). Suppose to the contrary that alsoµC D|nSubC
(n1) = n4,

with n3 6= n4. This describes a situation wheren1 was inherited directly and indirectly
from C into D, and gets duplicated asn3, n4. The situation is depicted in Fig. 2. We
hence require that the composition of the morphisms does notviolate functionality of
the morphisms.

Definition 18. Closure ofPW. Theclosureof a set of morphismsPW, denotedPW+,
is defined as follows:

– con(PW)
∆
= {µC D|nSubC

∪ {(n1, n3)} | (C, SubC) ∈ OC
+,

{µC SubC|rootSubC
, µSubC D|nSubC

} ⊆ PW ,
µC SubC|rootSubC

(n1) = n2, µSubC D|nSubC
(n2) = n3}

– PW+ ∆
=

⋃
i∈1...∞ coni(PW)

(Note that(D,SubC) ∈ OC
+ is possible, also.) The relations inPW+ are now

no longer necessarily functions, since we extended them by means ofµC D|nSubC
∪

{(n1, n3)}, i.e., we addedµC D|nSubC
(n1) = n3). However, the notion ofconsistency

of a set of morphismsrequires exactly this:

Definition 19. Consistency ofPW. A set of morphismsPW is calledconsistentiff, for
all C,D, n, every morphism inPW+ satisfies the following:

1. functionality: ifµC D|n(n1) = n2 ∈ PW+ andµC D|n(n1) = n3 ∈ PW+,
thenn2 = n3.

2. no self mapping: for allC, n, n1 6= n2, µC C|n(n1) = n2 /∈ PW+.
3. no self inheritance: there is no sequence of morphismsµ1, . . . , µm ∈ PW+,m >

1 such that(µ1 ◦ · · · ◦ µm)(n) = n (where◦ denotes composition).

The functionality criterion has already been explained. The second criterion pre-
vents that a CGraphC inherits content to itself, which is a reasonable assumption.3 The
third criterion simply prevents that a node is inherited from itself, directly or indirectly.

Our goal is to identify the inherited content in a GSKB by means of patchworks, for
all its concepts. Often, there is more than one possible patchwork for a given concept
C, and different patchworks may result in different sets of inherited / induced atomsψ.
We are interested in those patchworks thatglobally maximize (for the whole GSKB)the
set of inherited atomsψ, and among those thesmallestsuch patchworks, i.e., those that
require as few morphisms as possible. In case an atom can be inherited via two different
morphisms such that one is more general than the other, preference should be given to
the more general morphism. This captures the intuition thatan atom should be inherited
from the most general concept that has it. These ideas are formalized in the notion of a
GSKB coveringas follows:

3 Even ifC was cyclical in the sense thatC(n) is a concept atom inC, for n 6= rootC .

Definition 20. GSKB Covering. Acoveringof a GSKBK is a union of CGraph patch-
works for a (not necessarily true) subset of its conceptsC′ ⊆ C: PWK

∆
=

⋃
C∈C′ PWC .

We extend the definitions of induced / implied atoms to whole knowledge bases as fol-
lows: ψ(PWK)

∆
=

⋃
PWC∈PWK

{(C,α) | α ∈ ψC(PWC)}. We then require that
PWK a minimal set (w.r.t. set inclusion)that satisfies the following threeprinciples:

1. consistency:PWK is consistent.
2. ψ-maximality: there is no GSKB coveringPW ′

K of the same or smaller cardinality
asPWK with ψ(PWK) ⊂ ψ(PW ′

K).

3. µ-generality: if α ∈ ψC D ∈ PWK for someC,D, and there exists a more
general morphismsψC′ D with α ∈ ψC′ D with (C,C′) ∈ OC

+, such that its
addition toPWK would retain consistency ofPWK , thenψC′ D ∈ PWK .

In general, there can be more than one covering for a given GSKB. An example is
given by the cyclical GSKB with conceptsC,D, such thatC = {C(rootC), R(rootC , n1),
D(n1)}, andD = {D(rootD), R−1(rootD , n2), C(n2)}. Here, we can either have a
morphismsµ1

C D|n2
(rootC) = n2, µ

1
C D|n2

(n1) = rootD, or a morphisms

µ2
D C|n1

(rootC) = n2, µ
2
D C|n1

(n2) = rootC , but not both. Hence, a covering
forces that one of the two relation atoms inC,D is local, and the other one is inherited.
If both were inherited, then point point 3 in Def. 19 would be violated. If both were
local, then the principle ofψ-maximality would be violated. It is left unspecified which
of those two coverings is constructed by the algorithm givenbelow. Suppose we chose
µ1
C D for PWK . Note that we cannot even addµ3

D C = {(rootD , n1) to PWK , as
this would result in(µ1

C D◦µ3
D C)(n1) = n1 and(µ3

D C◦µ
1
C D)(rootD) = rootD,

henceD(rootD) in D andD(n1) in C would become self-inherited, hence violating
consistency again.

The principle ofµ-generality is explained as follows. Consider the CGraphsC,C′,
C′′, such that{(C′, C), (C′′, C′)} ⊆ OC , withC = {C(rootC), R(rootC , n1), D(n1)},
C′ = {C′(rootC′ , R(rootC′ , n2), D(n2), R(n2, n3), E(n3)} and
C′′ = {C′′(rootC′′ , R(rootC′′ , n4), D(n4), R(n4, n5), E(n5), R(n5, n6), F (n6)}.
Looking atC′′, the atomsR(rootC′′ , n4), D(n4), R(n4, n5), E(n5) can all be induced
byC′ intoC′′ via the obvious morphism.4 However,R(rootC′′ , n4), D(n4) can already
be induced byC intoC′, and this is the more general morphism.5 We hence require that
this morphism is also present:µC C′′ ∈ PWK , since those atoms are induced by both
morphisms. Also, we needµC′ C′′ ∈ PWK as otherwise, we would not be able to
inheritR(n4, n5), E(n5) from C′ to C′′, hence violatingψ-maximality. The desired
covering will hence consider the following atoms as local: all atoms inC, the atoms
R(n2, n3), E(n3) in C′, and the atomsR(n5, n6), F (n6).

3.4 Computation of a Covering

Our goal is to compute a GSKB covering, and it is clear that this is a hard problem:

4 Be means ofµC′ C′′ (rootC′) = rootC′′ , µC′ C′′(n2) = n4, µC′ C′′(n3) = n5.
5 By means ofµC C′′ (rootC) = rootC′′ , µC C′′ (n1) = n4.

Proposition 4. Computing a Covering is NP-Hard and in PSPACE. It is clear that we
can compute a covering ofK in a simple non-deterministic “guess and validate” style –
we guess the morphisms, and check whether they satisfy the conditions Def. 19 and Def.
20. However, storing the morphisms may require polynomial space. It is also clear that
the problem is NP-hard, by reduction from the clique problem: let G be the input graph
to the clique problem, and the CGraph ofSupG be ak-clique, and(G,SupG) ∈ OC

+.
AssumeLSupG(n) = ∅ for all n ∈ NSupG, n 6= rootSupG, andLSupG(n) = ∅ for
all n ∈ NG for n 6= rootG, andLG(rootG) = {G,SupG}, LSupG(rootSupG) =
{SupG}, with C = {SupG,G}. Then,G contains a clique of sizek iff, for its covering
PWK : ψG(PWK) = CAG ∪ RAG \ {SupG(rootG)} (i.e., all relation and concept
atoms with the exception of the root concept atom are inherited), and all morphisms are
injective.

The deterministic version of the sketched nondeterministic algorithm requires search.
The basic ideas for a deterministic version of the algorithmare outlined as follows.

Since the GSKB can contain cyclical references, we must prevent the construc-
tion of morphisms which induce cycles in order to satisfy therequirements of Def. 19,
namely points 2 and 3. In principle, we could compute the patchworks for the con-
cepts in any order of sequence. When the patchwork for concept D is constructed, we
are establishing maximal morphisms to all concepts mentioned in concept atoms inD,
and we make sure that we do not violate consistency, ensuringψ-maximality. More-
over, for every concept atomC(n) in D, if (C, SupC) ∈ OC

+, then alsoSupC(n) in
D, and hence, we will not only establishµC D, but alsoµSupC D, hence satisfying
µ-generality.

Unfortunately, checking the conditions in Def. 19 to ensureconsistency in Def. 20
can be costly, and we hence propose a slightly optimized version which works intwo
phasesby exploiting ideas akin to topological sorting w.r.t. arefers to+ relation:

Definition 21. Cycles, Refers-To Relation, Refers-To Violation. A concept C refers to
conceptD, iff D(n) ∈ CAC : refers to(C ,D). A conceptC is cyclical iff
refers to+(C,C). A GSKBK is cyclical if it contains a cyclical concept. Given two
conceptsCi, Cj with 1 ≤ i < j ≤ m in a sequence of concepts〈C1, . . . , Cm〉, we
speak of a refers-to violation iffrefers to(Ci, Cj) holds. The number of refers-to viola-

tions for the sequence isref vio(〈C1, . . . , Cm〉)
∆
= Σ1≤i≤m |dom(refers to+(Ci)) ∩

{Ci+1, . . . , Cm}|. An optimal concept processing sequenceis a sequenceseq =
〈C1, . . . , Cm〉, C = {C1, . . . , Cm}, which minimizes the number ofrefers to viola-
tions: ξ = argmin(ref vio(seq), seq ∈ π(C)); π denotes all possible sequences /
permutations ofC.

In caseξ = 0, we can simply topologically sort the GSKB w.r.t. therefers to+

relation and process in that order of sequence. For such GSKBwe only need to check
point 1 in Def. 19. And, even withξ > 0, we can skip the checks for point 2 and 3 in
Def. 19 if we organize the computation of the covering intwo phases:In phase one,
after having computed an optimal sequence, to construct a patchwork for conceptCk

we consider only morphisms from conceptsCi into Ck with i < k w.r.t. that ordering,
hence,Ci was processed before. We make sure that patchworks do not violate point 1 in
Def. 19. The result of phase 1 is a covering in caseξ = 0. In caseξ > 0, ψ-maximality

Input : A GSKBK = (C,R,OC,OR, IR,G)
Output : PWK : a covering ofK

PWK ← ∅ ;
〈C1, . . . , Cn〉 ← argmin(ref vio(seq), seq ∈ π(C)) ;
S ← ∅ % concepts to reconsider in Phase 2 ;
P ← ∅ % already processed concepts ;
% Phase 1 ;
for i← 1 to n do

if dom(refers to+(Ci)) ∩ {Ci+1, . . . , Cn} 6= ∅ then
S ← S ∪ {Ci} ;

end
PWK ← PWK ∪ compute patchwork(Ci,PWK ,P , 1) ;
P ← P ∪ {Ci} ;

end
% Phase 2 ;
for C ∈ S do
PWK ← PWK \ {µD C | µD C ∈ PWK} ;
PWK ← PWK ∪ compute patchwork(C,PWK ,P , 2) ;

end
return PWK

Algorithm 1: cover(k) – The GSKB Covering Algorithm

is not yet satisfied. There is (at least) a conceptCk with refers to+(Ck, Cl) andl > k.
Hence,Ck may contain inherited content fromCl, but µCl Ck

was not established.
Those conceptsCk are identified and collected in phase 1, and simply re-processed
again inphase 2, by re-computing their patchworks, leading toµCl Ck

. During mor-
phisms construction, we now have to checks all points in Def.19, which is more costly.
However, the number of concepts to re-consider in phase 2 is usually much smaller than
|C|. This is Algorithm 1, which uses Algorithm 2 for patchwork computation.

The functionmost specific atom(CA) is non-deterministic and chooses a con-
cept atomD(n) ∈ CA for which there is no concept atomSubD(n) ∈ CA with
(SubD,D) ∈ OC

+. Within compute patchwork(C,PW ,PK , phase), we make sure
to process the concept atoms inCAC in most specific firstorder. This has the advan-
tage that the closures can be more easily computed: at the time whenµSupC SubC is
computed, the morphismsµSupC C andµC SubC are already available.

The functionmax consistent morphism(C,D(n),PWK ∪PWC , phase) finds
the maximal consistent morphism fromD into C. In casephase = 1, it only checks
point 1 in Def. 19 in the consistency check, otherwise all points in Def. 19. It tries
to compute a maximal consistent morphism which induces as many atoms as possible
intoC. In case no consistent mapping can be found, the empty set is returned. In order
to check consistency,max consistent morphism has to compute the closure of the
given morphismPWK ∪ PWC . If a maximally consistent morphismµD C|n can be
found, it is returned together with the additional morphisms resulting from the closure
computation:closure(PWK∪PWC∪{µD C|n})\PWK . This function is not further
detailed here, but its implementation described below.

Input : A concept, a set of morphisms, a set of processed concepts, aphase ∈ {1, 2}:
(C,PW,PK ,phase)

Output : A C-patchworkPWC

S ← {D(n) |D ∈ P , D(n) ∈ CAC} ;
PWC ← ∅ ;
while S do

D(n)← most specific atom(S) ;
S ← S \ {D(n)} ;
(µD C|n,P

+)← max consist. morphism(C,D(n),PWK ∪ PWC , phase) ;
PWC ← PWC ∪ {µD C|n} ∪ P

+ ;
end
return PWC

Algorithm 2: compute patchwork(C,PW ,PK , phase) – Helper Function

3.5 The Implementation

The so-far presented algorithm is an idealized version of the actual implemented algo-
rithm. During our implementation efforts, we learned that the idealized algorithm is not
able to compute a covering for the AURA KB in a reasonable amount of time. Scala-
bility is of concern here. In the AURA KB, we have 695 conceptswith more than 20
nodes, on average 50.1 nodes and 104.5 edges. The average number of concept atoms in
those concepts is 104.7. That means we have to consider potentially 104.7× 695 graph
morphisms. If runtime is exponential in the number of nodes,this results in8.78×1019

node mappings to consider if a naive approach is followed, all of which have to be
checked for consistency, etc. A lot of effort has been put into implementing a more
scalable version ofcompute patchwork.

In the following we describe the mainimplementation techniques that enabled scal-
ability; we think that it might be insightful to document and preserve those techniques
for researchers working on similar problems.

First, there is no computation of an optimal sequence – rather, the optimal sequence
is constructed iteratively / incrementally during phase 1.

More importantly, instead of finding a maximal morphism for eachD(n) ∈ CAC at
a time, the algorithm constructs and patches morphisms together in a piecewise fashion.
It is agenda-driven – the agenda consists of the currently non-induced edges ofC. Such
an edge is calledopen.In a loop, an open edgeR(n1, n2) is selected from the agenda,
and it is then searched for a morphism which induces it. Whenever a node mapping is
established, we are checking the consistency conditions asrequired, and prevent cycles,
etc. When the agenda is empty, i.e., there are either no more open edges or no more
additional morphisms can be found, then a solution was found. The quality of the com-
puted solution / patchwork is determined by the number of itsinduced atoms –the score
of the solution.

The implemented algorithm produces perfect coverings if given indefinite time.
Otherwise, the quality of the approximation increase the more time it is given (there
is a timeout switch, see below). After a solution has been found, the algorithm can con-
tinue the search for additional solutions with higher scores. Only the best solutions are

kept. During this search for better solutions, the score of the best so-far found solu-
tion is used to reduce the search space – sometimes work on a partial solution can be
stopped if it can be determined that the full solution based on it cannot outperform the
best so-far found solutions.

We can parameterize the algorithm such that the search incompute patchwork
terminates as soon as a total number ofm1 solutions has been found, or if we were able
to improve the best-so-far solutionm2 times, or if a timeout aftert seconds has been
reached. In case the timeout occurred before a (suboptimal)patchwork was found, we
can either continue the search until at least one patchwork is available, or accept the
incomplete partial patchwork (hence, all remaining non-induced atoms as local).

We have threestrategies a), b), and c)for finding a morphism forR(n1, n2):

Strategy a) We can often find a morphism starting fromn = n1 or n = n2, for
some concept atomD(n). In case there is more than one suchD(n), we are trying
themost specific concept atoms first. We inspect the CGraph ofD and try to inherit a
path of edges, starting from therootD, hence producing a morphismµD C|n. Each
inherited path and hence morphismµ is associated with ascorewhich is the product
|dom(µ)| × (penalty + 1). Thepenalty is the number of node and edge label spe-
cializations required overD. Ideally, we are looking for a perfect match with penalty0
and maximal size. However, since this “path harvesting” already requires graph search
in D in order to find the inherited path, the max. path length is constrained to a small
number, say 3. The inherited edges are now no longer open.

Note that an edge can be induced by more than one morphism, andeveryD(n) will
eventually be considered if it has to. E.g., considerC = {C(rootC), R(rootC , n1),
S(n1, n2)}, C′ = {C′(rootC′), R(rootC′ , n3), T (n3, n4)}, andC′′ = {C′′(rootC′′),
R(rootC′′ , n5), S(n5, n6), T (n5, n7)}, with {(C′, C), (C′′, C′)} ⊆ OC . Here,
{C′′(rootC′′), C′(rootC′′), C(rootC′′)} ⊆ CAC′′ . To induceS(n5, n6) we require
µC C′′|rootC′′

, and to induceT (n5, n7) we require µC C′|rootC′′
. Note that

R(rootC′′ , n5) is induced by both morphisms.

Strategy b) Here it is checked whetherR(n1, n2) can be induced byextendingan
existing morphism; this is useful because Strategy a) has a length cut-off, as described.
If we find that forR(n1, n2) there is an edgeS(n1, n3) which is already induced by
a morphismµD C|n, we then restart the search forn in C by looking atD again. In
case there is more than one such morphism, we select the morphism with the highest
score. We skip forward to the noden′

1 with µD C|n(n
′
1) = n1 and try to extend the

morphism. This way, we can inherit arbitrary graph structures fromD, or simply extend
the path to become longer, by patching together and extending partial morphisms for
one inherited path at a time.Restarting has the advantage that Strategy a) does not invest
a lot of time constructing longer and longer paths in a depth-first fashion with increasing
penalties, hence the max. length is constrained to a small value. By restarting with the
partial morphism which have the highest score, we achieve a kind of best-first search
effect (similar to beam search), because the control is given back quickly to the agenda,
so search can re-focus quickly on the most promising partialmorphisms to extend.

For example, considerC = {C(rootC), R(rootC , n1), S(rootC , n2), T (n1, n2)}
and isomorphicC′ = {C′(rootC′), R(rootC′ , n3), S(rootC′ , n4), T (n3, n4)} with

(C′, C) ∈ OC . We can first findµC C′ which induces{C′(rootC′), R(rootC′ , n3),
S(rootC′ , n4)}, and then restart and extend such that{T (n1, n2)} is induced byµC C′ .

Strategy c)If Strategies a) and b) fail for an edge edgeR(n1, n2), then, for it to be
induced, it must be induced by a morphism which already maps to some noden with
E(n) ∈ CAC such thatn is connected ton1, n2, but n has not been considered yet
as an expansion start node. To find such a morphism, we consider all morphisms that
induceE(n) such thatn is connected ton1, n2 , and start the search inE atrootE such
thatµE C|n(rootE) = n holds.

For example, considerC = {C(rootC), R(rootC , n1), S(rootC , n2), T (n1, n2)},
C′ = {C′(rootC′), R(rootC′ , n3), S(rootC′ , n4), T (n3, n4), U(n4, n5), D(n3)}, and
D = {D(rootD), T (rootD, n6), U(n6, n7)} with (C′, C) ∈ OC . The edgeU(n4, n5)
in C′ can obviously not be induced by the morphismµC C′|rootC′

. Rather, we need to
establishµD C′|n3

= {(rootD, n3), (n6, n4), (n7, n5)}. Note that the edgeT (n3, n4)
is induced byµC C′|rootC′

as well as byµD C′|n3
. It is interesting to note that this

edge is henceinherited from bothC andD, as both are incomparable w.r.t.OC
+.

4 Evaluation

We have applied the GSKB covering algorithm to the AURA GSKB,and an approx-
imate covering with sufficient quality was computed in 18 hours. We used a timeout
of 3 minutes, and after the timeout the algorithm was allowedto produce at least one
solution (hencet = 300, andm1 = 50, andm2 = 3). Only 1431 concepts (22 % of the
concepts) had to be re-processed in phase 2, and 20 concepts timed out – three concept
required 34, 19, and 15 minutes, resp. It should be noted thatthe algorithm can compute
approximate coverings of lower quality in much less than 18 hours, e.g. in about 2 to 3
hours.

The following table shows the stats of the covering producedby the 18 hours run,
for concepts which have at least{0, 20, 50, 100, 200} nodes (|NC | ≥), and the number
and size of their morphisms, as well as the percentages of inherited concept and relation
atoms. It can be seen that the algorithm has performed a non-trivial task. For|NC | ≥
50, 5690 morphism have been computed, with an average size of|dom(µ)| = 7.36
nodes. If we look at the biggest concept with 461 nodes, we findthat the algorithm has
created a patchwork with 126 morphisms, with an avg. size of 9.49 nodes. Altogether,
the algorithm has established14, 146 morphisms of average size5.47, and identified 57
% of the concept atoms and 69 % of the relation atoms as inherited. We are also able to
tell from wherean atom is inherited from, see Def. 17. This information can be called
theprovenanceof atoms and is of great importance to the modelers of the KB [4].

|NC | ≥ 0 ≥ 20 ≥ 50 ≥ 100 ≥ 200

concepts (#) 6430 695 224 57 3
avg.|NC | (# nodes) 8.2 50.1 88.46 139.52342
avg.|EC | (# edges) 14.5 104.5 198.22 328.29866.33
avg.|CAC | (# atoms) 26.9 104.68158.125238.23546
% inherited|RAC | 69 75.6 77.4 77 71.6
% inherited|CAC | 57 71.1 74 74.6 74.9
|PWK | (# morphisms) 141469900 5690 2264 287
avg.|dom(µ)| (# nodes) 5.47 6.71 7.36 7.73 8.25
avg.|PWC | (# morphisms)2.2 14.24 25.4 39.71 95.67

5 Related Work

As stated in the introduction, the co-reference problem hasbeen studied to some extent
in the natural language processing literature under the theterm anaphora resolution; for
example, [5, 6] use default rules to hypothesize equality assertions between referents in
order to guess and establish co-references.

The reasoning systemKnowledge Machine (KM),[9], uses a so-called unification
mechanism, Umap, to strengthen the GSKB by establishing co-references. Unfortu-
nately, the lack of a formal semantics makes it very difficultto understand. A major
problem in KM is that unifications are not reversible, since they are not represented
explicitly as (equality or Umap) atoms in the KM GSKB. Instead, unifications are per-
formed by destructive substitutions of constants in the GSKB. Retraction and compre-
hension of Umap unifications can be very difficult and time consuming, as unification
is heuristic in nature and frequently goes wrong.

KM provides a functionget-supports for computing provenance of every triple
in a GSKB. The function returns the concept from where the triple gets inherited. This
function relies on KM’s so-calledexplanation database, which became corrupted dur-
ing the AURA project, due to software errors and a changing semantics, hence forcing
us to recompute the provenance information. This was the main motivation for the work
described in this paper. It turned out that the recomputed provenance information was
quite accurate, as confirmed by the experts in our knowledge factory [4].

The work of [10] uses answer set programming (ASP) to formalize KM’s Umap
operator. The GSKB is specified as an ASP program, together with an axiomatic system
of ASP inference rules. These rules capture the semantics ofobject-oriented knowledge
bases, including inheritance, and formalize the UMap operator. The semantics is given
by the semantics of the ASP rules, whereas our approach starts with a notion of desirable
models and is hence more model-theoretic in nature. Moreover, constants are distinct by
definition in ASP programs, so equality (UMap) needs to be modeled on the meta-level.
Moreover, the approach has not yet been applied successfully to the full-scale AURA
GSKB, so scalability of the approach is still open.

Considering our graph-based approach, we note that graph morphism-based ap-
proaches were employed since the early days of KL-ONE [11], to decide subsumption
between concepts in description logics. Those approaches are calledstructural sub-
sumption algorithmsnowadays [1]. Note that we do not decide subsumption between
concepts, as the taxonomy is considered given and fixed here.Instead, we determine
for a (possibly singleton) set of atoms from a concept from where they got inherited,
or if they are local to that concept, and hence non-redundant. Determining from where
an atom is inherited was called provenance computation. Nevertheless, we suspect that
our algorithm could be turned into a structural subsumptionchecker for certain descrip-
tion logics, similar as in [12] forEL. So-calledsimulationsare employed in [13] to
decide concept subsumption inEL++, which are similar to morphisms. But note that,
unlikeEL, we are supporting graph-based descriptions, and this is a key requirement in
AURA.

Morphisms are also considered in [14] for simple conceptualgraphs for deciding
“projection” (a form of subsumption). However, no implementation is described there,

and we are using different morphisms, as we do not require that all relation atoms inC
have to be projected intoD by a morphismµC D.

The graph-based algorithm was very successful in the AURA project. We were not
able to achieve similar results with any other form of formalreasoning, i.e., description
logic reasoners. As argued, in order to compute provenance of atoms / triples, one needs
a form of hypothetical, unsound reasoning which requires guessing of co-references /
equalities. Considering the size of the AURA GSKB and the complexity of the problem,
we consider our algorithm a success story.

It is well-known that the modeling of graph structures is challenging in description
logic (DL), as derivations from the tree-model property usually result in decidability
problems [15] which can often only be regained by imposing severe artificial modeling
restrictions. Although some progress has been made on modeling graph structures with
DLs [16], those extensions are still too restricted to be useful here. Our experience is
that graph structures are central to biology, and approximating them by trees results
in coarse models. Our framework allows us to express the graph structures truthfully,
but comes with other restrictions, too. To the best of our knowledge, there is no body
of work in the DL community that provides answers to the problems addressed in this
paper, and we are not aware of any abduction or hypothesization algorithm which has
ever successfully been applied to a GSKB of this size.

We also claim that the algorithm and its implementation techniques can be ap-
plied in related areas, for example, for ontology alignmenttasks in graph-structured
lightweight ontologies, for applications in computational biochemistry (identification
of chemical substructures), in text understanding, and in the semantic web (e.g., iden-
tification of substructures in RDFS triple stores). This is not surprising, since the MSC
problem is a very general one, which shows up in many disguises in many application
contexts.

6 Conclusions and Outlook

We showed how to identify inherited content in graph-structured knowledge bases, and
did this from two perspectives. From a logical perspective,we argued that accurate
provenance of atoms requires identification of / the proper solution of the co-reference
problem. We demonstrated that inheritance structures can be captured by means of
Skolem function and equality atoms. We described a so-called KB-strengthening al-
gorithm which guesses / hypothesizes co-references between Skolem function terms in
order to maximize the inherited content in concept graphs.

For the actual implementation, we employed graph-based notions and demonstrated
how inherited content can be described by virtue of graph morphisms. The implemented
algorithm was successfully applied to the large-scale AURAKB.

The AURA system and the actual implementation of the algorithm covers additional
expressive means that we have not formally reconstructed yet, i.e., transitive and func-
tional relations, number restrictions, and disjointness axioms. The logical formalization
of these expressive means is future work, but we are optimistic that it can be done. Es-
pecially in the case of cyclical GSKBs, it is not clear yet howto apply a similar line
of argumentation, as the Herbrand models are no longer necessarily finite. However, it

is in principle clear how to handle disjointness, functionality etc. from a graph-based
point of view.

From the morphisms computed by the graph-based algorithm wecan compute a
strengthened GSKB. The established equality axioms between the Skolem function
terms describe the correct inheritance structures, and thequality of the mappings got
testified by the subject matter experts in our knowledge factory.

The strengthened GSKB in first-order logic is also the basis for a couple of AURA
knowledge base exports in SILK [17], answer-set programming syntax [18], and TPTP
FOF syntax [19]. We also have a set of OWL2 [20, 21] exports [22], but the OWL2 KBs
are underspecified in the sense that we cannot use Skolem functions here and hence, no
equality atoms can be used to establish co-references, so those KBs are approximations.
This suite of exported KBs is called theBio KB 101 suite, and is made available to the
public under aCreative Commons License,and can be found here for download [23],
together with a detailed description of the various variants of the exports.

In future work, we need to establish a closer correspondencebetween the logical
and the graph-based formalizations. It should be relatively straight forward to show that
the graph-based algorithm is sound and complete w.r.t. the given logical semantics.

Acknowledgments: This work was funded by Vulcan Inc. under Project Halo

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F., eds.: The
Description Logic Handbook: Theory, Implementation, and Applications, Cambridge Uni-
versity Press (2003)

2. Gunning, D. and Chaudhri, V. K. et al.: Project Halo Update- Progress Toward Digital
Aristotle. AI Magazine (2010)

3. Reece, J.B., Urry, L.A., Cain, M.L., Wasserman, S.A., Minorsky, P.V., Jackson, R.B.: Camp-
bell Biology, 9th ed. Harlow: Pearson Education (2011)

4. Chaudhri, V. and Dinesh, N., et al: Preliminary Steps Towards a Knowledge Factory Process.
In: The Sixth International Conference on Knowledge Capture. (2011)

5. Carpenter, B.: Skeptical and Credulous Default Unification with Applications to Templates
and Inheritance. In: Inheritance, Defaults and the Lexicon, Cambridge University Press
(1994) 13–37

6. Cohen, A.: Anaphora Resolution as Equality by Default. InBranco, A.H., ed.: Anaphora:
Analysis, Algorithms and Applications, 6th Discourse Anaphora and Anaphor Resolution
Colloquium, DAARC 2007, Lagos, Portugal, March 29-30, 2007. Selected Papers. Volume
4410 of Lecture Notes in Computer Science., Springer (2007)44–58

7. Overholtzer, A., Spaulding, A., Chaudhri, V.K., Gunning, D.: Inquire: An Intelli-
gent Textbook. In: Proceedings of the Video Track of AAAI Conference on Artificial
Intelligence, AAAI (2012) Seehttp://www.aaaivideos.org/2012/inquire_
intelligent_textbook/.

8. Hedman, S.: A First Course in Logic: An Introduction to Model Theory, Proof Theory,
Computability, and Complexity. Oxford Texts in Logic (2004)

9. Clark, P., Porter, B.: Building Concept Representationsfrom Reusable Components. In:
Proceedings of AAAI, AAAI Press (1997)

10. Chaudhri, V.K., Tran, S.C.: Specifying and Reasoning with Under-Specified Knowledge
Base. In: International Conference on Knowledge Representation and Reasoning. (2012)

11. Brachman, R.J., Levesque, H.J.: The Tractability of Subsumption in Frame-Based Descrip-
tion Languages. In: AAAI, AAAI Press (1984)

12. Haarslev, V., Möller, R.: The Revival of Structural Subsumption in Tableau-Based Descrip-
tion Logic Reasoners. In: International Workshop on Description Logics (DL’08). (2008)

13. Baader, F.: Restricted Role-value-maps in a Description Logic with Existential Restric-
tions and Terminological Cycles. In: International Workshop on Description Logics (DL’03).
(2003)

14. Chein, M., Mugnier, M., Simonet, G.: Nested Graphs: A Graph-based Knowledge Repre-
sentation Model with FOL Semantics. In: International Conference on Knowledge Repre-
sentation (KR’98, Morgan Kaufmann (1998)

15. Vardi, M.Y.: Why is Modal Logic so Robustly Decidable? Descriptive Complexity and
Finite Models, DIMACS Series in Discrete Mathematics and Theoretical Computer Science
31 (1996) 149–184

16. Motik, B., Cuenca Grau, B., Horrocks, I., Sattler, U.: Representing Ontologies Using De-
scription Logics, Description Graphs, and Rules. Artif. Intell. 173(2009) 1275–1309

17. Grosof, B.: The SILK Project: Semantic Inferencing on Large Knowledge (2012) See
http://silk.semwebcentral.org/.

18. Chaudhri, V.K., Heymans, S., Wessel, M., Son, T.C.: Query Answering in Object Oriented
Knowledge Bases in Logic Programming: Description and Challenge for ASP. In: Proc. of
6th Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP),
Istanbul, Turkey (2013)

19. Chaudhri, V.K., Wessel, M.A., Heymans, S.:KB Bio 101 : A Challenge for TPTP First-
Order Reasoners. In: In KInAR - Knowledge Intensive Automated Reasoning Workshop at
CADE-24, the 24th International Conference on Automated Deduction, Lake Placid, New
York, USA (2013)

20. W3C OWL Working Group: OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation (27 October 2009) Available athttp://www.w3.org/TR/
owl2-overview/.

21. Horrocks, I., Kutz, O., Sattler, U.: The Even More IrresistibleSROIQ. In: International
Conference on Knowledge Representation and Reasoning. (2006)

22. Chaudhri, V.K., Wessel, M.A., Heymans, S.:KB Bio 101: A Challenge for OWL Rea-
soners. In: Proc. of 2nd OWL Reasoner Evaluation Workshop (ORE 2013), Ulm, Germany
(2013)

23. Chaudhri, V.K., Heymans, S., Wessel, M.A.: TheBio KB 101 Download Page (2012)
Seehttp://www.ai.sri.com/halo/halobook2010/exported-kb/biokb.
html.

