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Abstract. We study the extension of context ontologies towards enhanced qual-
itative spatio-temporal representations and reasoning. Our goal is to model and
extract events that are important to the user from her context log, i.e. the history
of context data collected over a longer period. We present a case study based
on actual context ontologies and context data from the ContextWatcher mobile
application. The presented work has been fully implementedin the DL-based
reasoning engine RACERPRO.

1 Introduction

In this paper we present the representation and recognitionof significant events within
the context data that a mobile user collects over a longer period such as a couple of
days. As contextual data sources we assume data collected byContextWatcher [1]. Con-
textWatcher3 is a mobile application that facilitates easy gathering andsharing of per-
sonal context from an underlying network of context providers. These context providers
include the user’s location in terms of the present location, location traces as well as
frequently visited places, all kinds of user-tagged objects and activities, and location-
specific information extracted from public sources, such aslocal weather information.
In ContextWatcher, the value of personal context information is multiplied by sharing
context with others through networks of defined social relationships.

ContextWatcher is implemented as a self-contained mobile client but can also con-
nect to third party applications. A currently very popular application is the automatic
compilation of gathered context into personal daily Web logs, for instance, to show
pictures taken on the phone in a certain context, display visits to selected places or to
disclose social encounters. Such contextual blogs have been a strong motivation for
the work presented in this paper: to enhance the blog readability, to make sharing of
posts easier and to simply make blogs more attractive, enhanced concepts to model and
recognize important events are needed.

As most data delivered by our context providers is of quantitative nature in the
first place, abstraction methods and context ontologies haven been introduced to deal
with context at a higher level [2]. At the level of these context ontologies, complex
conceptual dependencies between context elements are introduced to enrich contextual
descriptions and to implement classification-based reasoning about the user’s situation.
Qualitative context descriptions were firstly introduced in ContextWatcher to describe
user places as conceptual abstractions from exact locations. Examples include place
descriptions like “Office”, “Home” ore “Business Place”. Asthe supporting context
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ontologies evolved, more qualitative concepts that connect to these place descriptions
were added. In the current version of ContextWatcher, the linkage between exact phys-
ical user locations and qualitative places is implemented through clustering methods
which are applied to user traces.

In this paper we exploit extensions of the existing ContextWatcher ontologies to-
wards enhanced qualitative spatial representation and reasoning. We study the imple-
mentation of a complex event recognition and management system with RACERPRO 4

as our DL-based reasoning component of choice. The rest of this paper is organized
as follows. We first define required terminology and sketch the overall architecture of
the proposed framework. Then we describe our RACERPRO event model. We illustrate
the potentials of the modeling with an example scenario. Finally we conclude. In the
following we assume some basic knowledge of Description Logics (DLs) [3] and re-
lated semantic technologies (e.g., W3C standards such as OWL5 and semantic query
languages such asNRQL [4]).

2 Context Awareness and Event Recognition
The most prominent definition ofcontextwas coined by A. K. Dey et al.:Context is
any information that can be used to characterize the situation of an entity. An entity is
a person, place, or object that is considered relevant to theinteraction between a user
and an application, including the user and applications themselves.

Such a piece of relevant ”‘information”’ is also called acontext element. As men-
tioned in the introduction, context elements are provided by context providers.In this
case study, we are primarily considering the context elements locationand time. The
collection of all context elements is called the current context or currentsituation.

Situational reasoning[2] uses background knowledge specified in OWL ontologies
to infer additional context elements from the asserted ones. One can claim that con-
text providers merely provideraw context data, and that this context data can only be
tranformed into context elements (being characterized as “information”) by means of
interpretation.This interpretation is performed with the help of logical reasoning.

Currently, the approach taken by ContextWatcher is to map the context data into
context assertionsin a context or situation ABoxin RACERPRO. TheABox realization
service(which is a standard DL inference service) is then used by ContextWatcher to
derive the entailed, logically implied ABox context assertions. Each agent is represented
as an individual in the ABox, describing the agent’s currentcontext. The ABox also
includes social as well as spatial relationships.

The mapping function fromcontext datato context assertionsis currently defined
procedurally. For example, the location of an agent is provided by a GPS device. So-
calledlocation clustersare acquired from GPS agent traces which are analyzed offline
by statistical learning / clustering methods to find so-called location clusters. An ac-
quired location cluster can then be annotated by the user with an OWL class or DL
concept, e.g.homeor office. Membership in these clusters is from now on recognized
automatically by ContextWatcher, and appropriatequalitative location assertions are
put into the context ABox. This mapping function (which not only takes care of lo-
cation) is called theSituation Description Generatorin the following. In many cases,
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quantitativecontext data is mapped toqualitativecontext assertions such that OWL or
DL reasoning can be exploited, which primarily works on a qualitative, symbolic level.
However, by exploiting theexpressive concrete domain reasoning facilitiesof RAC-
ERPRO we will also show how reasoning on quantitative (time) context data can be
performed and exploited.

Context ABoxes in ContextWatcher so far can be described as static descriptions
of “snapshots” in space-time. We claim that the recognitionof dynamic space-time
histories, so called events, can provide valuable additional contextelements for Con-
textWatcher – in fact, certain situations can only be recognized if thesituational changes
are considered rather than the (static) situations themselves. For example, the situation
leaving homeis characterized by acertain change in the agent’s situation:First the
agent isinsideits home cluster, then, in the next situation, he no longer is. In case the
event takes place in the early morning hours of a working day,it is reasonable to as-
sume that the agent is leaving his home for work. In case he should be too late, an SMS
could be send automatically to his boss, apologizing in advance for being late. More-
over, as mentioned in the introduction, event structures which have been recognized in
daily context logs can be used for the automated generation of diary-like blogs. Thus,
adynamiccontext ABox and DL-based event model is needed in whichnotions of time
and change play a major role.

3 DL-based Event Recognition – A Case Study withRACERPRO

Our RACERPRO event recognition model includesthree basic building blocks:a model
of time, a model for situations, and an event model. In the following, a situation is called
astateto make the resemblance with temporal modal logics or AI planning formalisms
[5,6] more explicit.

Time Points and Intervals The basic temporal building blocks aretime pointsand
intervals. Let us start with time points. A time point is any ABox individual which has
a real valued filler of thetime attribute in the concrete domain ofALCQHIR+(D−),
which is the DL implemented by RACERPRO:

(define-concrete-domain-attribute time :type real)
(define-concept point-in-time (a time))

Two individual time pointsp1 andp2 can be modeled in the ABox as follows:
(instance p1 (= time 6.5))
(instance p2 (= time 8.0))

Certain day times can be modeled as defined concepts:
(define-concept early-morning-time (and (<= 6.0 time) (< time 7.0)))

Note thatp1 is an instance ofearly-morning-time then. We also want to be able
to reason about therelative locationsof time points to one another, e.g., we want to
know whetherp1 is before of afterp2. A mapping to qualitative relationships such
asbefore-point-in-time andafter-point-in-time is thus needed. In RAC-
ERPRO we can usedefinedNRQL queriesor NRQL ABox rulesto establish such a
mapping:

(defquery before-point-in-time (?s1 ?s2)
(and (?s1 point-in-time) (?s2 point-in-time)

(?s1 ?s2 (constraint time time <))))
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A defquery form can be understood as a simple macro which can be used inNRQL
queries such as(retrieve (?x ?y) (?x ?y before-point-in-time)), which
then returns(((?x p1) (?y p2))). But in order to make ABox reasoning aware of
the qualitative relationship holding betweenp1 andp2, we must add anbefore-point-
in-time role assertionto the ABox. This can be done with an ABox rule:

(firerule (?x ?y before-point-in-time)
((related ?x ?x before-point-in-time-role)))

This rule fires and adds a(related p1 p2 before-point-in-time-role)asser-
tion to the ABox. Due to the added role assertion,p1 can now for example be recognized
as an instance of the concept

(define-concept has-successor-point
(and point-in-time (some before-point-in-time-role point-in-time)))

Having modeled time points, we can continue definingintervalswhich have a start and
end time point; moreover, the intervals duration shall be greater than zero:

(define-concrete-domain-attribute start-time :type real)
(define-concrete-domain-attribute end-time :type real)
(define-concept interval (and (a start-time) (a end-time)

(< start-time end-time)))

Given this definition of interval, it is even possible to classify / recognize events asshort
or long intervals, again by means of the expressive concrete domain reasoningoffered
by RACERPRO:

(define-concept short-interval
(and interval (< end-time (+ start-time 1.0))))

A short interval is thus an interval that lasts at most one hour; note that(< end-time

(+ start-time 1.0)) is satisfied iffend time − start time < 1; this equation
cannot be expressed in a more direct way in RACERPRO.

Thepoint in intervalrelationship is an important qualitative relationship. Itcan be
modeled as a defined query as follows:

(defquery point-in-time-inside-interval (?s ?e)
(and (?s point-in-time) (?e interval)

(?e ?s (constraint start-time time <=))
(?s ?e (constraint time end-time <=))))

It is now reasonable to definecertain special day timesasinterval individuals, e.g., like
morning-hours. The rationale is that these intervals can be used in queriessuch as
What happened during the morning hours?:

(instance early-morning-interval
(and interval (= start-time 6.0) (= end-time 7.0)))

Moreover, the famousAllen temporal relationships[7] provide well-known qualita-
tive temporal relational vocabulary for intervals (meets,overlaps, during, . . . ). Like the
point in interval relation, the Allen relations can be defined as queries. If required, cor-
responding ABox rules can again addAllen role assertionsto the ABox so that further
reasoning processes are aware of the qualitative temporal relationships holding between
the intervals. Themeets relationship between intervals looks as follows:

(defquery meets (?e1 ?e2)
(and (?e1 interval) (?e2 interval)

(?e1 ?e2 (constraint end-time start-time =))))
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Fig. 1.States (Circles), Simple Events (Light Gray), and Complex Events (Gray)

From Time Points to States and Histories A stateis a user/agent-specific description
of the user’s current situations as well as of its relevant (spatial, social, . . . ) environment
at a given time point. States will be generated by the Situation Description Generator.
Every time point thathas some agentassociated with it is calleda state of that agent:

(define-concept state (and point-in-time (some has-agent agent)))

An arbitrary amount of additional context information can be “attached” to a state indi-
vidual; for example, information regarding the current location for which we are using
thein-region role. Regions can be cluster regions annotated with location concepts,
but also annotated map regions, points of interest etc:

(define-primitive-role in-region :domain state :range region)

A sequence of states of an agentis called ahistory. Like in a modal temporal logic
based on a discrete linear model of time, we are are introducing a functional rolenext
to reference the successor state. The inverse of next is calledprevious; next has a
transitive super-role calledfuture which can thus be used to access all future states
from the current state. Obviously,past is the inverse offuture.

Since the state individuals of the agents are generated by the Situation Description
Generator, the generator can as well create the required(related s1 s2 next) role
assertions to produce the time thread. However, since the quantitative time information
is available, the requirednext role assertionscan also be created with an ABox rule:

(firerule (and (?s1 state) (?s1 ?a has-agent)
(?s2 state) (?s2 ?a has-agent)
(?s1 ?s2 before-point-in-time)
(neg (project-to (?s1 ?s2 ?a)

(and (?s1 ?s before-point-in-time)
(?s ?s2 before-point-in-time)
(?s ?a has-agent)))))

((related ?s1 ?s2 next)))

The variables?s1 and?s2 will be bound to states of the same agent?a. Moreover,
?s1 precedes?s2 in time. We also have to verify that?s2 is thedirect successor of
?s1. This means that there is no state?s in between?s1 and?s2 of that same agent.
This is verified with the expression(neg (project-to ...)). If satisfying?s1,
?s2 bindings are found, the rule adds a(related ?s1 ?s2 next) assertion to the
ABox.

From Histories to Events Now we have an ABox containing all the histories of the
agents. Events shall now be recognized on agent histories. An example history of an
agent on which events have been recognized is shown in Fig. 1.
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An eventis a time intervalhaving a start states1 and an end states2. An event
either describes aconstancy holding betweens1 ands2, e.g., likestaying at home, or
a certain change that happened betweens1 ands2, e.g.going from home to work.The
former events are calledhomogeneous events. Such an event has the property that the
described constancy does not only hold for the whole event, but also for all its subevents.
Moreover, such events shall often be ofmaximum length, i.e., there shall be no proper
subintervals which also satisfy the event property. In contrast, the events describing
changes are often calledGestalt events, if they maynot have subevents for which the
property also holds. Thus, such events shall be ofminimum length. We will show how
these requirements (whose modeling would require anuntil modality in temporal modal
logics) can be formalized inNRQL.

We distinguishgeneric or non-thematic eventsand thematic events. A thematic
event requires background knowledge (e.g., social reasoning) in order to be recognized.
For example, the eventstaying in a regionis a (homogeneous) generic event, whereas
thestaying at homeevent is a thematic event. An additional discriminator is given by
the distinction ofsimple vs. complex events, as illustrated in Fig. 2. Simple events have
no subevents, whereas complex events have. The required relationships of the subevents
to one another are specified with the help of Allen relations.

Events describing constanciescan only be recognized if states are also automati-
cally generated even if the situation description hasnot changed, but simply time has
gone by. Thus, if a significant change of the value of the time attribute is considered as
a relevant change in the situation description, then a new state will be generated auto-
matically, so events describing constancies can be recognized from the similarity (non
change) of attributes between situations. However, this also reveals the question ofhow
frequentnew states shall be constructed. We do not answer this question here.

Given the structure of the history ABoxes, the next important question to ask is:
How to recognize the events? As a first idea, we can try to identify events with their
start statesand then exploit the temporal structure spawned by thenextandfuturerela-
tionships. Thus, aleaving home eventcould be recognized with the following concept
definition:

(define-concept leaving-home-event
(and state (some in-region home) (some next (all in-region (not home)))))

However, due to the Open World Semantics [3, pp. 68] employedby DLs, we see that
(all in-region (not home)) can only be proven if appropriate closure assertions
are added on thenext successor’sin-region role. Moreover, it does not seem to
be adequate to identify events which have a certain durationand are thus conceptually
intervals with their start states which are conceptually time points. Also, there is no way
to access or refer to the duration of such an event, since rolequantification onnext and
future can onlyseethe require future states, but cannotfix them. Thus,variablesare
needed. Moreover, while / until operators known from temporal modal logics would
be needed in order to express that an event has maximum or minimum length. Also, a
concept such ashome depends on the agent and thus cannot be used if more than one
agent individual is present. Thus, we have to verify that theregion is indeed the home
of the agent.

We are thus defining events with the help of rules again. Events are instances of
an event concept and reference their start and end states with the rolesstart-state
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andend-state. In case of a complex event, the subevents are aggregated using the
has-subevent role. These events thus satisfy

(define-concept event
(and interval (some has-agent agent)

(some start-state state) (some end-state state)))

Event rules have to constructnew individuals. So-calledDL-safe rulesare rules whose
variables only range over ABox individuals, i.e., all variables aredistinguished. This
is always the case inNRQL. However, sinceNRQL allows the creation of new indi-
viduals with rules we need to be careful, since rules may be applied to freshly created
individuals as well. In order to avoid termination problems, NRQL does not offer an
automatic rule application strategy; instead, API functions function are supplied to first
identify the applicable rules, and then to fire (all or some of) them. This is called a sin-
gle rule application cycle. In principle it is unclear how many cycles will be needed.
Thus, the application runs a loop. To ensure termination, wemake the antecedences of
the rulesnon-monotonicsuch that a rule can only be fired once for a certain set of input
individuals. Thegeneral pattern / idiom for simple event rulesthus looks as follows:

(prepare-abox-rule
(and (?s1 state) (?s2 state)

(?s1 ?a has-agent) (?s2 ?a has-agent)
(?s1 ?s2 next) // or future or past or previous
... // some more conditions on the states
// ensure that rule can only be fired "once":
(neg (project-to (?s1 ?s2)

(and (?e some-simple-event)
(?e ?s1 start-state) (?e ?s2 end-state)))))

((instance (new-ind new-simple-event ?s1 ?s2) some-simple-event)
(related (new-ind new-simple-event ?s1 ?s2) ?s1 start-state)
(related (new-ind new-simple-event ?s1 ?s2) ?s2 end-state)))

If the antecedence of the rule identified appropriate start and end states?s1 and?s2
in the same history (belonging to the same agent?a), and such an event has not al-
ready been constructed, then a new event instance referencing ?s1, ?s2 is created.
The new-ind operator is used to construct a new ABox individual; if?s1 is bound
to s1 and?s2 to s2, then the expression(new-ind new-simple-event ?s1 ?s2)

creates a new individualnew-simple-event-s1-s2.
Using this pattern, we can define homogeneous and gestaltgeneric simple events.

For example, we have the following spatial events:leaving a region, entering a region,
staying in a region,and thein no region event.By means ofblutooth devices and buddy
lists, it can also be recognized if a buddy is close by. We thus also have themeeting
buddy, leaving buddy, staying in company of a buddyas well as thebeing alone event.

It is obvious that theleaving and entering a region eventsare easy to model with
ABox rules as follows: the general event rule pattern is used, but additional constraints
on the states are imposed, for example,(?s1 ?r in-region) and(neg (?s2 ?r

in-region)) in case of the leaving a region event, and vice versa for the entering a
region event. Maximum duration and homogeneity of events are harder to enforce. Let
us consider thestaying-in-region event. Assume that?r is the region in which the
agent is currently staying. To enforce maximum duration of the interval to the left, we
require that?s1 does not have aprevious state which is also contained in?r, and
similar for ?s2 andnext. Homogeneity can be expressed as well – between?s1 and
?s2 there shall be no states?s3 in which(?s3 ?r in-region) doesnot hold. This
gives us the additional conjuncts:
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Fig. 2.Taxonomy of Complex Thematic Events

(and (neg (project-to (?s3 ?r)
(and (?s3 ?s4 next) (?s4 ?r in-region))))

(neg (project-to (?s2 ?r)
(and (?s12 ?s2 next) (?s12 ?r in-region))))

(neg (project-to (?s2 ?s3 ?r)
(and (?s2 ?sx future) (?sx ?s3 future)

(neg (?sx ?r in-region))))))

The analog social event,staying in company of a buddy,is even more complicated,
since here one has to relate states of histories of two different agents in order to detect
the constancy; note that thein-buddy-proximity relation holds betweenstatesof
agents.

Having recognized the simple generic events, we can specialize these tothematic
events,for example, aleaving-home-event is a specialleaving-region-event.
In some cases, simple concept definitions are sufficient for recognition, but in other
cases, rules are needed again.

Complex and Very High Level Events We then continue and definecomplex event
that consist of several subevents. As with the simple events, we distinguishgeneric and
thematic complex events.An important generic complex event is thegoing from A to B
event. This event is neither maximal nor homogeneous; instead, itis well known that
going fromA to B eventually means that one fist has to go fromA to C, and then from
C to B. Such recursive event rules can become very complex.

So, what are reasonable complexthematicevents in our case study scenario? Given
the typical working day scenario,we primarily consider further specializations of the
going from A to B eventwhich takes the thematic types of the origin and destination
regions into account. For example, agoing from office to lunch eventis recognized if
the destination region is a restaurant, and if the source region is the work office of the
agent. Moreover, such an event has to overlap thelunch timeindividual interval. The
introduced complex thematic events are visualized in Fig. 2.

Finally, we can definevery high level complex events. An ordinary working day
eventis assumed to consist of the following consecutivesequence of events:going-
from-home-to-office-event, working-event, going-from-office-to-

lunch-event, lunch-event, going-from-lunch-to-office-event, work-

ing-event, going-from-office-to-home-event. If such a sequence of events
?e1 to ?e7 is found, all belonging to the same agent, such that(?e[n] ?e[n+1]

meets) holds for alln from 1 to 6, then a complex event of typeordinary-working-
day-event is constructed, and the seven subevents are connected to it using thehas-
subevent role.

4 A Complex Example
A complex history ABox is visualized in Fig. 3. The historiesof the three agentsA1,
A2, A3 are shown. Circles denote states, and containment of a statein a region (the
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Fig. 3.History ABox for AgentsA1, A2, A3

in-region relationship) is depicted with the help of the state enclosing gray shaded
boxes (visualizing the regions). Thehome regions ofA1 andA2 are different, but the
restaurant andoffice boxes visualize the same region. The bold gray arrows vi-
sualize thein-buddy-proximity relationship. The values of thetime attributes are
shown as well (in decimal coding).

The scenario modeled in the example ABox goes as follows: Agent A2 is the boss
of A1, andA3 is a friend ofA1. A1 leaves its home at 7.0 and enters his office at 8.75;
in the meantime he wason the road.He stayed in the office (presumably working) until
12.20 (we are omitting the concrete times in the remaining description). He is then in
buddy proximity with his boss. Both are leaving the office together and are entering the
restaurant, where they are having lunch. In the restaurant,A1 meets a friend (A3) for
a couple of minutes. After staying a while in the restaurant,A1 andA2 are leaving the
restaurant together.A1 goes back to office and stays there until he leaves the office in
the evening, heading towards home. In contrast,A2 goes home after lunch.

This history ABox induces a complex event structure. After the rules no more apply,
the following complex thematic events have been constructed for A1. The following
list is the result of aNRQL query; for each binding?x to a complex thematic event
we are also including its start and end time as well as itsmost specific types.For the
events, a<event-name><start-state><end-state> naming schema is used, and
<state-number><agent> for the states:

(((?x ordinary-working-day-s1a1-s9a1) (7.0) (19.0)
(ordinary-working-day-event long-interval))

((?x going-from-a-to-b-s1a1-s3a1) (7.0) (8.75)
(going-from-home-to-office-event region-event short-interval))

((?x going-from-a-to-b-s4a1-s5a1) (12.2) (12.3)
(going-from-office-to-lunch-event moving-together-event region-event))

((?x going-from-a-to-b-s6a1-s7a1) (13.0) (13.5)
(going-from-lunch-to-office-event region-event))

((?x going-from-a-to-b-s8a1-s9a1) (18.5) (19.0)
(going-from-office-to-home-event region-event)))

Thus, as expected,A1 has experienced an arbitrary working day. However, this is neither
the case forA2 nor forA3. Note that some more events have been recognized, but they
are not “complex”, e.g., the eventsstaying-in-region-of-office-of-a1-s3a1-s4a1 from
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8.75 to 12.2 of type(working-event long-interval), in-company-a3-s5a1-s6a1 from 12.3
to 13.0 of type(in-company-event meeting-friend-event)) (which is a “social event” due
to the bluetooth proximity with friendA3), andstaying-in-region-of-restaurant-1-s5a1-
s6a1 from 12.3 to 13.0 of type(lunch-with-boss-event).

5 Conclusion & Future Work
We have proposed a practical and working event model methodology in the RACERPRO

DL system. The long term research goal of this work is to enhance the spatial, temporal
and dynamic awareness of the ContextWatcher application framework. The principle
feasibility of the approach has been demonstrated with a case study. A drawback of
the proposed model is the slightly non-declarative semantics shown by some rules, es-
pecially those that create new individuals. Recently it hasbeen shown thatabduction–
which is a non-deductive inference process – has the potential to deliver hypotheses and
can thus also be used to hypothesize the assertions which we have constructed simply
by means of rules [8,9]. How to apply this abduction framework is future work.

It should be stressed that the proposed model only works withRACERPRO, since
current W3C Semantic Web standards (OWL, SPARQL, SWRL etc.)do not offer the
required expressivity for the formulation of rules (e.g., negation as failure, closed do-
main universal quantification, creation of new individuals, concrete domain reasoning).
It is clear that corresponding concept constructors easilylead to undecidability. But
pragmatic solutionshave to be developed for practical applications, as we have demon-
strated.
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