$ALC_{RA} - ALC$ with Role Axioms

This Talk is About ...

- ullet The new description logic $\mathcal{ALC}_{\mathcal{RA}}$
- How to decide (?) the concept satisfiability problem of $\mathcal{ALC}_{\mathcal{RA}}$
 - Currently it seems as if $\mathcal{ALC}_{\mathcal{RA}}$ is undecidable !
 - Work in progress
 - * Open questions, missing proofs
- Joint-work with Volker Haarslev & Ralf Möller
- Thanks to Anni-Yasmin Turhan, Carsten Lutz,
 & the anonymous reviewers

$ALC_{RA} - ALC$ with Role Axioms

Syntax of ALC_{RA}

- Concepts like in ALC
 - $-\neg C$, $C_1 \sqcap C_2$, $C_1 \sqcup C_2$, $\exists R.C$, $\forall R.C$
- Satisfiability w.r.t. a set of role axioms = role box \mathfrak{R}
 - $-S\circ T\sqsubseteq R_1\sqcup\cdots\sqcup R_n$
 - These are not role value maps!
 - * No composition allowed on the right hand side ("special global" RVMs)
- 3 must be admissible
 - For each R,S at most one role axiom with $R\circ S \ \square \ \ldots \in \mathfrak{R}$

$\mathcal{ALC}_{\mathcal{RA}} - \mathcal{ALC}$ with \mathcal{R} ole \mathcal{A} xioms

Semantics of ALC_{RA} , Satisfiability

- ullet $C^{\mathcal{I}}$, $R^{\mathcal{I}}$ as usual (see \mathcal{ALC})
- $\mathcal{I} \models C$ iff $C^{\mathcal{I}} \neq \emptyset$
- All roles must be interpreted as disjoint

$$-R,S\in\mathcal{N}_{\mathcal{R}}$$
, $R
eq S\colon\,R^{\mathcal{I}}\cap S^{\mathcal{I}}=\emptyset$

- $ullet \ \mathcal{I} \models S \circ T \sqsubseteq R_1 \sqcup \cdots \sqcup R_n \ ext{ iff } \ S^\mathcal{I} \circ T^\mathcal{I} \subseteq R_1^\mathcal{I} \cup \ldots \cup R_n^\mathcal{I}$
- $ullet \; \mathcal{I} \models \mathfrak{R} \; \; \mathsf{iff} \; \; orall ra \in \mathfrak{R} : \mathcal{I} \models ra$
- $ullet \mathcal{I} \models (C, \mathfrak{R}_{\mathfrak{C}}) \ \ ext{iff} \ \mathcal{I} \models C, \, \mathcal{I} \models \mathfrak{R}$

Simple Example

```
 \begin{array}{l} ((\exists R. \exists S.C) \sqcap \forall T. \neg C, \{R \circ S \sqsubseteq T\}) \\ (\forall [x,y,z](R(x,y) \land S(y,z) \Rightarrow T(x,z))) \text{ (Role Box) } \land \\ (\forall [x,y](R(x,y) \oplus S(x,y) \oplus T(x,y))) \text{ (Disjointness) } \land \\ (\exists [x]( \ (\exists [y](R(x,y) \land \exists [x](S(y,x) \land C(x)))) \land \\ (\forall [y](T(x,y) \Rightarrow \neg C(y)))) \text{ ($\mathcal{ALC}$ Concept, $\in$ monadic $\mathcal{GF}^2$)} \end{array}
```


Complex Example

```
(\exists brother. \exists sister. \exists sister. \exists daughter. \exists sister. css) \sqcap \forall niece. \neg css (computer science student)
```

```
\{brother \circ sister \sqsubseteq sister, \ sister \circ daughter \sqsubseteq niece, \ daughter \circ sister \sqsubseteq daughter, \ sister \circ sister \sqsubseteq sister \}
```

 $\forall niece \sqsubseteq sister \circ daughter \sqcup brother \circ daughter$

Role Box Clashes

```
\exists R. ((\exists S. \exists T. \top) \sqcap \forall Y. \bot) \sqcap \forall A. \bot \ \{R \circ S \sqsubseteq A \sqcup B, S \circ T \sqsubseteq X \sqcup Y,
```

 $A \circ T \sqsubseteq U$, $B \circ T \sqsubseteq V$, $R \circ X \sqsubseteq U$, $R \circ Y \sqsubseteq V$

No Finite Model Property

- Disjoint roles matter (unlike ALC)
- $(\exists R.\exists R.\top) \sqcap (\forall S.\exists R.\top)$ w.r.t. $\{R \circ R \sqsubseteq S, \ R \circ S \sqsubseteq S, \ S \circ R \sqsubseteq S, \ S \circ S \sqsubseteq S\}$

Relationships to Other DLs

- ullet At least as expressive as $\mathcal{ALC}_{\mathcal{R}^+}$ (Sattler)
 - Transitively closed roles, $R\circ R\sqsubseteq R\Rightarrow R^{\mathcal{I}}=(R^{\mathcal{I}})^+$
- ullet At least as expressive as \mathcal{ALC}_{\oplus} (Sattler)
 - "Transitive orbit" operator \oplus : $(R^{\mathcal{I}})^+ \subseteq (\oplus(R))^{\mathcal{I}}$

$$egin{aligned} -\oplus(R) &
ightarrow R_\oplus, \ \{R \circ R \sqsubseteq R_\oplus, \ R_\oplus \circ R \sqsubseteq R_\oplus\} \Rightarrow \ (\oplus(R))^\mathcal{I} &= R^\mathcal{I} \cup R^\mathcal{I}_\oplus \end{aligned}$$

$$\exists \oplus (R).C \rightarrow \exists R_{\oplus}.C$$
 $\exists R.C \rightarrow \exists R_{\oplus}.C \sqcap \exists R.C$

$$orall \oplus (R).C \ o \ orall R_\oplus.C \sqcap orall R.C$$

 \Rightarrow **EXPTIME**-hardness of $\mathcal{ALC}_{\mathcal{RA}}$

Relationships to Other DLs (2)

- \mathcal{ALC}_+ (Baader)
 - Transitive closure operator +: $(R^{\mathcal{I}})^+ = (+(R))^{\mathcal{I}}$
 - $-\mathcal{ALC}_{\mathcal{RA}}\in\mathcal{FOPL}^3$, $\mathcal{FOPL}^3\subseteq\mathcal{FOPL}$, but $\mathcal{ALC}_+\notin\mathcal{FOPL}$
 - \Rightarrow Transitive closure cannot be expressed in $\mathcal{ALC}_{\mathcal{RA}}$
- ALCH_{R+} (Horrocks)
 - Allow non-disjoint roles
 - Allow role inclusion axioms $R \sqsubseteq S \in \mathfrak{R}$
 - $\Rightarrow \mathcal{ALCH}_{\mathcal{R}^+} \subseteq \mathcal{ALCH}_{\mathcal{RA}\ominus}$

"Accepting" $a^nb^nc^n$

- SAT $(\exists word. \neg (C_1 \sqcap C_2) \sqcap \forall s1. ((\forall c. \neg C_1) \sqcap (\forall cc. \neg C_1)) \sqcap \forall a. \forall s_2. \neg C_2 \sqcap \forall aa. \forall s_2. \neg C_2)$ iff $word \notin \mathcal{L}_{a^nb^nc^n}$

Is ALC_{RA} (With Universal Role And Non-Disjoint Roles) Undecidable?

- Transform PCP with $\mathcal{A}=\{0,1\}$ into two context-free grammars G_1,G_2 with start-symbols S_1,S_2 such that the PCP has a solution iff $\mathcal{L}(G_1)\cap\mathcal{L}(G_2)\neq\emptyset$
- ullet Transform G_1,G_2 into Chomsky Normal Form: G_1',G_2'
- ullet Transform G_1',G_2' into role box $\mathfrak{R}_{G_1',G_2'}$
- ullet $(\exists word.
 eg(C \sqcap D) \sqcap orall S_1.C \sqcap orall S_2.D, \mathfrak{R})$ is unsatisfiable iff $word \in \mathcal{L}(G_1') \cap \mathcal{L}(G_2')$

Illustration

How to Consider All Words

- Represent $\{0,1\}^+ = \mathcal{A}^+$ as binary infinite tree (each path has infinite length)
- ullet Sub-paths starting from the root-node correspond to (finite) words $w \in \{0,1\}^+$
- "*" = universal role

 $(((\exists 0.\top) \sqcap (\exists 1.\top) \sqcap (\forall * .((\exists 0.\top) \sqcap (\exists 1.\top)))), \mathfrak{R})$

Example Reduction

- PCP = ((1, 101), (10, 00), (011, 11))
- ullet Solution $=1323=101110011=x_1x_3x_2x_3=y_1y_3y_2y_3$
- $ullet \ a_3a_2a_3a_1101110011 \in \mathcal{L}(G_1) \cap \mathcal{L}(G_2)$
- $ullet G_1 = \{ egin{array}{llll} S_1
 ightarrow a_1 1 & | \ a_2 \overline{10} & | \ a_3 \overline{011} & | \ & & \ a_1 S_1 1 & | \ a_2 S_1 \overline{10} & | \ a_3 S_1 \overline{011} & \} \end{array}$
- $egin{aligned} ullet \ G_2 &= \{ egin{aligned} S_2
 ightarrow a_1 101 & a_2 101 & a_3 11 & a_4 101 & a_4 101 & a_5 111 & a_$

$\mathcal{ALC}_{\mathcal{RA}}$ - \mathcal{ALC} with \mathcal{R} ole \mathcal{A} xioms

Example Reduction (2)

- $egin{aligned} ullet G_1' = \ & \{ \; S_1
 ightarrow a_1 1 \; | \; a_2 \overline{10} \; | \; a_3 \overline{011} \; | \; a_1 S_{1,1} \; | \; a_2 S_{1,10} \; | \; a_3 S_{1,011}, \ & S_{1,1}
 ightarrow S_1 1, \; \; S_{1,10}
 ightarrow S_1 \overline{10}, \; \; S_{1,011}
 ightarrow S_1 \overline{011}, \ & \overline{10}
 ightarrow 10, \; \; \overline{11}
 ightarrow 11, \; \; \overline{011}
 ightarrow 0\overline{11} \; \} \end{aligned}$
- $egin{aligned} ullet G_2' = \ & \{ \; S_2
 ightarrow a_1 \overline{101} \; | \; a_2 \overline{00} \; | \; a_3 \overline{11} \; | \; a_1 S_{2,101} \; | \; a_2 S_{2,00} \; | \; a_3 S_{2,11}, \ & S_{2,101}
 ightarrow S_1 \overline{101}, \; \; S_{2,00}
 ightarrow S_1 \overline{00}, \; \; S_{2,11}
 ightarrow S_1 \overline{11}, \ & \overline{00}
 ightarrow 00, \; \; \overline{11}
 ightarrow 11, \; \; \overline{01}
 ightarrow 01, \; \; \overline{101}
 ightarrow 1\overline{01} \; \} \end{aligned}$
- ullet "Reverse" all productions $\Rightarrow \mathfrak{R}_{G_1',G_2'}$
- All terminal and non-terminal symbols are roles

$\mathcal{ALC}_{\mathcal{RA}} - \mathcal{ALC}$ with Role Axioms

Slide 16

Example Reduction (3)

Claim:

$$\exists \{0, 1, a_1, a_2, a_3\}. \neg (C \sqcap D) \sqcap \ \ \, \forall *. (\exists \{0, 1, a_1, a_2, a_3\}. \neg (C \sqcap D)) \sqcap \ \ \, \forall S_1. C \sqcap \forall S_2. D$$

w.r.t.

$$\mathfrak{R}_{\mathcal{C}(G_1',G_2')}$$

is satisfiable

iff

the PCP has no solution