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Abstract

We summarize the results we obtained on the extensions of ALC with
composition-based role inclusion axioms of the form SoT E RiL---UR,.
A set of these role axioms is called a role box. The original motivation for
this work was to develop a description logic suitable for qualitative spa-
tial reasoning problems. We quickly define and discuss the DLs ALCx 4,
ALCR g0, ALCRAsg and AﬁCNRASg. All but ALCrAsg are shown to
be undecidable, and ALCr 4s¢ is of limited utility, even though it is still
as expressive as ALCr+. ALCr Asg has shown to be EXPTIME-complete,
due to associativity of role boxes, which is an important requirement.

1 Introduction and Motivation

At DL 2000, we presented the DL ALCx 4, extending ALC with a set of com-
position based role inclusion axioms of the form SoT C R; U ---U R,([10]).
Such a set was called a “role box”, and additionally, global role disjointness was
required. We then examined the satisfiability problem of ALC concept terms
w.r.t. a set of the proposed role axioms and conjectured (not proved) to have
found a decision procedure for ALCx 4 in forms of a tableau calculus. However,
the presented calculus was incomplete since it lacked an appropriate blocking
condition, but we were optimistic enough to claim that such a blocking condition
could be found. In the meantime we have found that ALCxr 4 is undecidable.
This paper summarizes the results we found so far.

The motivation for our work can be sketched as follows: In the field of
qualitative spatial reasoning, the so-called RCC-family of spatial reasoning cal-
culi is well-known ([6]). RCC descriptions of spatial scenes (arrangements of
spatial objects in the world) focus on topological properties and relationships
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Figure 1: RCC8 Relationships, f.l.t.r.. Equal, Disconnected, Externally Connected,

Partial Overlap, Tangential Proper Part, Non-Tangential Proper Part. To be read as
EQ(A, B), etc. TPP and NTPP have inverses: TPPI and NTPPI.

between spatial objects. For example, an object a can be externally connected
to another object b (“EC(a,b)”), or be a non-tangential proper part of another
object (“NTPP(a,b)”), with the intended meaning that object a is inside of
object b, but does not touch its border from the inside. In the case of RCC8,
we are equipped with 8 base relations that describe purely topological aspects
of the scene (see Fig. 1). To describe more general, vague, incomplete or even
missing information, disjunctions of base relations are used, called non-base rela-
tions. The set of base relations does usually (e.g. in the case of RCC8 or RCC5)
have the so-called JEPD-property, which means that these relations are jointly
exhaustive and pairwise disjoint: between every two spatial objects ezxactly one
of the RCC8 relations holds (a missing relation therefore corresponds to the
disjunction of all base relations).

Given that we do not have a spatial depiction of a scene from which we
can “read off” the relationships, but only a purely symbolic relational descrip-
tion of that scene (e.g. like {NTPP(a,b), NTPP(b,c)}), we want at least to be
able to recognize inconsistent descriptions and, in the case of missing or incom-
plete information, want to be able to deduce implied relationships. For example,
{NTPP(a,b), NTPP(b,c), EC(a,c)} should be inconsistent, and { NT PP(a,b),
NTPP(b,c)} = {NTPP(a,c)} should be deduced. In the QSR community,
a central line of research is concerned with constraint propagation techniques
to achieve this. The heart of constraint propagation is the so-called com-
position table which is used to solve the following basic inference problem:
given three objects a,b and ¢ and the relations R(a,b), S(b,c) between them,
what can be deduced about the possible relationships between a and c¢? For
example, in the case of RCCS8, the composition table contains the relation
{DC,EC, PO, TPP, TPPI} as the entry for EC o EC (a disjunction or non-
base relation), and { NTPP} as the entry for NTPP o NTPP.

Considering FOPL as a representation language, it is obvious that compo-
sition table-based reasoning can be captured with FOPL formulas of the form
Ve,y,z @ (S(z,y) ANT(y,2) = Ri(z,2) V ---V Ry(z,2)) (“composition table
entry”) and Vz,y : Ri(z,y) @ Ra(x,y) ® ... ® R,(z,y) (“JEPD” property, if
R; ... Ry is the set of all base relations), Vz,y : R(z,y) & R™'(y, z) (inverse re-
lation), etc. It is well known that 2 variables are sufficient if one translates ALC
concept descriptions into FOPL. Decidability of ALC follows immediately then,



EC(b,c), EC(a,c)

Figure 2: Illustration of an “intended spatial model” of special_figure

since the two-variable fragment of FOPL is decidable. However, as the above
translation shows, it is likely that we are leaving the two-variable fragment of
FOPL if composition table based reasoning capabilities are added.

Considering this in a DL framework, we are using ALC as the starting point
of our investigation and consider the concept satisfiability problem w.r.t. a set of
role axioms of the form SoT C R;U---U R, enforcing SZToT? C RfU---URZ
on the models Z. The relationships of, for example, RCC8, correspond to roles
of ALC now. Considering the TBox

circle C figure
figure_touching_a_figure = figuredEC.figure
special _figure = figure N
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we want to deduce that figure_touching_a_figure subsumes special_figure
(see Fig. 2), or equivalently, that figure MVYPO.~figure MVYNTPPI.—figuren
V' TPPI.—circle M ATPPI.(figure M IEC .circle) M —(figure M IEC.figure) is
unsatisfiable w.r.t. a role box R corresponding to the RCC8 composition ta-
ble, and this is indeed the case, since the role box would contain the axiom
TPPIo ECC ECUPOUTPPIUNTPPI € R.

In the following we will define the considered DLs and summarize the results
and the main ideas behind the proofs. At least one of the undecidability results
is not new (undecidability of ALCx 4¢), since the undecidability is, in principle,
already known in the modal logics community and has been “rediscovered” by
the author (undecidability of context-free inclusion modal logics, see also [1],
[3]). To the best of our knowledge, the other results can be called “new”.



2 Summary of Obtained Results

We are considering ALC concept satisfiability w.r.t. role boxes; e.g. if C' is an
ALC concept and R is a role box, we ask whether there is a model Z of (C, R).
Let N be the set of concept names, and Nz be the set of role names:

Definition 1 (Role Axioms, Role Box, Admissible Role Box) If

S, T,Ry,...,R, € Nz, then the expression SoT C Ry U---UR,, n > 1,is
called a role aziom. If ra = SoT C Ry L ---U R, then pre(ra) =gy (S,T)
and con(ra) =ges {Ri,...,Rn}. If n =1, then ra is called a deterministic role
axiom. In this case we also write T' = con(ra) instead of T' € con(ra). A finite
set R of role axioms is called a role box. Let roles(ra) =4 {S,T, Ry, ..., R,},
and roles(R) =ges U, qeo roles(ra). A role box R is called deterministic, iff it
contains only deterministic role axioms. A role box fR is called functional, iff
Vrai,ras € R : pre(ra;) = pre(ras) = ra; = ras. We can then use the func-
tion ra(S,T) = ra to refer to the unique role axiom ra with pre(ra) = (S,T)
and define con(S,T) =45 con(ra(S,T)). A role box R is called complete, iff
VR,S € roles(R) : Ira € R : pre(ra) = (R,S). A role box R is called ad-
missible iff it is deterministic, functional, complete, and associative: VR, S, T :
con(con(R, S),T) = con(R,con(S,T)). The role box R is called admissible for
the concept C' iff R is admissible and additionally, roles(C') C roles(fR) (roles(C)
returns the set of roles used within the concept term C').

According to the classes of allowed role boxes, we define ALCr 4, ALCr 40 and
ALCr asg as follows:

e In ALCk 40 we allow all role boxes.

e In ALCr 4 we also allow all role boxes, but we require that all roles must be
interpreted as disjoint, see below. Of course, certain classes of role boxes
can be singled out beforehand (we did this in previous work, but not here
for the sake of brevity).

e In ALCRr asg we allow only role boxes that are admissible (see above) w.r.t.
the considered concept C'. Like in ALCx 4, we require that all roles must be
interpreted as disjoint. An admissible role box can be seen as defining the
operation table of a Semi-Group (therefore the suffix SG). For example,
if we consider the operation table of “+” modulo 4 on the natural numbers

[P

+]/0 1 2 3 and interpret “4” as “o”, and assign for
0|0 1 2 3 each number 7 a unique role name R;, we
1112 30 get an admissible role box. For exam-
212 3 01 ple, (3R;.3R,.C)NVR3.—C is unsatisfiable
313 01 2 w.r.t. this role box.



Of course, there are (C,R) which are satisfiable in ALCr 4o, but unsatisfiable in
ALCrA. ALCr 4o and ALCr 4 are different languages, since role disjointness is
not enforceable in ALCx 4o (disjointness of roles is not “modally definable”). All
three DLs are powerful enough to allow for the internalization of GCIs and can
deal with general TBoxes. Considering ALCxr 4sg, it becomes clear that there
is always a model in which all roles are interpreted as disjoint, and therefore, it
doesn’t really matter that the roles should be interpreted as disjoint (the same
holds for plain ALC, since ALC has the Tree Model Property). However, the
models are different. The semantics is specified in the usual way:

Definition 2 (Interpretation) An interpretation T =45 (A*,-T) consists of a
non-empty set AZ, called the domain of Z, and an interpretation function -% that
maps every concept name to a subset of A, and every role name to a subset
of AT x AZ. The interpretation function -Z is extended inductively for complex
concepts by using the usual ALC—equations (e.g. (C 11 D)t =4 C* N D%, etc.).
In case of ALCr4 and ALCrasg, we additionally require that for all roles
R,S €Nz, R#S: REnN ST = (. All roles are interpreted as disjoint then.

As usually, we say that an interpretation Z is a model of a concept C, written
T E C, iff CT # (). An interpretation Z is a model of a role axiom SoT C
RiU---UR,, written Z=SoTC R U---UR,, iff SToT? C RFU---URL
An interpretation Z is a model of a role box R, written Z = R, iff for all role
axioms ra € R: 7 = ra.

Theorem 1 ALCr 40, ALCrA, and ALCNR 4sg are undecidable (ALCNR s
is ALCrasg plus unqualified number restrictions).

Of course, we cannot give the full proofs here, but we can try to convince the
reader; please refer to [9], [7], [8]. None of the considered logics has the finite
model property.

The ALCr o-proof ([9]) is given by a reduction from the (undecidable)
non-empty intersection problem of a special class of context-free grammars which
are similar to context-free grammars in Chomsky Normal Form. The basic
idea is to mimic the “top down”-derivation of words as done by the grammars
with the role axioms in a “bottom up”-style. Let G; = (V1,%,P1,S1) and
Gs = (V2, X2, P2, Ss) be two context-free grammars such that P; C V; x ((V; U
%) x (V;UE;) (as usual, V are the non-terminal symbols, ¥ is the set of terminal
symbols, P are the production rules, and S is the starting symbol). W.l.o.g.
we assume V; NV, = (. It is undecidable whether £(G;) N L(G2) =0 (L£(G:)
is the language generated by G;). For i € {1,2}, we define the role boxes
mi:def{BOCEA‘ A—)BCEP,}

Let ¥ =45 X1 U Xy and R =45 Ry U Ry, Let Ry ¢ roles(R), and let
R =gef RU{RoSC Ry| R,S € ({R2} Uroles(R)), ~Ira € R : pre(ra) = (R, S) }
be the completion of R. Then, (E,R') is satisfiable iff £L(G;) N L(Gs) = 0, where



E =4 XN =(CND)NY MVS:.CMVS,.D, with
X =gef MNaexda. T and
Y =des MReroles(r) VR-(X M =(C' 1 D)).

Please note that the role box performs a “bottom up parsing” of the words
w € X7, whose presence is enforced by the interplay of X and Y, and that S; and
S, are the starting symbols of the two grammars. Inspecting R’ and E it becomes
clear that already ALUR 40 with deterministic role boxes is undecidable.

The ALCx 4 proof ([8]) is more involved since the disjointness requirement
has to be fulfilled; the “trick” to propagate C' 1 D with V.S;.C 1VS,.D to yield
the unsatisfiability does not work, since already S¥ N S3 = () must hold. The
exploited grammars therefore have to ensure that each word w of role names
w € X1 can be derived by at most one non-terminal of one of the grammars.
The proof works by transforming a Post’s Correspondence Problem into two
special grammars with the required properties which are again transformed into
a role box that does not violate the disjointness requirement:

Definition 3 (PCP) A Post’s Correspondence Problem (PCP) K over an al-
phabet A is given by a finite set of pairs K = {(z1,v1), (%2, %2), ... (Tk, Yx)},
where z;,y; are (non-empty!) words over a given alphabet A: z;,y; € A*T. A
solution to a PCP is sequence of indices (i,%2,...,%,) € {1...k} with n > 1
such that z;, @, ... i, = Yi, Yis - - - Yinn-

For example, the PCP K = {(1,101), (10, 00), (011, 11)} has the solution (1,3,2,3),

since T1X3Tox3 = 011011 = 101110011 =101 m = Y1Y3Y2Ys- In the
following it suffices to consider (sufficiently large) PCPs with A = {0, 1}.

Definition 4 (Auxiliary Definitions) Let z € A", x = a1...a,. We define
|| =ges n, first(x) =gef a1, and rest(x) =gef a2...an. Let postfixes(z) =gs
{w| e A :z=vw,w#e} (eg. postfixes(1011) = {1011,011,11,1}).

Given a PCP K we construct the grammars G; g and Gy g which have the follow-
ing important properties: firstly, we have £(G; x) N L(G2 k) = 0, since words in
gl,K have the form ’LG# e #212#211 #.’L“il #.’)312# R #.’L‘in#, and words in gz’K
have the form #:i; # ... # 0, #i, #Yi #Yi, 7 - - - #Yi,- Additionally, the PCP
K has the solution (iy,...,4,) iff #i;, # ... #i,Fi, Heo Fe,# .. Ha, # €
{#3L(G, k) N (L(Gyx){#}).  Consequently, K has no solution iff
({#3L(G1 k) N (L(Ggx){#}) = 0. Emptiness for this language is therefore un-
decidable. Thirdly, whenever a word w is derivable by some non-terminal A € V;
such that A4 = w, then there is no other non-terminal B € V; with A # B such
that also B —» w, and this does even hold if we put the two set of production
rules together in one “union” grammar (w.l.o.g. we can assume V; NV, = ().
Let K be the PCP of size k, and let A" =gy AU {i1,...,4}. Now, G x and
G2,k are defined as follows:



o Gix=Vi,AU{#},P1,5)
{S1}U{[a#]| a € A'} U
{[w#]| = € {21,...,2} (note: z1,..., ) of the PCP K)

V1

w € postfixes(z) } U

(Bizhl = € for,.., o0}
{[a#] = a#| a€ A } U
{81 = [in#t] [m1#]| - | [in#] [me#]} U
{S1 = li##] [Srwa#] | - | |in#t] [S1zn#]} U
{|51:131#|—> S |.’E1#|, ... ,|Slxk#| — 5 M} U
{[z#] — [first(x)#] |rest(x)#|| n € 1...k,

x € postfixes(zy,), |z| > 2}

o g2,K = (V27~AI U {#}7P27 S2)

Vo

{

Sy} U{[#a]| ac A} U

{[#w]l vy € {v1,---, 9}, (note: yu,...,yx of the PCP K)

{

w € postfixes(y) } U

[Se#yl v e{vr,. -, u}}

{%\—)#(ﬂ ac A } U
{S2 — [#in] [Fya] | -~ | [#in] [Fua]} U
{82 — |#i1|[Sattyr]| -+ | [#ik|[Saftye]} U
{{Sa#tyr| = Sa [#u1 - - -, |SoFtyr| = S2 |[#ye|} U
{[#y] = |#irst(y)| [#rest(y)|| n € 1.. .k,

y € postfixes(yn), y| > 2}

Applied to the example PCP K we get

L gl,K = (Vl,{#,o,1,’i1,i2,i3},P1,Sl), with
V1 = { Sla|0#|a|1#a Z]_#|,|’l/2#|,|23#|,

104£], [0114 |, |11#],

Sy1#£],|S1104],[S1011#] }

P = {’@‘ - O#aw - 1#”@' — il#vm‘ — i2#’m — 13#} U
S1 = |1 # 1#|, S — |22#| |10#|, S — |23#| |011#|} U
S1 — i1 # 511#|, S1— |Zz#| |S110#|, S1— |i3#||51011#|} U

{
{

{
{

511#| -5 1#|,|5110#| — Sl|10#|,|51011#| — Sl|011#|} U

104 — [14| [0#],[011#] — |04 [11#],| 11| — [1#]|1#]}, and

o g2,K = (V2,{#,O,1,i1,i2,i3},P2,S2) with
VQ = { SQ’|#O|a|#1a #Zl|,|#22|,|#23|7

P

#10],[#011),[#11],

Sy 101, [52700], [ So#11] }

{w_) #Oa’ﬁ_) #1’%_) #ila%‘_) #i2a%‘_> #33} U

{
{

Sz — #il #101|, Sz — |#22| |#00|, Sz — |#23| |#11

U

So — #il S2#101|, Sy — |#12| |SQ#OO|, Sy — |#Z3|

52#11|} @]

52#101| — S2|#101|, |52#00| — Sz|#00|, |52#11| —

{
{

#101| — |#1][#01], |#01] — [#0] [#1],

|#00| — [#0][#0], |#11] — [#1] |[#1]}.

Sz\ﬂ/} U



One can easily verify that is#is#is#ii# 1#04 1# 1# 14 0#0# 14 1# € L(G x)
and #HizFioFris i H#1HOHLIHIH#IH0HOH#LIH]L € ﬁ(gw), as required, since
(1,3,2,3) is a solution of K.

Continuing the proof sketch, define the role box fRg as

%ﬁ:def{BOCEA‘ A—>BCE7)1U7)2},
and define its completion R} using a new role R, ¢ roles(Ry) as
mf@ =def Rg U {R oSLC UTe(roIes(mﬁ)UR?)T| R,S € ({R?} U roles(iﬁﬁ)),
—dra € Rg : pre(ra) = (R, S) }.

We then have the following:

(E,Ry) is satisfiable (in ALCr4) iff ({#}L(G, k) N (L(Gy ){F#}) =0,
and the concept F is defined as

E =4 XN -(CND)NY N (V#.YS,.C) M (VS,.V#.D), with
X =def I’laEgEla.T and
Y =4es MReroles(ory) VR.(X T1(C 11 D)).

The ALCNgasg-proof ([7]) is by reduction from the well-known undecid-
able Domino Problem: A domino system DOM is a triple (D, H,V), where
D = {dy,...,d,} is a non-empty set of so-called domino types, V C D x D is the
vertical matching relation, and ‘H C D x D is the horizontal matching relation.
A solution of a domino system is a function f : IN x IN — D (in the following
we assume that 0 € IN) such that the matching relationships of the domino
types are respected, i.e. for all (¢,7) € IN x IN: (f(¢,7),f(¢ +1,7)) € H and
(f(4,7),f(i,7+1)) € V. Let R be the role box corresponding to the following
table:

o |Rx Ry Ry Ry
Rx |Ry Rz Ry Ry
Ry |Rz Ruv Ruv Ru
Rz |Ru Ry Ry Ry
Ry |Ruy Ruv Ruv Ru

That iS, R =def {RX e} RX E RUaRX O Ry E Rz, .. } Let DOM = (D,H,V)
and further assume, that D C N;. Now, define the concept C as follows:

c =def XM (VR)(X) M (VRyX) I (VRzX) I (VRU.X), where
X =gef MN(>Rx 1) (>Ry 1)1
(S Rx 1) M (S Ry 1) I (S Ry 1), and
M =ge; Up,en(Di N (Mp,ep,p;#0;7Dj)) T
l_lD.,'ED(-Di = ( VRX-(I—l(D,-,Dj)EHDj) M
VRy .(U(p;,p;)evDj)))

Then, (C,fR) is satisfiable iff the domino system DOM = (D,H,V) has a
solution. Please note that R is an admissible role box for C.



Theorem 2 ALCx4sg is decidable and EXPTIME complete.

Again, the details of the proof can be found in [7]. Surprisingly, satisfiability
of ALCxr asg-concepts w.r.t. admissible role boxes can be reduced to concept
satisfiability w.r.t. general TBoxes in ALC. Does it make sense to define a
restricted logic like ALCrasg and even define a tableau calculus ([7]) for it?
First of all, we did not define ALCr4s¢ to get a DL of utmost utility, but solely
to investigate where the borderline between decidability and undecidability of
the considered DLs lies. Secondly, it should be noted that ALCr4sg is still at
least as expressive as ALCr+. The associativity of role boxes is a strong, but
in our opinion important requirement. For example, the composition tables of
RCC8 and RCC5 are also associative, but in a more general sense than required
here, since ALCrasg does not admit role axioms with disjunctions. However,
if one introduces for each (disjunctive) non-base relation a new role name (e.g.
EC — DC for the disjunction of EC and DC) and rewrites the composition
tables in this way (this yields an exponential blow-up in the size of the table),
one gets indeed tables that are admissible for ALCr 4sg . However, the resulting
logic is of course incomplete now, since the connection between the base relations
and their disjunctive non-base relations are missing now (e.g. it is by no way
granted that (EC — DC)t = ECTUDC?Z, etc.), and the disjointness requirement
becomes meaningless then, too.

3 Discussion & Future Work

It should be noted that the original idea to quantify over “defined roles” corre-
sponding to spatial relationships is already present in the work of Cohn in [2],
were he suggests to use a pair of modal operators for each RCC8 relationship,
e.g. Orc, Crc, but this idea has not been carried further. ALCr 4 (with inverse
roles etc.) has also been considered in [5] as an “alternative” to ALCRP(D)
([4]) for qualitative spatial reasoning problems, but no proofs were given. One
of the motivations to consider ALCr 4 was to define a logic that would overcome
the deficiencies of the logic ALCRP(S,) (a special ALCRP(D) instantiation
for qualitative spatial reasoning problems, see [4]) which somehow suffers from
very strong syntax-restrictions that are necessary to ensure its decidability.
What we have shown so far is that undecidability in case of ALCr 4 arises in
the genmeral case. It is still open whether special instantiations of ALCx 4 with
the composition tables of RCC8 or RCC5 might be decidable (let’s call these
DLs ALCgrccs and ALCgecs). There are indeed some good reasons to believe
this, since the composition tables obey strong laws. For example, the expanded
RCC composition tables are admissible. We admit that a DL, in order to be
really useful for QSR applications, must also have inverse roles. Since TPP is
the inverse of TPPI, we should require that TPPZ = (TPPI*)™! in all models
Z, but this is (again) future work. It doesn’t make sense to work on ALCZgccs



unless we know if ALCrecs is decidable. Note that disjoint roles are used to
enforce the pairwise exclusiveness of base relations. Another open point is how
truly-spatial models can be constructed (e.g. where AZ is a set of internally
connected two-dimensional regions).

References

[1]

2]

[10]

M. Baldoni. Normal Multimodal Logics: Automated Deduction and Logic Pro-
grammang. PhD thesis, Universita degli Studi di Torino, 1998.

A. G. Cohn. Modal and Non Modal Qualitative Spatial Logics. In F.D. Anger,
H.M. Guesgen, and J. van Benthem, editors, Proceedings of the Workshop on
Spatial and Temporal Reasoning, IJCAI 1993.

S. Demri. The Complexity of Regularity in Grammar Logics and Related Modal
Logics. Submitted, October 2000.

V. Haarslev, C. Lutz, and R. Moller. A description logic with concrete do-
mains and a role-forming predicate operator. Journal of Logic and Computation,

9(3):351-384, June 1999.

C. Lutz. Representation of Topological Information in Description Logics (in Ger-
man). Master’s thesis, University of Hamburg, Computer Science Department,
February 1998.

D. A. Randell, Z. Cui, and A. G. Cohn. A Spatial Logic based on Regions
and Connections. In B. Nebel, C. Rich, and W. Swartout, editors, Principles of
Knowledge Representation and Reasoning, pages 165-176, 1992.

M. Wessel. Decidable and undecidable extensions of ALC with composition-
based role inclusion axioms. Technical Report FBI-HH-M-301/01, Univer-
sity of Hamburg, Computer Science Department, December 2000. Available at
http://kogs—www.informatik.uni—hamburg.de/'mwessel/reportS.{ps.gz | pdf}.

M. Wessel. Undecidabity of ALCr 4. Technical Report FBI-HH-M-302/01, Uni-
versity of Hamburg, Computer Science Department, March 2001. Available at
http://kogs-www.informatik.uni-hamburg.de/ mwessel/report6.{ps.gz | pdf}.

M. Wessel. Obstacles on the way to spatial reasoning with description logics
— undecidability of ALCk 40. Technical Report FBI-HH-M-297/00, Univer-
sity of Hamburg, Computer Science Department, October 2000. Available at
http://kogs—www.informatik.uni—hamburg.de/'mwessel/report4.{ps.gz | pdf}.

M. Wessel, V. Haarslev, and R. Méller. ALCr 4 — ALC with Role Axioms. In
F. Baader and U. Sattler, editors, Proceedings of the International Workshop
in Description Logics 2000 (DL2000), number 33 in CEUR-WS, pages 21-30,
Aachen, Germany, August 2000. RWTH Aachen. Proceedings online available
frOIn.http://SunSITE.Informatik.RWTH—Aachen.DE/Publications/CEUR—WS/Vol—33/.



