On Spatial Reasoning with Description Logics

- Motivation
- The family of $\mathcal{A L C} \mathcal{I}_{\mathcal{R C C}}$ logics
- Work in progress
- What we know
- What we don't know
- Future Work
- We want a DL for "qualitative composition-table based spatial reasoning" in the style of $\operatorname{ALC} \mathcal{C P}\left(\mathcal{S}_{2}\right)$, but without syntax-restrictions (if possible)
- With roles corresponding to RCC relationships
- Cohn '93: Multi-modal spatial logic with " $\square_{R}, \diamond_{R}$ " for each RCC-relationship R
- Purely relational semantics
(no truly spatial interpretations yet)
- Related to Relation Algebras, but weaker semantics (e.g., our models must not necessarily be representations of finite relation algebras)

The $\mathcal{A L C I}_{\mathcal{R C C}}$-family

- We are considering this problem in a DL-setting
- In contrast to previous work: inverse roles
- $\mathcal{A L C I}$ with disjoint roles and global role axioms of the form $S \circ T \sqsubseteq R_{1} \sqcup \cdots \sqcup R_{n}$
- Semantics:

$$
\begin{gathered}
\mathcal{I} \models S \circ T \sqsubseteq R_{1} \sqcup \cdots \sqcup R_{n} \text { iff } \\
S^{\mathcal{I}} \circ T^{\mathcal{I}} \subseteq R_{1}^{\mathcal{I}} \cup \cdots \cup R_{n}^{\mathcal{I}}
\end{gathered}
$$

- With role boxes corresponding to RCC1, RCC2, RCC3, RCC5, RCC8: " $\mathcal{A L C} \mathcal{I}_{\mathcal{R C c}}$-family", $\mathcal{A L C I}_{\mathcal{R C C}_{1}}, \mathcal{A L C I}_{\mathcal{R C C}_{2}}, \ldots, \mathcal{A L C I}_{\mathcal{R C C}}$
- With arbitrary role boxes: undecidable (representability of Relation Algebras is undecidable)

Composition Table Based Reasoning: RCC8 Slide 4

$a \quad b \quad c$
$D C(a, c)$

$E C(a, c)$

$\operatorname{PO}(a, c) \operatorname{TPP}(a, c)$

$\operatorname{TPPI}(a, c)$

Given $\operatorname{EC}(a, b), E C(b, c)$, what do we know about the relationship between a and c ? Lookup $E C \circ E C$ in the RCC8 composition-table:

$$
\begin{aligned}
& \forall x, y, z: E C(x, y) \wedge E C(y, z) \Rightarrow \\
& (D C(x, z) \vee E C(x, z) \vee P O(x, z) \vee \\
& \operatorname{TPP}(x, z) \vee \operatorname{TPPI}(x, z))
\end{aligned}
$$

$E C \circ E C \sqsubseteq D C \sqcup E C \sqcup P O \sqcup T P P \sqcup T P P I$

Qualitative Spatial Reasoning Example

$$
\begin{array}{lrl}
\text { circle } & \doteq & \text { figure } \\
\text { figure_touching_a_figure } & \doteq & \text { figure } \sqcap \exists \text { EC.figure } \\
\text { special_figure } & \doteq & \text { figure } \sqcap \\
& \forall P O . \neg \text { figure } \sqcap \\
& \forall N T P P I . \neg \text { figure } \sqcap \\
& \forall T P P I . \neg \text { circle } \sqcap \\
& \exists T P P I .(\text { figure } \sqcap \exists E C . \text { circle })
\end{array}
$$

```
special_figure \sqsubseteq figure_touching_a_figure iff
```

figure $\sqcap \forall P O . \neg$ figure $\sqcap \forall N T P P I . \neg$ figure $\sqcap \forall T P P I . \neg$ circle \sqcap
$\exists T P P I .($ figure $\sqcap \exists E C . c i r c l e) ~ \sqcap \neg(f i g u r e ~ \sqcap \exists E C . f i g u r e)$ is unsatisfiable w.r.t.
$\mathfrak{R}=\{\ldots, T P P I \circ E C \sqsubseteq E C \sqcup P O \sqcup T P P I \sqcup N T P P I, \ldots\}$
\boldsymbol{D} $\left(\partial^{\prime} \mathrm{D}\right.$ IddILN ${ }^{\prime}\left(\partial^{\prime} q\right)$ DG

$\mathcal{A L C I}_{\mathcal{R C C} 1}$

- "RCC1": Only one spatial role $S R$, "spatially related"
- Composition table: $\{S R \circ S R \rightarrow S R\}$
- $S R$ is an equivalence relation
- Equivalent to modal logic "S5"
- "S5" reduction principles:
$\diamond p \equiv \square \diamond p, \square p \equiv \diamond \square p, \diamond p \equiv \diamond \diamond p, \square p \equiv \square \square p$
\Rightarrow nested occurrences of modalities can be flattened
- NP-complete satisfiability problem

$\mathcal{A L C}^{\mathcal{R C C} 2}$

Slide 8

- "RCC2": reflexive, symmetric role $O=$ "overlap", irreflexive and symmetric role $D R=$ "discrete from"
- Models are fairly trivial: each complete random graph with $\operatorname{Id}\left(\Delta^{\mathcal{I}}\right) \subseteq O^{\mathcal{I}}$ is a model of the role box
- Instead of reduction principles, we have axioms like $\exists O . C \Rightarrow \forall O .(C \sqcup \exists\{O, D R\} . C) \sqcap \forall D R . \exists\{O, D R\} . C)$
- Complexity?

$\mathcal{A L C}_{\mathcal{R C C} 3} \ldots \mathcal{A L C I}_{\mathcal{R C C} 8}$: Role Constraints \quad Slide 9

- $\geq \mathcal{A L C} \mathcal{I}_{\mathcal{R C C} 3}:$ There is a special role $E Q$
- Semantics:
- "Weak": $\operatorname{Id}\left(\Delta^{\mathcal{I}}\right) \subseteq E Q^{\mathcal{I}} \Rightarrow$ "Equality" ("EQ" is congruence relation for roles)
- "Strong": $\operatorname{Id}\left(\Delta^{\mathcal{I}}\right)=E Q^{\mathcal{I}} \Rightarrow$ "Identity" (as in Relation Algebras: "EQ" is congruence relation for roles and concepts)
- Further constraints, according to the RCC table
- Reflexiveness, e.g. "Overlap"
- Symmetry, e.g. "Externally Connected"
- Anti-symmetry and irreflexiveness, e.g. "Proper Part"

$\mathcal{A L C I}_{\mathcal{R C C} 3}$ is Decidable

\circ	$D R(a, b)$	$O N E(a, b)$	$E Q(a, b)$
$D R(b, c)$	$*$	$\{D R, O N E\}$	$D R$
$O N E(b, c)$	$\{D R, O N E\}$	$*$	$O N E$
$E Q(b, c)$	$D R$	$O N E$	$E Q$

With the strong EQ semantics, an easy translation into $\mathcal{F}_{2}(=)$ can be given: simply replace "EQ" in C with " $=$ "

$$
\begin{aligned}
\phi_{x}\left(C_{E Q \leftarrow=}\right) \wedge & \forall x, y: \operatorname{DR}(x, y) \oplus \operatorname{ONE}(x, y) \oplus x=y \wedge \\
& \forall x, y: \operatorname{DR}(x, y) \Leftrightarrow \operatorname{DR}(y, x) \wedge \\
& \forall x, y: \operatorname{ONE}(x, y) \Leftrightarrow \operatorname{ONE}(y, x)
\end{aligned}
$$

$\mathcal{A L C I}_{\mathcal{R C C}_{3}}$ is Decidable (2)

- With the weak $E Q$-semantics, things are not so obvious
- Not every complete, $\{D R, O N E, E Q\}$-edge-colored graph is a model for the role box axioms
- We have to verify that

$$
\begin{aligned}
\forall x, y, z: E Q(x, z) \Leftrightarrow & D R(x, y) \wedge D R(y, z) \oplus \\
& O N E(x, y) \wedge O N E(y, z) \oplus \\
& E Q(x, y) \wedge E Q(y, z)
\end{aligned}
$$

holds, using only two variables

- Idea: use " $=$ " to enforce network consistency, but take care of the fact that "="-connected objects may have different propositional descriptions

$\mathcal{A L C I}_{\mathcal{R C C}_{3}}$ is Decidable (3)

- Nodes in $E Q$-clique have equivalent modal point of view
- May have different propositional descriptions
- Left structure needs three, right structure only two variables for description

$\mathcal{A L C I}_{\mathcal{R C C} 5}$ \& $\mathcal{A L C}^{\mathcal{R C C} 8}$
 Slide 13

- No finite model property

- $\mathcal{A L C I}_{\mathcal{R C C}_{5}}: P \mathbf{P P}, \mathbf{P P I}$
- $\mathcal{A L C I}_{\text {RCC } 8}$: $T P P, T P P I, N T P P, N T P P I$
- $\mathcal{A L C I}_{\mathcal{R C C} 8}$ somehow allows the distinction of a role and its transitive orbit (\rightarrow "PDL binary counter" concept possible)
- This seems to be impossible in $\mathcal{A L C I}_{\mathcal{R C C} 5}$

The Concept even_odd_chain

```
\(e v e n \_o d d \_c h a i n=d e f\)
    even \(\sqcap\)
    ( \(\exists\) TPPI. \(\exists\) TPPI.丁) П
    \((\) even \(\Rightarrow \forall\) TPPI.odd) \(\sqcap\)
    (odd \(\Rightarrow \forall\) TPPI.even) \(\sqcap\)
    ( \(\forall\) NTPPI.( (even \(\Rightarrow \forall\) TPPI.odd) \(\sqcap\)
        \((\) odd \(\Rightarrow \forall\) TPPI.even \())\) ) \(\sqcap\)
    ( \(\forall\) TPPI. \((\) (even \(\Rightarrow \forall\) TPPI.odd \() \sqcap\)
        \((\) odd \(\Rightarrow \forall\) TPPI.even \())\) ) \(\sqcap\)
    ( \(\forall N T P P I . \exists T P P I . \top)\)
\(\left(\left(T P P I^{\mathcal{I}}\right)^{+}-\boldsymbol{T P P} I^{\mathcal{I}}\right) \subseteq N T P P I^{\mathcal{I}}\)
```


Is it Possible to Represent Grids?

Michael Wessel, April 2002

Is it Possible to Represent Grids? (2)

Slide 16

Michael Wessel, April 2002

Is it Possible to Represent Grids? (3)

Even though infinite grid-like models exists, we found no way to enforce the coincidence of the
$\boldsymbol{x} \circ \boldsymbol{y}$ - and $\boldsymbol{y} \circ \boldsymbol{x}-$
successors.

Finite Model Reasoning with $\mathcal{A L C I}_{\mathcal{R C C}_{5}}$?

- $\mathcal{A L C} \mathcal{I}_{\text {RCC } 5}$ contains the "proper part" role $P P$
- Question:

Suppose we disallow the use of $P P$ in concepts then, do we have the finite model property back?

- Answer: No! Counter example:

```
\existsDR.丁 п
\forallR.( \existsPO.\existsDR.C \sqcap
    PO.\negC \sqcap
    DR.\negC)
```

\Rightarrow There does not seem to be a way to tell, syntactically, whether a concept admits a finite model

Future Work

- Check out results from "Algebraic Logic"
- Representability of Relation Algebras (RAs) is, generally, undecidable
* There can not be a (decidable) $\mathcal{A} \mathcal{L C} \mathcal{I}_{\mathcal{R A}}$ with arbitrary role boxes
- So is the equational theory of arbitrary RAs
- Decidable classes of (relation) algebras that are useful for spatial reasoning with DLs?
- Multi-dimensional modal logics
- Arrow-logic

