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Abstract

We discuss a family of DLs called ALCIRCC which are suitable for qualitative
spatial reasoning on various levels of granularity. In contrast to our previous
work where we investigated concept satisfiability in the basic description logic
ALC in combination with composition–based role inclusion axioms of the form
S ◦ T v R1 t · · · t Rn and role disjointness, we are now only considering the role
axioms that are derived from the so-called RCC composition tables. In order to
correctly capture the semantics of these relationships, inverse and disjoint roles
are needed. We discuss what we have found out so far. We make some remarks
on finite model reasoning, which is especially useful in database applications; e.g.
the deductive qualitative Geographic Information System (GIS) scenario we have
in mind.

1 Introduction and Motivation

At DL 2001, we presented an overview of various ALC-extensions with composition
based role inclusion axioms of the form S ◦ T v R1 t · · · t Rn, enforcing SI ◦ T I ⊆
RI

1 ∪ · · · ∪ RI
n on the models I (see [4]). A set of these role axioms was called a role

box, and the resulting logic was called ALCRA	 . In previous work we have shown
that concept satisfiability in ALCRA	 (and even in smaller sublanguages) becomes
undecidable if concept satisfiability w.r.t. arbitrary role boxes is considered. However,
certain classes of so-called “admissible” role boxes satisfying additional conditions
were shown to be decidable (e.g. the logic we called ALCRASG). One of the original
motivations for extending ALC in that way was to augment a description logic like
ALC with some kind of qualitative spatial reasoning capabilities (see also [2]). Since
role disjointness is an important requirement if one considers roles as spatially exclusive
base relationships, we also investigated the logic ALCRA, enforcing role disjointness
on all roles (R,S ∈ NR, R 6= S: RI ∩ SI = ∅). ALCRA turned out to be undecidable
as well (see [4]).

What is the relationship of these ALC extensions to qualitative spatial reasoning?
In the field, the so-called RCC-family of spatial reasoning calculi is well-known (see
[3]). A description of a concrete spatial scene with RCC-relationships can be seen as a
complete edge-colored graph — between any two spatial objects, exactly one so-called



base relation holds. This is called the JEPD-property (jointly exhaustive and pairwise
disjoint). In the case of RCC8, we can distinguish eight, and in the case of RCC5 only
five base relations – some qualitative distinctions are ignored, see Figure 1. It even
makes sense to define RCC3, RCC2, and RCC1, offering coarser and coarser spatial
description capabilities. We admit that the main purpose for us to consider them here
is to get a better understanding of the problems involved.

Given that we do not have complete definite knowledge concerning a scene (some
spatial relationships might be unknown or only vaguely known), we can combine
general logical inferences with spatial inferences in order to either infer more specific
spatial relationships, or to get more appropriate descriptions of the objects involved
in that scene (see also [2]). For example, if the relationship between object a and c

is not specified (in fact, this corresponds to the disjunction of all base relations) but
given that we know the relation between a and another object b (say, S) and also
between b and c (e.g. T ), then we can read off the possible base relations between a

and c from the entry in the so-called RCC composition table for S ◦T (see Figure 2a).
Each entry represents an inference pattern of the form ∀x, y, z : S(x, y) ∧ T (y, z) ⇒
(R1(x, z)∨ . . .∨Rn(x, z)), which is translated into a corresponding ALCRA role axiom
S ◦ T v R1 t · · · t Rn. Corresponding to the underlying composition table, we call
these special ALCRA specializations ALCRCC8 , ALCRCC5 , and so on. If we handle
these relations as roles in ALCRA, we can use universal quantification (concepts of
the form ∀R.D) to pose additional constraints on c. It is our conviction that the ability
to quantify over roles corresponding to spatial relationships is a key-ability and first-
order requirement for the qualitative spatial reasoning applications that we are trying
to realize.1 However, the class of concepts that might be used as qualifications within
universal quantifiers is subject to discussion. It is obvious that quantification involving
only pure propositional concepts is much easier to handle than full quantification.
It should be noted that there are various (space and time) logics that do not offer
universal quantification at all.

However, ALCRA— with arbitrary role boxes — is undecidable, and the qualitative
spatial reasoning specialization ALCRCC only make sense if also the appropriate inverse
relationships of the base relations are respected. It is of course important that the
inverse relationship must be respected, since some spatial inferences cannot be drawn
otherwise. For example, the concept (∃DR.(Cu∀DR.C))u∃PPI.¬C is unsatisfiable in
ALCIRCC5 , but satisfiable in ALCRCC5 . This is due to the fact that DR◦PPI → DR,
and therefore, the two ∃-successors are linked via DR in the case of ALCIRCC5 due to
the requirement that DRI = (DRI)−1 which is only respected in ALCIRCC5 , but not
in ALCRCC5 . Concerning ALCIRCC8 , the question whether it might be decidable or
not was already raised by Cohn in (slightly different form in) [1], where he suggests to
use a pair of modal operators 2R and 3R for each available spatial base relationship R

of RCC. Subsequent work with Bennett then focused on encoding of RCC relationships
and networks in modal and intuitionistic (propositional) logic. However, they did not
investigate quantification over RCC relationships.

1Currently, only the logic ALCRP(S
2
) offers this ability (see [2]). Unfortunately, ALCRP(S

2
)

somehow suffers from a severe restriction regarding the allowed quantifier patterns in order to achieve
decidability.
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Figure 1: RCC8 Relationships, f.l.t.r.: Equal, Disconnected, Externally Connected, Partial
Overlap, Tangential Proper Part, Non-Tangential Proper Part. To be read as EQ(A, B), etc.
TPP and NTPP have inverses: TPPI and NTPPI . In RCC5, the relationships DC and EC
are collapsed into DR; TPP and NTPP into PP , as well as TPPI and NTPPI into PPI . In
RCC3, {PP ,PPI ,PO} are collapsed into ONE (“Overlapping but not equal”), and ONE ,EQ
into O in the case of RCC2 (“Overlapping”). The coarsest version – RCC1 – has only one
relationship, called “Spatially Related”, SR.

In contrast to our previous work we are now considering concept satisfiability in the
ALCIRCC logics, and we investigate whether respecting the inverse relationships makes
the satisfiability problem in these logics easier (contrasted with the problems we had
showing decidability or undecidability of these logics without the corresponding inverse
relationships, e.g. the ALCRCC logics). But why should this be the case? Mainly due
to the fact that most roles of RCC are symmetric, and that the considered logics seem
to be relatives of various “S5”-like logics. In ALCIRCC5 , the only non-symmetric roles
are “proper part” (PP) and its inverse (PPI), in ALCIRCC8 we have “non-tangential
proper part” (NTPP) and ”tangential proper part” (TPP) and their corresponding
inverses (NTPPI and NTPP) - in fact, these are even asymmetric (and therefore
irreflexive). Due to the fact that the composition of two arbitrary roles is always
defined, models of ALCIRCC are in fact complete graphs with roles being interpreted
as undirected edges in this complete graph (with the exception of the asymmetric
roles). The nodes are labeled with propositional information, as in ALC. Each node
is linked to every other node in the model. The models might be called “S5”-like
models, due to the modal logic “S5’, which is the normal modal logic of transitive,
reflexive and symmetric frames (more specifically, of an equivalence relation).

2 Some Observations & Questions

More formally, the family of ALCIRCC logics is defined as follows:

Definition 1 (Syntax and Semantics of ALCIRCC) Each ALCI concept is a valid
ALCIRCC concept: every concept name is a concept, and if R is a role from NR, and
C and D are concepts, then also ¬C, C u D, C t D, ∃R.C and ∀R.C are concepts.
In the following, disjunctions of (base) relations are written in curly brackets. If
R = {S1, . . . , Sn} is a disjunction of (base) relations Si, we also write ∀{S1, . . . , Sn}.C
(∃{S1, . . . , Sn}.C) as a shorthand for ∀S1.Cu . . .u∀Sn.C (∃S1.Ct . . .t∃Sn.C). In the
case of ALCIRCC8 the set of role names NR is NR = {DC ,EC ,PO ,EQ ,TPP ,TPPI ,

NTPP ,NTPPI}; in the case of ALCIRCC5 we have NR = {DR,PO ,EQ ,PP ,PPI},
where PP =def {TPP ,NTPP} and PPI =def {TPPI ,NTPPI }; NR = {DR,ONE ,

EQ} in the case of ALCIRCC3 , where ONE =def {PP ,PPI ,PO} (“ONE” for “over-
lapping but not equal”); NR = {DR,O} with O =def {ONE ,EQ} in the case of
ALCIRCC2 , and finally, ALCIRCC1 with NR = {SR}, where SR =def {O ,DR} (“SR”
for “spatially related”).



We use the function inv to refer to the corresponding converse role (e.g. PPI =
inv(PP), DR = inv(DR)). Please note that inv is total on NR.

A model of a concept is an interpretation I =def (∆I , ·I) that is a usual ALC model
for that concept, i.e. maps concept names to subsets of ∆I , roles to subsets of ∆I×∆I ,
but additionally satisfies the disjointness, converse and composition requirements as
specified by the corresponding RCC composition table. That is, for all roles R,S ∈
NR, R 6= S we have RI ∩ SI = ∅, and if S ◦ T v R1 t · · · t Rn is an entry in the
RCC composition table, then SI ◦ T I ⊆ RI

1 ∪ · · · ∪ RI
n holds, and if R = inv(S), then

RI = (inv(S)I)−1. Please note that we are working with a purely abstract semantics -
we do not give a specific truly spatial interpretation for the objects as two-dimensional
regions or the like here.

Obviously, SR has to be an equivalence relation – every object is spatially re-
lated to every other object (including itself). In the case of RCC2 we additionally
require that {<x, x> | x ∈ ∆I } ⊆ OI , and in the case of RCC3, RCC5 and RCC8
{<x, x> | x ∈ ∆I } ⊆ EQI must hold. This is plausible if we think of EQ as equal-
ity — it might even be plausible to require that the interpretation of EQ is exactly
the identity relation: EQI = {<x, x> | x ∈ ∆I }. We call this the strong(er) EQ se-
mantics (or the weak(er) EQ semantics, respectively). The stronger EQ semantics is
appealing from a practical point of view since it makes the plausible assumption that
no two different congruent objects in the world might exist.

As usually, we say that an interpretation I is a model of a concept C, written I |=
C, if and only if CI 6= ∅. 2

In the following we make some observations concerning the considered DLs. First of
all, none hast the tree model property, but we claim that some have the finite model
property (see below).

ALCIRCC1 is decidable and equivalent to the modal logic “S5”. It is well-known
that “S5” is NP-complete. We refer to the nesting depth of 2 and 3 modalities as
modal degree. From modal logics we know that every “S5” formula having a modal
degree higher than one can be reduced to an equivalent “S5” formula having degree
one. This is due to the equivalences 3p ≡ 23p (equivalently, ∃SR.C ⇔ ∀SR.∃SR.C

for all concepts C), 2p ≡ 32p, 3p ≡ 33p, 2p ≡ 22p that are valid in “S5”, and
which allow us to discard all nested modalities but the last one in an “S5” formula.
Each “S5” formula can therefore be brought into modal conjunctive normal form,
where each conjunct is a disjunction of the form β ∨2γ1∨ . . .∨2γn ∨3δ1∨ . . .∨3δm,
such that all β, δi and γj are propositional formulas.

ALCIRCC2 is decidable as well. The composition table is trivial: {DR ◦ O →
{DR,O}, DR ◦ DR → {DR,O}, O ◦ O → {DR,O}}. It is obvious that every com-
plete and {DR,O}-colored graph satisfies the role box axioms. The validities (ax-
iom schemas) of this logic include the axioms ∃O .C ⇒ ∀O.(C t ∃{O,DR}.C) u
∀DR.∃{O,DR}.C), ∃DR.C ⇒ ∀DR.(Ct∃{O,DR}.C)u∀O.∃{O,DR}.C, ∀O.C ⇒ C.
It is open whether ALCIRCC2 is still NP-complete. In fact, it seems to be impossible to
enforce exponentially large models. We therefore conjecture it has the polysize-model
property.



In the case of ALCIRCC3 we have to distinguish between ALCIRCC3 with the strong
EQ semantics and the weak EQ semantics: for example, ∃EQ.(Cu∃EQ.¬C) is satisfi-
able only under the weak EQ semantics, but unsatisfiable otherwise. The composition
table is as expected (without symmetric entries): {DR ◦ ONE → {DR,ONE}, DR ◦
DR → {DR,ONE , EQ},ONE ◦ ONE → {DR,ONE , EQ}, EQ ◦ DR → {DR}, EQ ◦
ONE → {ONE}, EQ ◦ EQ → {EQ}}. In order to prove decidability of ALCIRCC3 ,
we now give a reduction from concept satisfiability in ALCIRCC3 to satisfiability in
first order predicate logic with two variables and equality, which is a decidable logic.

Definition 2 Let C be an ALCIRCC3 concept in negation normal norm (NNF). More-
over, we assume that each concept C occurring within ∃R.C and ∀R.C is in disjunctive
normal form (DNF), such that each conjunct in the disjunction of conjunctions is ei-
ther an atomic concept, a negated atomic concept, or a concept of the form ∃S.D

or ∀S.D, where D is again in DNF and NFF, etc. We then assume that there is a
function α, which, applied to a disjunct D of the above DNF (note that D is itself a
conjunction), returns the modal part of D, and that there is a corresponding function
β which returns the propositional part of D, e.g. if D = A1 u (¬A2) u ∃R.E u ∀S.F ,
then α(D) = {∃R.E,∀S.F} and β(D) = {A1, (¬A2)}. We skip the (easy) definitions
of α and β here, as well as for DNF and NNF. The following two mutually recursive
functions φx and φy do the main job (φy is obtained from φx by swapping x and y):

φx(C) =def C(x), if C is an atomic concept
φx(¬C) =def ¬φx(C)
φx(C1 u . . . u Cn) =def φx(C1) ∧ . . . ∧ φx(Cn)
φx(C1 t . . . t Cn) =def φx(C1) ∨ . . . ∨ φx(Cn)
φx(∃EQ.C) =def (

∧
mp∈α(C) φx(mp)∧

(∃y : EQ′(x, y) ∧ EQN(y) ∧
∧

bp∈β(C) φy(bp))

∨φx(C)), if C is not a disjunction
φx(∃EQ.(C1 t . . . t Cn)) =def φx(∃EQ.C1) ∨ . . . ∨ φx(∃EQ.Cn)
φx(∃R.C) =def (∃y : R(x, y) ∧ φy(∃EQ.C)), if R 6= EQ

φx(∀EQ.C) =def (
∧

mp∈α(C) φx(mp)∧

(∀y : EQ′(x, y) ∧ EQN(y) ⇒
∧

bp∈β(C) φy(bp))

∧φx(C)), if C is not a disjunction
φx(∀EQ.(C1 t . . . t Cn)) =def ¬(φx(∃EQ.DNF(NNF((¬C1 u . . . u ¬Cn)))))
φx(∀R.C) =def (∀y : R(x, y) ⇒ φy(∀EQ.C)), if R 6= EQ

The “FO2=” translation of C is then defined as follows (note the use of “=”):

∀x, y : DR(x, y) ⊕ ONE(x, y) ⊕ x = y ⊕ (EQN(x) ∨ EQN(y)) ∧
∀x, y : DR(x, y) ⇔ DR(y, x) ∧
∀x, y : ONE(x, y) ⇔ ONE(y, x) ∧
φx(C) 2

We claim that the resulting formula is equi-satisfiable with C under the weak EQ
semantics in ALCIRCC3 . The proof can be found in a forthcoming report.



It is obvious that already FO2 without equality is sufficient if one translates ALCIRCC3

with the strong EQ semantics into FOPL. But considering the weak EQ semantics,
we have to ensure that ∀x, y, z : EQ(x, z) ⇔ DR(x, y) ∧ DR(y, z) ⊕ ONE(x, y) ∧
ONE(y, z) ⊕ EQ(x, y) ∧ EQ(y, z) is satisfied. In order to achieve an equi-satisfiable
FO2 formula (using only two variables!) we have to exploit the special properties
of “=”, which ensures that equal objects are in fact interpreted as identical domain
objects. The trick is that “x = y” is used to represent EQ(x, y). Whenever two objects
are forced to be EQ, the “=” relationship ensures that the RCC network cannot
become inconsistent without being recognized as inconsistent. Suppose that EQ(x, y),
and that for some z, we have DR(x, z) and ONE(z, y). The network is obviously
inconsistent. Fortunately, due to “x=y”, representing EQ(x, y), the inconsistency
will be detected: DR(x, z) implies DR(y, z) and DR(z, y) due to symmetry, together
with ONE(z, y) violating the disjointness requirement. However, note that under the
weak EQ semantics, x and y could very well have different propositional descriptions
in ALCIRCC3 , even if EQ(x, y) holds. Thus, one has to separate the modal and the
propositional point of view of the “EQ”-connected objects. For example, ∃EQ.C u
∃EQ.¬C is consistent, but translating this into ∃x, y, z : x = y∧C(y)∧ y = z∧¬C(z)
obviously yields an unsatisfiable formula. The separation is therefore achieved by
using a further binary predicate “EQ′”. Nested occurrences of ∃EQ. . . . and ∀EQ. . . .-
concepts are flattened during the translation, similar to the “S5” modal conjunctive
normal form which has a modal degree of one (see above).

It should be noted that the difference between ALCIRCC3 with the strong and
the weak EQ semantics is that the former requires that EQI is a congruence relation
for all present unary and binary predicates (that is, concepts and roles), whereas the
latter only enforces that EQI is a congruence relation for all present binary predi-
cates. The weak EQ semantics can, of course, be made “strong” by conjoining, for
all relevant concept names C, the global axioms C → ∀EQ.C to the original concept
(add ∀{EQ,DR,ONE}.(C → ∀EQ.C) as a conjunct to the original concept). Then,
it is easy to see that all EQ-connected nodes in a model (they form an EQ-clique) can
be collapsed into a single node, and we still have a model.

Considering ALCIRCC5 and ALCIRCC8 we can observe that neither has the fi-
nite model property, unlike ALCIRCC3 and its sub-languages. Due to the asymmet-
ric and transitive PP relation in ALCIRCC5 , for example, the concept ((∃PP.>) u
(∀PP.∃PP.>)) has no finite models. See below for a short discussion.

There is some indication that ALCIRCC5 could possibly be computationally easier
to handle than ALCIRCC8 , since the latter seems to have more expressive power.
More specifically, unlike ALCIRCC5 , ALCIRCC8 somehow allows the distinction of a
role and its transitive orbit (this is a role whose interpretation contains at least the
transitive closure of the interpretation of the generating role; “somehow” because it
is not strictly a transitive orbit, see below).

The following concept enforces an infinite chain of even-odd-. . .-marked individu-
als, see the “spatial illustrations” in Figure 2b. Each node can distinguish its direct
TPPI -successor from all its indirect NTPPI -successors. Laxly speaking, we can con-
sider NTPPI somehow as the transitive orbit of TPPI ; more specifically, we have
((TPPII)+ − TPPII) ⊆ NTPPII (please assume that odd =def ¬even):
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a) RCC5 Composition Table; b) Illustration of an infinite
T =def {DR, PO,EQ,PP,PPI} ALCIRCC8 model of even odd chain

Figure 2: RCC5 table and infinitely descending model

even odd chain =def even u
(∃TPPI .∃TPPI .>) u
(even ⇒ ∀TPPI .odd) u
(odd ⇒ ∀TPPI .even) u
(∀NTPPI .((even ⇒ ∀TPPI .odd) u (odd ⇒ ∀TPPI .even))) u
(∀TPPI .((even ⇒ ∀TPPI .odd) u (odd ⇒ ∀TPPI .even))) u
(∀NTPPI .∃TPPI .>)

Due to the RCC8 composition table, we have
TPPI ◦ TPPI → {TPPI ,NTPPI },TPPI ◦ NTPPI → {NTPPI},

NTPPI ◦ TPPI → {NTPPI},NTPPI ◦ NTPPI → {NTPPI}.

This possibility came to us as a surprise. Once a role and its transitive orbit (or
closure) can be distinguished, it is easy to see that even finite pseudo-models repre-
senting infinite ALCIRCC8 models would have to be exponential in size of the length
of the input concept. Finite pseudo-models are, for example, constructed by tableau
calculi for logics like SHIQ that also lack the finite model property and whose infinite
models can be represented finitely by means of a so-called blocked tableau, which can
be understood as a pseudo-model. We can observe that a calculus for ALCIRCC8

would at least have to construct pseudo-models of exponential size in the length of
the input concept. This is demonstrated with the following classical “binary n-bit
counter” concept:

counter =def even odd chain u
∃TPPI .∃TPPI .(¬bit0 u ¬bit1 u . . . u ¬bitn−1) u
∀NTPPI .(toggle bit0 u toggle bit1 u . . . u toggle bitn−1)

toggle bit0 =def (bit0 u ∀TPPI .¬bit0) t (¬bit0 u ∀TPPI .bit0)
toggle biti =def ((u0≤j<ibitj) u ((biti u ∀TPPI .¬biti) t (¬biti u ∀TPPI .biti)))t

(¬(u0≤j<ibitj) u ((biti u ∀TPPI .biti) t (¬biti u ∀TPPI .¬biti)))

There does not seem to be a way to achieve a similar effect in ALCIRCC5 . Please note
that each pseudo-model would most likely have to represent an exponential number
of nodes (e.g. 2 + 2n here), since even propositional clashes could not be detected
otherwise — say, the conjunction u0≤j<nbitj turns out to be unsatisfiable which can
only be detected in the 2 + 2nth node.



3 Future Work - Finite Model Reasoning with ALCIRCC5?

If we have such problems showing decidability or undecidability of ALCIRCC5 and
ALCIRCC8 , then might it probably be easier to restrict ourselves to finite model rea-
soning, i.e. impose a semantics where concepts that have only infinite models are
considered as unsatisfiable? This would also be appealing from an application point
of view. Generally speaking, finite model reasoning is not necessarily easier than
reasoning with general models (Trakhtenbrot). However, it may be easier. For ex-
ample, (∃PP.>) u (∀PP.∃PP.>), (∃DR.>) u (∀DR.∃PPI.>), and (∃DR.∃PO.C) u
(∀PO.¬C)u (∀DR.¬C)u (∀PP.((∃DR.∃PO.C)u (∀PO.¬C)u (∀DR.¬C))) only have
infinite models. It is tempting to suspect that “‘PP” and/or “PPI” within universal
and/or existential value restrictions are responsible for spawning the infinite models.

A finite model reasoning ALCIRCC5 calculus would have to detect the unsatis-
fiability of all given examples. We were experimenting with some kind of “infinity
checker” that tried to detect whenever an infinite structure is enforced by the current
tableau expansion history (of course, this might be undecidable as well). But note
that an “infinity checker” is in fact a stronger predicate than a blocking condition
— the blocking condition would have to ensure that whenever it returns TRUE, an
infinite model can be constructed. In contrast, the infinity checker must not know
whether the concept under consideration is satisfiable in the infinite or not. The
problem we are trying to solve seems to be related to the well-foundedness problem
in part-whole-reasoning.

Summing up, we have made some first steps from the general ALCRA	 , ALCRA

and ALCRASG logics, missing inverse roles, to logics that are useful for qualitative spa-
tial reasoning. We are optimistic that at least for ALCIRCC5 the mentioned problems
can be overcome. It is also easy to see that there are restricted versions of ALCIRCC5

and ALCIRCC8 whose decidability can easily be shown; e.g. allow only propositional
concepts in universal quantifiers, etc. But this is not our mission.
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