On Terminological Default Reasoning about Spatial Information

Volker Haarslev, Ralf Möller, Anni-Yasmin Turhan and Michael Wessel

University of Hamburg, Germany
{haarslev, moeller, turhan, mwessel}@informatik.uni-hamburg.de

- Motivation
- Preliminaries
 - spatioterminological reasoning with $ALC\mathcal{R}P(S_2)$ [Lutz, Haarslev & Möller]
 - nonmonotonic reasoning with Reiter’s default logic
 - terminological default rules / theories [Baader & Hollunder]
- Spatioterminological default reasoning
 - on computing extensions
- Conclusion & future work
Motivation: Incomplete Spatioterminological Knowledge

- Combination of terminological, spatial & default reasoning techniques
 - Geographic Information Systems (GIS)
- Terminological knowledge
 - capital_city . city
- Spatial knowledge
 - properties of spatial relationships, eg. tpp (contains) is transitive
- Spatioterminological knowledge
 - a city is contained within exactly one country
 - two countries never overlap each other
- Default knowledge
 - data augmentation / completion
 - "b" could possibly be a city or a lake, but not both (disjoint concepts)
 - ABox realization would not work
Spatioterminological Reasoning with $\text{ALCRP}(S_2)$

- $\text{ALCRP}(D)$ extends $\text{ALC}(D)$
 - $\text{ALCRP}(D) = \text{ALC}(D) +$ role-forming predicate-based operator
 - decidable for restricted concept terms
 - restrictedness closed under negation

- $\text{ALCRP}(S_2)$
 - admissible concrete domain S_2, regular closed subsets of \mathbb{R}^2, called *regions*, with RCC8 predicates
 - properties of relationships captured by concrete domain, e.g. transitivity of tpp
 - RCC8 predicates
 - dc, ec, po, tpp, ntpp, tppi, ntppi, eq
 - defined roles, TBox axioms

 \begin{align*}
 \text{inside} & \doteq \exists (\text{has}_\text{area})(\text{has}_\text{area}).\text{tpp-ntpp} \\
 \text{contains} & \doteq \exists (\text{has}_\text{area})(\text{has}_\text{area}).\text{tppi-ntppi} \\
 \text{overlaps} & \doteq \exists (\text{has}_\text{area})(\text{has}_\text{area}).\text{po}
 \end{align*}

\[
(\exists(u_1, \ldots, u_n)(v_1, \ldots, v_m).P)^\mathcal{I} := \\
\{ (a, b) \in \Delta^\mathcal{I} \times \Delta^\mathcal{I} \mid \exists x_1, \ldots, x_n, y_1, \ldots, y_m \in \Delta^\mathcal{D} : \\
(a, x_1) \in u_1^\mathcal{I}, \ldots, (a, x_n) \in u_n^\mathcal{I}, \\
(b, y_1) \in v_1^\mathcal{I}, \ldots, (b, x_m) \in v_m^\mathcal{I}, \\
(x_1, \ldots, x_n, y_1, \ldots, y_m) \in P^\mathcal{D} \}\]
Spatioterminological Background Knowledge (TBox)

\[\text{area} \triangleq \exists \text{has area}. \text{is-region} \]
\[\text{country}_\text{region} \sqsubseteq \neg \text{natural}_\text{region} \sqcap \text{large}_\text{scale} \sqcap \text{area} \]
\[\text{city}_\text{region} \sqsubseteq \neg \text{natural}_\text{region} \sqcap \neg \text{large}_\text{scale} \sqcap \text{area} \]
\[\text{lake}_\text{region} \sqsubseteq \text{natural}_\text{region} \sqcap \text{area} \]
\[\text{country} \triangleq \text{country}_\text{region} \sqcap \forall \text{contains} \neg \text{country}_\text{region} \sqcap \forall \text{overlaps} \neg \text{country}_\text{region} \sqcap \forall \text{inside} \neg \text{country}_\text{region} \]
\[\text{city} \triangleq \text{city}_\text{region} \sqcap \exists \text{inside} \text{country}_\text{region} \]
\[\text{lake} \sqsubseteq \text{lake}_\text{region} \]
Default Theories & Terminological Default Theories

- Default rules [Reiter, 1980]
 - α prerequisite, β_i justifications, γ conclusion, FOPL formulae
- Default theory (W,D)
 - $W =$ world description
 - $D =$ set of defaults
- Different sets of **extensions** of (W,D)
 - sceptical vs. credulous consequence
- Terminological default theories [Baader & Hollunder, 1991]
 - α, β_i, γ concept terms
 - $W =$ ABox, $D =$ set of closed default rules
 - restricted semantics, no skolemization
 - consequence problem decidable
- Closing concept terms over ABox W
 - concept terms \Rightarrow ABox concept membership assertions

Example

$$\alpha : \beta_1, \beta_2, \ldots, \beta_n$$

$$\gamma$$

area : country

country

city

area : lake

lake
Closed Defaults

- Closing over W yields 9 closed defaults
- Two extensions
 - $E1 = W \cup \{b : \text{city}, c : \text{lake}\}$
 - $E2 = W \cup \{b : \text{lake}, c : \text{lake}\}$
- $W \cup \{b : \text{lake}, c : \text{city}\}$ inconsistent, see picture
- 2 sets of „generating defaults“

World description $W =$
- $\{a : \text{country}, b : \text{area}, c : \text{area}, (a,b) : \text{contains}, (b,a) : \text{inside}, (a,c) : \text{overlaps}, (c,a) : \text{overlaps}\}$
We also want to conclude complex role assertions

\[W = \{ \text{linköping: swedish_city, sweden: country} \} \]
\[E = W \cup \{ (\text{sweden, linköping}): \text{contains} \} \]

cannot be expressed with concept terms as \(\alpha, \beta_i, \gamma \)

"ABox patterns"

- ABoxes with variables, e.g. \(X, Y, Z \)
- to be closed over \(W \)
- can also refer to specific ABox individuals

"Duality"

- use known concept memberships to conclude spatial relationships
- use spatial relationships to deduce concept memberships

\[\{ X : \text{swedish_city}, \text{sweden: country} \} : \{ (\text{sweden, X}) : \text{contains} \} \]
\[\{ (\text{sweden, X}) : \text{contains} \} \]
\[\{ \text{linköping: swedish_city, sweden: country} \} : \{ (\text{sweden, linköping}) : \text{contains} \} \]
\[\{ (\text{sweden, linköping}) : \text{contains} \} \]
On Computing Extensions

Let E be a set of closed formulae and (A, D) be a closed default theory. We define $E_0 := A$ and for all $i \geq 0$

$$E_{i+1} := E_i \cup \{ \gamma \mid \alpha : \beta_1, \ldots, \beta_n / \gamma \in D, \alpha \in Th(E_i), \neg \beta_1, \ldots, \neg \beta_n \notin Th(E) \}. $$

Then, $Th(E)$ is an extension of (A, D) iff

$$Th(E) = \bigcup_{i=0}^{\infty} Th(E_i)$$

$E_i \alpha, \alpha = \{a_1, a_2, \ldots, a_n\}$

$\forall a_i \in \alpha: E_i a_i$

$E \neg \beta, \beta = \{b_1, b_2, \ldots, b_n\}$

$\forall b_i \in \beta: E \neg b_i$

- Non-constructive definition, since $Th(E)$ is already used in each „iteration step“
 - however, each extension has the form

$$Th(W \cup Con(D'))$$

for a set of so-called generating defaults $D', D' \cup D$

- simple „generate & test“ algorithm:
 - „generator“: compute powerset of $Con(D)$ and „test“ each subset
 - „tester“: use definition to check if candidate is indeed an extension

- more efficient algorithms see Baader & Hollunder

- α, β, γ are ABoxes
 - $\alpha \in Th(E_i) \iff E_i \alpha$
 - $\neg \beta \notin Th(E) \iff E \neg \beta$
ABox Axiom Entailment

A restricted $\mathcal{ALC\overline{R\mathcal{P}}(S_2)}$ ABox axiom x is logically entailed by a restricted $\mathcal{ALC\overline{R\mathcal{P}}(S_2)}$ ABox A, if

$$x = a : C \rightarrow \neg SAT(A \cup \{a : \neg C\})$$
$$x = (a, b) : \exists (u)(v). P \rightarrow$$
$$\neg SAT(A \cup \{(a, b) : \exists (u)(v). P\}) \land$$
$$\neg SAT(A \cup \{a : \forall u. T\}) \land$$
$$\neg SAT(A \cup \{b : \forall v. T\})$$

$SAT(A)$ decides the ABox consistency problem for an ABox A, and $u = v = has_area$.

- ABox axiom entailment reduced to ABox consistency (negation necessary)
 - α, β_i, γ may only contain
 - concept membership axioms: „instance checking“ problem
 - complex role assertions (cannot be negated, but entailment can be decided)
 - other kinds of axioms possible?
Conclusion & Future Work

- Extension to Baader & Hollunder
 - ABox patterns
 - refer to specific individuals
 - complex role assertions
- Other kinds of ABox axioms?
 - however, concept membership assertions and complex role assertions sufficient in our application domain
- Default theories with specificity
 - if more than one default applicable, apply most specific first
 - additional partial ordering on defaults
 - S-Extensions instead of R-Extensions
 \[d_1 \prec d_2 \iff \alpha(d_1) \land \alpha(d_2) \land \alpha(d_1) \]
- Autoepistemic description logics (operators A and K)?
- Implementation
 - more efficient algorithms for computing extensions