On Terminological Default Reasoning about Spatial Information

Volker Haarslev, Ralf Möller, Anni-Yasmin Turhan and Michael Wessel

University of Hamburg, Germany {haarslev, moeller, turhan, mwessel}@informatik.uni-hamburg.de

- Motivation
- Preliminaries
 - \Rightarrow spatioterminological reasoning with $\mathcal{ALCRP}(\mathcal{S}_2)$ [Lutz, Haarslev & Möller]
 - → nonmonotonic reasoning with Reiter's default logic
 - terminological default rules / theories [Baader & Hollunder]
- Spatioterminological default reasoning
 - \Rightarrow on computing extensions
- Conclusion & future work

Motivation: Incomplete Spatioterminological Knowledge

- Combination of terminological, spatial & default reasoning techniques
 - ♀ Geographic Information Systems (GIS)
- Terminological knowledge
 - ⇔ capital_city _ city
- Spatial knowledge
 - properties of spatial relationships, eg. tpp (contains) is transitive
- Spatioterminological knowledge
 - a city is contained within exactly one country
 - two countries never overlap each other
- Default knowledge
 - ⇔ data augmentation / completion
 - ☆ "b" could possibly be a city or a lake, but not both (disjoint concepts)
 - ABox realization would not work

Spatioterminological Reasoning with $ALCRP(S_2)$

- $\ \ \square \ \ \mathcal{ALCRP}(\mathcal{D}) \ extends \ \mathcal{ALC}(\mathcal{D})$
 - ⇒ ALCRP(D) = ALC(D) + role-forming predicate-based operator
 - decidable for restricted concept terms
 - ✤ restrictedness closed under negation

 $\square \ \mathcal{ALCRP}(\mathcal{S}_2)$

- ⇒ admissible concrete domain S_2 , regular closed subsets of \Re^2 , called **regions**, with **RCC8 predicates**
- properties of relationships captured by concrete domain, e.g. transitivity of tpp
- RCC8 predicates
 - dc, ec, po, tpp, ntpp, tppi, ntppi, eq
- ♀ defined roles, TBox axioms

```
inside \doteq \exists (has\_area)(has\_area).tpp-ntpp
contains \doteq \exists (has\_area)(has\_area).tppi-ntppi
overlaps \doteq \exists (has\_area)(has\_area).po
```


Spatioterminological Background Knowledge (TBox)

 $area \doteq \exists has_area.is$ -region $country_region \sqsubseteq \neg natural_region \sqcap$ $large_scale \sqcap area$ $city_region \sqsubseteq \neg natural_region \sqcap$ $\neg large_scale \sqcap area$ $lake_region \sqsubseteq natural_region \sqcap area$ $country \doteq country_region \sqcap$ $\forall contains. \neg country_region \sqcap$ $\forall overlaps.\neg country_region \sqcap$ $\forall inside.\neg country_region$ $city = city_region \sqcap$ $\exists inside.country_region$ $lake \sqsubseteq lake_region$

Default Theories & Terminological Default Theories

- Default rules [Reiter, 1980]
 - $\Rightarrow \alpha$ prerequisite, β_i justifications, γ conclusion, FOPL formulae
- \Box Default theory (*W*,*D*)
 - \Rightarrow *W* = world description
 - \Rightarrow D = set of defaults
- \Box Different sets of **extensions** of (*W*,*D*)
 - Sceptical vs. credulous consequence
- Terminological default theories [Baader & Hollunder, 1991]
 - $\Rightarrow \alpha, \beta_i, \gamma \text{ concept terms}$
 - \Rightarrow W = ABox, D = set of closed default rules
 - → restricted semantics, no skolemization
 - ♀ consequence problem decidable
- $\hfill\square$ Closing concept terms over ABox W
 - concept terms => ABox concept membership assertions

Closed Defaults

Spatioterminological Default Theories with "ABox Patterns"

{(sweden, linköping): contains}

On Computing Extensions

Let E be a set of closed formulae and (A, D)be a closed default theory. We define $E_0 := A$ and for all $i \ge 0$

$$E_{i+1} := E_i \cup \{ \gamma \mid \alpha : \beta_1, \dots, \beta_n / \gamma \in D, \\ \alpha \in Th(E_i), \\ \neg \beta_1, \dots, \neg \beta_n \notin Th(E) \}$$

Then, Th(E) is an extension of (A, D) iff

$$Th(E) = \bigcup_{i=0}^{\infty} Th(E_i)$$

$$E_{i} \quad \alpha, \alpha = \{a_{1}, a_{2}, \dots, a_{n}\}$$

$$\forall a_{i} \in \alpha : E_{i} \quad a_{i}$$

$$E \quad \neg \beta, \beta = \{b_{1}, b_{2}, \dots, b_{n}\}$$

$$\forall b_{i} \in \beta : E \quad \neg b_{i}$$

- Non-constructive definition, since *Th(E)* is already used in each "iteration step"
 - \Rightarrow however, each extension has the form

Th(W U Con(D'))

for a set of so-called generating defaults D´, D´ D

- ⇒ simple "generate & test" algorithm:
 - "generator": compute powerset of Con(D) and "test" each subset
 - "tester": use definition to check if candidate is indeed an extension
- more efficient algorithms see Baader & Hollunder

$$\begin{array}{c} \square \quad \alpha \,, \, \beta_i, \gamma \text{ are ABoxes} \\ \alpha \in Th(E_i) \Leftrightarrow E_i \quad \alpha \\ \neg \, \beta \notin Th(E) \Leftrightarrow E \quad \neg \beta \end{array}$$

A restricted $\mathcal{ALCRP}(\mathcal{S}_2)$ ABox axiom xis logically entailed by a restricted $\mathcal{ALCRP}(\mathcal{S}_2)$ ABox A,

$$A \models x, \quad \text{iff} \quad \begin{cases} x = a : C \longrightarrow \neg SAT(A \cup \{a : \neg C\} \\ x = (a, b) : \exists (u)(v).P \longrightarrow \\ \neg SAT(A \cup \{(a, b) : \exists (u)(v).\overline{P}\}) \land \\ \neg SAT(A \cup \{a : \forall u.\top\}) \land \\ \neg SAT(A \cup \{b : \forall v.\top\}) \end{cases}$$

SAT(A) decides the ABox consistency problem for an ABox A, and $u = v = has_area$.

□ ABox axiom entailment reduced to ABox consistency (negation necessary)

- $\Rightarrow \alpha, \beta_i, \gamma$ may only contain
 - concept membership axioms: "instance checking" problem
 - complex role assertions (cannot be negated, but entailment can be decided)
 - other kinds of axioms possible?

Conclusion & Future Work

- Extension to Baader & Hollunder
 - - refer to specific individuals
 - complex role assertions
- Other kinds of ABox axioms?
 - however, concept membership assertions and complex role assertions sufficent in our application domain
- Default theories with specificity
 - ♀ if more than one default applicable, apply most specific first
 - additional partial ordering on defaults
 - S-Extensions instead of R-Extensions

$$d_1 \prec d_2 \Leftrightarrow \alpha(d_1) \quad \alpha(d_2) \land \alpha(d_2) \quad \alpha(d_1)$$

- □ Autoepistemic description logics (operators A and K)?
- Implementation
 - ✤ more efficient algorithms for computing extensions