

On the Scalability of
Description Logic
Instance Retrieval

V. Haarslev1, R. Moeller2, M. Wessel2

1Concordia University, Montreal
2Hamburg University of Technology (TUHH)

1

Supported by EU Project
http://www.tonesproject.org/

Scenario

• Description logic reasoners for ontology-
based information systems (OBIS)

• Ontological knowledge
 TBoxes contain implication axioms
between concepts

• Knowledge about individuals and their
relations
 ABoxes contain ABox assertions

• TBox + ABox = Knowledge Base (KB)
• Information access / retrieval

 Classical instance retrieval queries
 More expressive DL query languages

• We assume basic knowledge in DLs and DL
reasoning techniques (tableau calculi)

Thesis

• More and more expressivity for description
languages might be irresistible …

• … however, still most applications are
based on “bulk data” (e.g., in rel. DBs)

• Expressivity required,
but for some parts only

• DL reasoners …
 must be good for bulk data as well
(data description scalability)
 large parts of ABoxes deterministic

 must be expressive for special parts
(expressivity scalability)

• … in order to support future OBIS

What’s different
from database retrieval?

Ontology-Based QA /
Incomplete Information

 Example by E. Franconi

(concept-instances
 (some supervised
 (and top-manager
 (some office-mate
 area-manager)))))

TBox, depicted as class diagram ABox, depicted as graph

Instance Retrieval Queries &
Conjunctive Queries (CQs)

From instance retrieval queries to CQs (-> nRQL):

(retrieve (?x)
 (?x (some supervised
 (and top-manager
 (some office-mate area-manager)))))
 -> (((?x john))) (a CQ with „Instance Retrieval Atom“)

A variable that appears in the head of a query is
bound to an individual iff that binding holds in
all models of the KB (is a „certain answer“)

-> ?x is a distinguished or must-bind variable

(retrieve (?x)
 (and (?x ?y supervised) (?y top-manager)
 (?y ?z office-mate) (?z area-manager)))

-> (((?x john))) with non-distinguished variables ?y, ?z

-> () with distinguished variables ?y, ?z (nRQL)

Approaches to Address the
Scalability Problem

• Layered (TBox + DB)
 Known systems, such as

 DLDB, DL-Lite, Instance Store, LAS

 Fast w.r.t. retrieval (due to DB)
— Expressivity restricted

• Integrated (TBox + ABox)
 Expressivity
— Speed improvements advantageous
(-> this paper / talk)

Integrated Approach

• Tableau-based approaches
 Scalability for TBoxes empirically
shown
 Fact++, Pellet, RacerPro, others
 Improvements always possible
(in particular for less expressive
languages)

 Scalability for ABoxes on the wish list
• Other approaches

 Disjunctive Datalog/Resolution-based
 KAON2

Investigation

• This paper presents
 (mainly) an investigation of
optimization strategies for instance
retrieval queries / atoms

• “Deterministic” KBs chosen for the
investigation (next slide)

• Only if we get this part right, we
will be able to adequately support
OBIS application builders

• Assumption
 ABox realization too expensive

LUBM

• LUBM = „Lehigh University Benchmark“
[Heflin et al.]

• OWL document -> DL KB is in SH(Dn)
• Models a university
• Benchmarking queries, e.g.

LUBM TBox

• Necessary conditions for concept names

• Necessary and sufficient conditions for
concept names

• Moreover, transitive roles, a role
hierarchy, as well as domain and range
restrictions for roles are present

Basic Optimizations for
Conjunctive Queries(1)

• Generators (establish variable bindings)
 Tuple generators:

C(x) (Instance Retrieval Atom), R(x,y)
 Role filler generators: R(i,y), R(x,i)

• Testers (check established binding)
 Instance tests and role tests

• Role atoms highly optimized
 No inference required up to DL SHI
(efficient graph traversal algorithm)

Basic Optimizations for
Conjunctive Queries(2)

• Three well-known heuristics
 Use low-cardinality generators
first (“most constr. gen. first”)

 Prefer filler generators over
tuple generators

 Avoid computation of more than one
binding for existential variables

ABox-Indexing for Instance
Retrieval Atoms

• Exploit told information
 Inspect ABox, analyze assertions

• Additionally exploit taxonomical
information
 Classify TBox

• Indexes usually incomplete, but complete
for simple KBs (e.g. TBox is a Thesaurus)

• Used in many systems such as DLDB,
Instance Store, LAS, …

• Provides „easy answers“
• Want more obvious instances?
• -> Look into the tableau completion

Tableau Provers …

• … implement a rule-based tableau calculus which
decides ABox satisfiabilty

• Tableau rules are applied to the input ABox
• Rules add assertions, e.g. the AND-rule breaks up

conjunctions, etc.
• Usually, one rule for each DL language constructor
• The rules are applied in a non-deterministic (but

strategy-controlled way) until
 No more rules are applicable -> a completion has
been found

 Or a contradition („Clash“) has been derived
 -> Search required

• I a completion can be derived, the ABox is
satisfiable, and otherwise unsatisfiable

• A completion (finitely) represents an ABox model

Candidate Reduction (1)

• Find obvious non-instances
 Individual „i“ is a non-instance of „C“ iff
 ABox‘ = ABox U { i : not C }
is satisfiable

 Computationally cheap (incomplete) test wanted
for detection of obvious non-instances

 Acquire „pseudo models“ from a completion
 ABox‘ is satisfiable if the so-called „pmodels“
of „i“ and „not C“ are mergable

 Cheap and incomplete test for satisfiability
 Further techniques used: binary partitioning
and dependency-directed partitioning, see
[Haarslev&Moeller KR&R‘04] for details

Candidate Reduction (2)

• Find obvious instances
 Individual „i“ is an instance of „C“ iff
 ABox‘ = ABox U { i : not C }
is not satisfiable

 Computationally cheap (incomplete) test wanted
for detection of obvious instances

 (at least some) logically entailed (or valid)
assertions must be determined from a completion
for such an unsatisfiability test
 Given a completion, identify and keep only the
deterministic assertions; these are contained
in every completion and are thus logically
entailed = PRECOMPLETION

 Use deterministic assertions DET(i) for
computation of an approximation MSC‘ of the
MSC (most specific concept) of „i“

 Check if MSC‘(i) is subsumed by C, or
 Check if DET(i) U DET(not C) is contradictory

Query Transformation (1)

• Insert sufficient conditions for
instance retrieval atoms from the
TBox

• -> Query expansion procedure (below)
• Single instance retrieval queries
turn into CQs and can be optimized
with the techniques just described

Q15

Query Transformation (2)

• nRQL semantics for variables
 All variables are distinguished
 CQ is equivalent to the original
instance retrieval query if
precompletion = completion

 Use also anonymous individuals (created
by tableau rules) as bindings for the
„fresh variables“ (here y)

• Reduces set of candidates for subsequent
tableau-based instance retrieval proof

• -> Gives less-obvious instances

C(x) -> rewrite(tbox,C,x)
(1)

C(x) -> rewrite(tbox,C,x)
(2)

LUBM Evaluation (1)

• LUBM query set (14 queries)
• ABox sizes

• Load, Consistency, Index,
Prepare

LUBM Evaluation (2)

Reasoning Modes

• A (complete)
 Constraint reasoning for datatypes

 Reals (incremental), Strings
(incremental)

• B (complete for LUBM)
 Told value reasoning for datatypes

• C (complete for LUBM)
 Told value reasoning for datatypes
 Transformation of sufficient conditions
(query transformation, as explained)

LUBM Evaluation (3)

Conclusion

• Results encouraging for problems
using higher expressivity

• Optimization techniques proposed
might be included in any tableau-
based DL prover that exists or
might be built

• Memory consumption matters (see
consumed time for ABox consistency
checks -> GC problem)
 -> Persistent Tableaus / ABoxes

• Thank you!

