On the Scalability of
Description Logic
Instance Retrieval

V. Haarslev!, R. Moeller?, M. Wessel?

1Concordia University, Montreal
Hamburg University of Technology (TUHH)

Supported by EU Project - _',«
http://www.tonesproject.org/

i

Scenario

Description logic reasoners for ontology-
based information systems (OBIS)

Ontological knowledge

contain implication axioms
between concepts

Knowledge about individuals and their
relations

contain ABox assertions
TBox + ABox =
Information access / retrieval
Classical
More

We assume basic knowledge in DLs and DL w
reasoning techniques (tableau calculi) ..

Thesis

More and more expressivity for description
languages might be irresistible ..

however, still most app11cat1ons are
based on “bulk data” (e.g., in rel. DBs)

Expressivity required, : ,
but for some parts only What's different
fcom database retrieval:
DL reasoners ..
must be good for bulk data as well
>

= large parts of ABoxes detexrministic
must be expressive for special parts

. in order to support future OBIS o

Ontology-Based QA /
Incomplete Information

TBox, depicted as class diagram ABox, depicted as graph
OfficeMate
John
Employee
Supervised Supervised
Supervised OfficeMate
Andrea: Manager =+——— Mary: TopManager
Manager
OfficeMate
{ disjoint,complete } Y
Paul: ArealManagery
AreaManager TopManager (concept-lnstances
(some supervised
(and top-manager &
© Example by E. Franconi (some office-mate “

3 Liy“ ==
area-manager))))) = N

Tnformation Society
“““““

Instance Retrieval Queries &
Conjunctive Queries (CQs)

From instance retrieval queries to CQs (-> nRQL):

(retrieve (?x)
(?x (some supervised
(and top-manager
(some office-mate area-manager)))))
-> (((?x john))) (a CQ with

A variable that appears in the head of a query is
bound to an individual iff that binding holds in
all models of the KB (is a ,certain answer®)

-> ?X is a or

(retrieve (?x)
(and (?x ?y supervised) (?y top-manager)
(?y ?z office-mate) (?z area-manager)))

> (((?x john))) with 2y, 2z,
> () with 2y, ?z (nRQL) “ri mes

Tnformation Society

Approaches to Address the
Scalability Problem .

* Layered (TBox + DB)

¢* Known systems, such as
= DLDB, DL-Lite, Instance Store, LAS

v Fast w.r.t. retrieval (due to DB)

* Integrated (TBox + ABoX)
vl Expressivity

Tnformation Society

Integrated Approach

¢ empirically
shown
= Fact++, Pellet, RacerPro, others

= Improvements always possible
(in particular for less expressive
languages)

. on the wish list

¢* Disjunctive Datalog/Resolution-based
= KAON2

Tnformation Society

Investigation

“Deterministic” KBs chosen for the
investigation (next slide)
Only if we get this part right, we
will be able to adequately support
OBIS application builders

Assumption
* ABox realization too expensive o &

Tnformation Society

LUBM

LUBM = ,Lehigh University Benchmark®
[Heflin et al.]

OWL document -> DL KB 1is in SH(Dn)
Models a university
Benchmarking queries, e.g.

Q9 : ans(x,y, z) «— Student(x), Faculty(y), Course(z),
advisor(z,y), takesCourse(z, z), teacherO f(y, z)
Q12 : ans(xz,y) « Chair(x), Department(y), memberO f(x, y),
subOrganizationOf (y," www.University0.edu’)

‘‘‘‘‘‘‘‘‘‘‘‘‘

LUBM TBox

* Necessary conditions for concept names
« AC AM...MA,

* Necessary and sufficient conditions for
concept names

e A=A MAs1...MA NIdR.Byn...M4R,,,.B,,
o+ Charr = PersonldheadOf.Department

°* Moreover, transitive roles, a role
hierarchy, as well as domain and range
restrictions fTor roles are present
OOQ g !

TONES

i

® O E
]nforny\ﬁg;foci:ly

Basic Optimizations for
Conjunctive Queries(1l)

¢* Tuple generators:
C(x) (Instance Retrieval Atom), R(x,y)
¢* Role filler generators: R(i,y), R(x,1)
¢ Instance tests and role tests
. highly optimized
* No inference required up to DL SHI
(efficient)

Q9 : ans(xz,y, z) < Student(z), Faculty(y), Course(z),
advisor(z,y), takesCourse(x, z), teacherO f(y, z)
Q12 : ans(x,y) < Chair(x), Department(y), memberO f(z, y),

subOrganizationOf (y," www.University0.edu’) TS

Tnformation Society

Basic Optimizations for
Conjunctive Queries(2)

¢*Use low-cardinality generators
first (“most constr. gen. first”)

* Prefer filler generators over
tuple generators

* Avoid computation of more than one
binding for existential variables

Q9 : ans(z,y, z) < Student(x), Faculty(y), Course(z),
advisor(z,y), takesCourse(z, z), teacherO f(y, z)

Q9" :ans(x,y,z) «— Faculty(y),teacherO f(y, z), Course(z),
advisor—1(y,z), Student(x), takesCourse(z, z)

Tnformation Society

ABox-Indexing for Instance
Retrieval Atoms

Exploit
¢ Inspect ABox,
Additionally exploit

¢

* Indexes usually incomplete, but
(e.g. TBox is a Thesaurus)

* Used in many systems such as DLDB,
Instance Store, LAS, ..

° Provides ,easy answers”
* Want more obvious instances?

Tnformation Society

Tableau Provers ..

.. implement a which
decides ABox satisfiabilty

Tableau rules are applied to the input ABoXx

, €.g. the AND-rule breaks up
conjunctions, etc.

Usually, one rule for each DL language constructor

The rules are applied in a non-deterministic (but
strategy-controlled way) until

¢ No more rules are applicable -> a completion has
been found

* Or a contradition (,Clash“) has been derived
¢ -> Search required

Tnformation Society

Candidate Reduction (1)

Individual ,i“ is a non-instance of ,C*“

is satisfiable

Computationally cheap (incomplete) test wanted
for detection of obvious non-instances

Acquire ,pseudo models® from a completion
is satisfiable the so-called

Cheap and incomplete test for satisfiability

Further techniques used:
see

[Haarslev&Moeller KR&R04] for details o

Tnformation Society

Candidate Reduction (2)

¢ Individual ,i“ is an instance of ,C*“

is satisfiable

¢ Computationally cheap (incomplete) test wanted
for detection of obvious instances
L 4

must be determined from a completion
for such an unsatisfiability test

= Given a completion,
; these are contained
in every completion and are thus logically

entailed =
" Use deterministic assertions for
computation of an approximation MSC‘ of the
of
= Check if , or »

" Check if is contradictony &UE£;

Tnformation Society

Query Transformation (1)

for
instance retrieval atoms from the
TBoX

Q15 ans(x) « Chair(x)
Chair = Personl13dheadOf.Department
ans(x) < Person 1 3headOf . Department(z)

°* -> Query expansion procedure (below)

* Single instance retrieval queries
turn into CQs and can be optimized .
with the techniques just describeq<ﬁﬁi

Tnformation Society

Query Transformation (2)

Q15 : ans(x) «— Person(x), headOf (x.,y), Deparfmem‘(t;)
Q15 : ans(x) — Department(y), headOf ~' (y,), Person(x)

* nRQL semantics for variables
All variables are distinguished

CQ is equivalent to the original
instance retrieval query if
precompletion = completion

Use also anonymous individuals (created
by tableau rules) as bindings for the
~fresh variables® (here y)

* Reduces set of candidates for subsequent
tableau-based instance retrieval proof .. - &

e -> Gives less-obvious instances TONES

Tnformation Society

C(x) -> rewrite(tbox,C,Xx)

(1)

Algorithm 1 rewrite(tbox, concept,var):

if meta_constraints(tbox) # 0 Vv definition(concept) = T then
return (concept(var))

else
{atomq, ..., atom,} =
rewrite_0(tbox, concept, definition(tbox, concept), var, {})
return (atomq,. .., atomy,)

Algorithm 2 rewrite_O(tbox, concept, var, exp):

if definition(concept) = T V concept € exp then
return {concept(var)}
else
:; catch installs a marker to which the control flow can be thrown
catch not_rewritable
rewrite_1(thbox, concept, definition(tbox, concept), var, {concept} U exp)

i

‘¥

TON

A

C(x) -> rewrite(tbox,C,Xx)

(2)

Algorithm 3 rewrite_1(tbox, concept_name, definition, var, exp):

if (definition = A) where A is an atomic concept then
return rewrite _0(tbox, definition, var,{de finition} U exp)
else
if (definition = AR.C) then
filler_var := fresh_variable()
return { R(var, filler var)} Urewrite O(tbox, C, filler var, exp)
else
if (definition = C1 M ...M C,) then
returnrewrite_1(tbox, concept_name, Cq, var, exp)
J ... U
rewrite_1(tbox, concept_name, Cy,, var, exp)
else
;; throw the control flow out of rewrite_1 recursion

;; back to the call to rewrite_1 in rewrite_0 and return {concept_name(var)}

throw not_rewritable {concept_name(var)}

o B

®'®

EdJ

LUBM Evaluation (1)

* LUBM query set (14 queries)
* ABox sizes

Univs| Inds

Concept Assertions

Role Assertions

1 117174
3 | 55664
5 1102368
10 207426

H3738
181324
336256
635569

49336
166682
309393
630753

* Load, Consistency, Index,

Prepare

Tnformation Society

LUBM Evaluation (2)

RacerPro Performance

1800 T T T 1

T T T T T
Consistency 4
IEdeé v
n oa e
1600 Prepare <
1400 | =
1200 | =
§ 1000 | i} .
3
& 800 F .
600 A =
. W
W
400 N . =
. °
200 | ; v ® 2 o o 7
- 7 L b o °
0 & E b d : T <|>]] |] o Q -
1 2 3 4 5

¢
é |

MNo. of Universities

Reasoning Modes

¢* Constraint reasoning for datatypes

= Reals (incremental), Strings
(incremental)

* Told value reasoning for datatypes

* Told value reasoning for datatypes

* Transformation of sufficient conditions
(query transformation, as explained)

Tnformation Society

LUBM Evaluation (3)

RacerPro Performance

12 I | 1 I .] | | 1 |
Mode A]
Mode B X
Mode C o]
10 -
gL i
™
o
2
8 6r]
& Fay
4 L . A 4
Fa
.
o L . & () © _
o)
A a o @
o o]
o O
O Q | 1 1 | 1 | | 1 | °
1 2 3 4 5 6 7 8 9 10 @ °
No. of Universities qr@ 1,.\':&_,3

Conclusion

Results encouraging for problems
using higher expressivity
Optimization techniques proposed
might be included in any tableau-
based DL prover that exists or
might be built

Memory consumption matters (see
consumed time for ABox consistency
checks -> GC problem)

-> Persistent Tableaus / ABoxes
Thank you! T

Gl

