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Abstract. In this paper, we consider the problem of query answering
over large multimedia ontologies. Traditional reasoning systems may have
problems to deal with large amounts of expressive ontological data (ter-
minological as well as assertional data) that usually must be kept in main
memory. We propose to overcome this problem with a new so-called filter
and refine paradigm for ontology-based query answering.
The contribution of this paper is twofold: (1) For both steps, algorithms
are presented. (2) We evaluate our approach on real world multimedia
ontologies from the BOEMIE project1.

1 Introduction
Applying semantic web technologies to enable the semantic retrieval of docu-
ments is a hot research topic. We believe that rather expressive DLs such as
SHI are required in order to capture important domain constraints in an on-
tology (e.g., less expressive DLs may not provide the required expressivity for
the modeling problems at hand). Thus, in this paper we focus on the DL SHI
(extensions to larger OWL fragments will be considered in future research).

In general, ontologies tend to be large, both in numbers of concepts as well
as in numbers of individuals. Unfortunately, the data complexity of instance
retrieval in SHI (and more expressive DLs) is EXPTIME-complete. Thus, from
a computational perspective, instance retrieval with large ontologies (containing
lots of instances) may be very hard. Although mature DL/ OWL reasoning
systems such as RacerPro exist [1], many reasoning systems for expressive
DLs nowadays still work on main memory only. This obviously prevents their
usage on very large ontologies, which may contain millions of “facts”, so query
answering simply runs out of main memory, or even loading of the whole ontology
is already impossible.

Recently, query answering in less expressive DLs received great attention.
E.g., the QuOnto system [2] is able to perform query answering on secondary
memory by taking advantage of (relational) database technology.

In this paper, we propose a pragmatic method to combine the high perfor-
mance and data scalability achieved by the techniques realized in the QuOnto
architecture with the high expressivity and expressivity scalability realized by
state-of-the-art DL reasoners such as RacerPro. We propose a new filter &
refine strategy for expressive ontologies in order to address the data- and expres-
sivity scalability problem [3].
1 http://www.boemie.org/
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This paper is structured as follows. First, the basics of descriptions logics (as
far as relevant for this paper) are introduced; i.e., the DLs SHI and DL-Lite,
as well as basic inference problems. Then, we describe the novel approximation
algorithm which reformulates SHI ontologies as DL-Lite ontologies for the filter
step. We then apply a novel partitioning algorithm for the refine step and perform
a preliminary evaluation of our framework applied to the AEO ontology. Open
problems are discussed and provide motivation for future research. Finally comes
the conclusion and some discussion of related and future work.

This paper is accompanied by a technical report[4] containing full proofs and
additional details.

2 Basics and Guiding Example

In the following part we will define mathematical notions, which are relevant for
the remaining paper.

The Description Logic SHI We asume the syntax and semantics of the de-
scription logic SHI (also called ALCHIR+) and DL-LiteF as defined in [5] and
[6].

With Ind(A) we denote the set of individuals occurring in A. We say that
O is inconsistent, denoted with INC(O), if there exists no model for O. We say
that O is consistent, denoted with CON(O), if there exists at least one model
for O. Given an individual a and an atomic concept C, we have 〈T ,A〉 � a : C
iff INC(〈T ,A ∪ {a : ¬C}〉).

By instance retrieval for concept C, we obtain all individuals a ∈ Ind(A),
s.t. we have 〈T ,A〉 � a : C. We denote the set of instances for a given concept
C with concept instances(C,A, T ).

In the following we define some additional notions, which will be used through-
out the remaining part of the paper. A ∃-constraint is a concept description of
the shape ∃R.C, s.t. C is an arbitrary concept description. A ∀-constraint is a
concept description of the shape ∀R.C, s.t. C is an arbitrary concept description.

The subsumption hierarchy (so-called taxonomy) of parents and children for
each concept name can be obtained by classification. For SHI ontologies it is
possible to compute the subsumption hierarchy in advance given only the TBox
T , i.e. without the ABox A. This is possible since SHI does not allow the use of
nominals. With vT : NC ×NC we denote the precomputed taxonomy obtained
by classification, e.g., we have vT (C, D) iff O � C v D for atomic concepts C
and D. The role hierarchy of a SHI-ontology can be computed in advance given
the TBox T only as well. With vR: NR ×NR we denote the precomputed role
hierarchy, e.g. we have (R,S) ∈vR iff O � R v S for roles R and S.

An atomic concept D is a synonym for a concept description C if we have
T � C v D and T � D v C. With synonyms(C, T ) we denote the set of
atomic concepts, which are synonyms for concept C with respect to T . With
parents(C, T ) (children(C, T )) we denote the set of atomic concepts which are
more general (specific) than a given concept C.
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Fig. 1. Guiding Example: ABox AEX for ontology OEX

Example 1. In the following we define an example ontology, which is used through-
out the remaining part of the paper. The ontology is a simplified version of the
LUBM [7]. Let OEX = 〈TEX ,AEX〉, s.t.
TEX = {Chair≡̇∃headOf.Department u Person,

Professorv̇Faculty, Bookv̇Publication,

GraduateStudentv̇Student, Student≡̇Person u ∃takesCourse.Course,

>v̇∀teacherOf.Course,∃teacherOf.>v̇Faculty, Facultyv̇Person,

>v̇∀publicationAuthor−.(Book t ConferencePaper),

headOfv̇worksFor, worksForv̇memberOf, memberOf≡̇member− }

The ABox AEX is shown in Fig. 1. Please note that individual p2 is an non-
obvious instance (i.e. we need to perform reasoning) of concept Chair, since
p2 has an outgoing headOf -edge to a Department and every Professor is
necessarily a Person.

3 Terminological Approximation - The Filter Step
Definition of Approximation Let us start with some basic definition. First we
define the notion of an approximation of a TBox T :
Definition 1. For two TBoxes T1 and T2, T2 |= T1 iff all models of T2 are also
models of T1.
Definition 2. Let T1 be a TBox in some DL DL. A T2 is called an approxima-
tion of T1 iff a) T2 is a DL′ TBox, with DL′ ⊆ DL, and b) T2 |= T1 holds2.
TBox entailment is decidable if DL is decidable, since T2 |= T1 iff for all Cv̇D ∈
T1, C u ¬D is unsatisfiable w.r.t. T2. Note that this is well-defined, since we
assume DL′ ⊆ DL.
After all, our intention for this definition is that instance retrieval over A w.r.t.
T2 shall be complete, but possibly unsound compared with instance retrieval
w.r.t. A and T1:
Proposition 1. Let A be an ABox which contains only atomic concept asser-
tions, i.e., for all i : C ∈ A, C is an atomic concept: C ∈ NCN . Let D be an
atomic query concept, the concept whose instances shall be retrieved. Let T2 be
an approximation of T1. Then, the following holds: concept instances(D,A, T1) ⊆
concept instances(D,A, T2).
2 We are discussing the case where DL = SHI, and DL′ = DL-Lite.
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How to Compute Approximations Having given these definitions, the question
arises, how to actually compute an approximation of T . The idea of the approx-
imation algorithm is quite simple. W.l.o.g. we assume that a TBox T contains
only implication axioms (axioms of the form Cv̇D; an axiom C≡̇D is trans-
formed into two axioms Cv̇D, Dv̇C). Please note that SHI admits role inclu-
sion axioms (for roles R,S) Rv̇S, which are valid in DL-Lite as well. Regarding
transitive roles, which are not allowed in DL-Lite, the following well-known
“trick” from the modal logic realm can be applied:
Definition 3. Let R be a transitive role in T 3. Let NCN(T ) denote the set of
concept names appearing in T , and NT(T ) the set of transitively closed roles in
T . The K4 closure of T , T K4 , is defined as follows:
T K4 =def T ∪ { ∃R.∃R.Cv̇∃R.C, ∀R.Cv̇∀R.∀R.C |C ∈ NCN(T ), R ∈ NT(T ) }.

Moreover, we assume that R is an ordinary role in T K4 =def (not a transi-
tively closed one).

Proposition 2. Let D be an atomic query concept, and A an ABox in which all
concept assertions refer to atomic concepts only. Then, concept instances(D,A, T ) =
concept instances(D,A, T K4).

We assume a corresponding function get K4 closure which computes the T K4 for
a given T . Please note that this proposition does not hold for arbitrary ABoxes
and query concepts D (only for ABox containing atomic concept assertions, and
atomic instance retrieval concepts).

Another preprocessing step is applied to remove nested occurrences of (sub)
concepts of the form ∃R.C and ∀R.C from the axioms, so they can be better
approximated to DL-Lite axioms. Thus, for each axiom Cv̇D, and for each
subconcept E in ¬CtD with E = ∃R.F or E = ∀R.F , and F /∈ NCN , we replace
E with a new atomic concept CE and add {CEv̇E,Ev̇CE} to T . This process
continues, until T no longer contains such axioms (note that E itself might still
contain such subconcepts as well). For example, {Cv̇Du∃R.(EuF )} is rewritten
into {Cv̇DuC∃R.(EuF ), C∃R.(EuF )v̇EuF,EuF v̇C∃R.(EuF )}. Consequently, we
assume a function flatten tbox which applies this transformation to a TBox T .
Each model of flatten tbox(T ) is trivially also a model of T , and vice versa, each
model of T can uniquely be extended to a model of flatten tbox(T ) (only the
new atomic concepts must be interpreted correctly so that their axioms become
satisfied).

For an SHI TBox T we we can now compute an approximated T ′ by ap-
proximating each axiom. So, Cv̇D ∈ T is replaced by a logically stronger axiom
C ′v̇D′ , {C ′v̇D′} |= {Cv̇D}, which is a DL-Lite axiom. The algorithm is best
understood as a non-deterministic algorithm which works as follows (the actual
deterministic implementation is described briefly below):
Function approximate(T )
Parameter: SHI TBox T
T := flatten tbox(get K4 closure(T ))
T ′ := {Cv̇D | T |= Cv̇D, C, D ∈ NCN }

3 DL-Lite does not offer transitive roles.
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while T 6= ∅
axiom := select axiom(T )
T ′ := T ′ ∪ approximate axiom(axiom, T ′)
T := T \ {axiom}

end while
return T ′

The algorithm first syntactically transforms the input TBox T as explained.
Although flatten tbox introduces new atomic concepts, no additional “K4” ax-
ioms need to be introduced for them by get K4 closure. Then, the taxonomy
of T is made explicit by adding corresponding axioms to T ′; these axioms are
DL-Lite axioms. The reason for this addition to T ′ is that the taxonomy of
T shall be available for approximate axiom (see below). Both select axiom and
approximate axiom are non-deterministic as well. Given an axiom Cv̇D, the ba-
sic idea of approximate axiom is to generalize the left-hand side C to C ′, and to
specialize the right-hand side D to D′. This ensures that the approximated axiom
is stronger than the original axiom, since C ′v̇D′ |= Cv̇D iff ¬C ′tD′ |= ¬C tD
iff (¬C ′tD′)u¬(¬CtD) is unsatisfiable iff (¬C ′tD′)uCu¬D is unsatisfiable
iff both ¬C ′ u C u ¬D and D′ u C u ¬D are unsatisfiable. Then, either Cv̇D
(so this is a tautology, and thus the trivial case), or Cv̇C ′ (then C u¬C ′ is un-
satisfiable) and D′v̇D, (so D′ u¬D is unsatisfiable). In principle, it is of course
also sufficient to find equivalent C ′, D′ in DL-Lite. The concepts C ′ and D′ are
called possible rewritings of C resp. D, and C ′v̇D′ is called a possible rewriting
of Cv̇D in the following, or also a candidate rewriting.

For example, the axiom Cv̇D t E can be rewritten to Cv̇D, or to Cv̇E
(assuming that C, D, T ∈ NCN ). Moreover, Cv̇D t E can also be written as
¬Dv̇¬C t E, ¬Ev̇¬C tD, or even ¬D u Cv̇E, and so on, yielding additional
rewriting possibilities. Thus, re-arranging the left-hand sides of the axioms max-
imizes the number of rewriting possibilities. Even though these axioms are still
equivalent to the original one, after rewriting into DL-Lite they no longer are.
Perhaps for some reordering, no better approximations than >v̇⊥ can be found.
It is thus even more important to maximize the number of possible approxima-
tions in order to avoid bad approximations which are too strong (rendering the
whole TBox unsatisfiable).

The approximate axiom function considers the input axiom Cv̇D as a disjunc-
tion ¬CtD which, in a first step, is brought into disjunctive normal form (DNF).
A concept is in DNF if it is in negation normal form (NNF), and does not contain
any (sub)concepts of the form D u (E t F ). Using simple boolean algebra, each
concept can be brought into DNF. Note that the concepts are even simpler at this
step in the processing chain, because complex qualification concepts have been
removed in advance. In the following, we use the set notation for disjuncts of a
concept in DNF: DNF(Cu(EtF )) = (CuE)t(CuF ) = {CuE,CuF}. The func-
tion approximate axiom non-deterministically chooses a subset of DNF(¬CtD) as
a possible left-hand side of the axiom, and uses the remaining disjuncts as right-
hand side. Then, approx axiom calls the non-deterministic functions generalize
and specialize:
Function approximate axiom(axiom, T ′)
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Parameter: SHI axiom axiom = Cv̇D and partial approximation T ′
if T ′ |= axiom then return T ′
else if axiom is a DL-Lite axiom then return {axiom} ∪ T ′
else

concept := DNF(¬C tD)
left side := some subset of(concept)
right side := concept \ left side
left side ′ := generalize(¬left side, T ′)
right side ′ := specialize(right side, T ′)
if left side ′ 6= ∅ and right side ′ 6= ∅ then

axiom′ := left side ′v̇right side ′

if T ′ 6|= axiom′ then return {axiom ′} ∪ T ′
return T ′

Both specialize and generalize first bring their argument concepts in DNF, and
then specialize or generalize using a set of non-deterministic rewriting rules
which are guided by the structure of the concept. The rules are applied ex-
haustively to the concept C until no more rule is applicable.

The rules make use of the helper function syns or parents which returns a
non-empty result for non-atomic concepts only:

syns or parents(C, T ′) =def


synonyms(C, T ′) if synonyms(C, T ′) 6= ∅, C /∈ NCN

parents(C, T ′) if synonyms(C, T ′) = ∅, C /∈ NCN

∅ otherwise

Note that T ′ is only partially available, but already contains the taxonomy
axioms derived from T (see approximate). Note that C ∈ synonyms(C, T , T ′) for
all C ∈ NCN .

The function generalize uses the following non-deterministic generalization
rules; C →G C ′ means that C is generalized to C ′:

– C →G C′, if C is a valid left-hand side of a DL-Lite axiom
– ∃R.C →G C′, C′ ∈ {∃R.>} ∪ syns or parents(∃R.C, T , T ′) (note: C ∈ NCN )
– C uD →G C′, C′ ∈ {C, D} ∪ syns or parents(C uD, T , T ′)
– C tD →G C′, where C′ = C1 tD1, with C →G C1, D →G D1,

or C′ ∈ syns or parents(C tD, T , T ′)
– for all other concepts C: C →G C′, C′ ∈ syns or parents(C, T , T ′)

To give an example, consider generalize is applied to ∃R.C t (E u F ). First,
the DNF is computed: (∃R.C u E) t (∃R.C u F ). Then, a possible rewriting
is: (∃R.C u E) t (∃R.C u F ) →G ∃R.> t F , since (∃R.C u E) →G ∃R.> and
(∃R.C u F )→G F . There are many other different rewritings.

Please note that DL-Lite does not permit negation or conjunctions on the
left-hand sides of axioms; thus, it is impossible to generalize conjunctions by
generalizing the arguments analog to the t-case. Note that, from this definition,
in most cases ∀R.C →G > unless syns or parents finds some parent for ∀R.C in
T ′. In principle, it is also possible to generalize a disjunction CtD to something
like C t D t E, for some E ∈ NCN (although this will result in a huge search
space in the implementation). The rules are designed in such a way to avoid over-
generalization in order to keep the number of unsound query answers small. That
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means, more specific rewriting alternatives shall be favored over less specific ones.
For example, although C uD →G C tD is conceivable, it doesn’t make much
sense under this premise, since both C uD →G C as well as C uD →G D are
more specific.

The rules for concept specialization, specialize, exploit a similar function
syns or children and follow the principle to avoid over-specialization, i.e., more
general rewriting alternatives are preferred over more specific ones. In these rules,
there is the possibility to rewrite a concept C to ∅. In case C →S ∅ for a conjunct
C in C u D, then ∅ is considered as >. However, in case C is a disjunct, then
∅ is considered as ⊥. So, ∅ serves as the neutral element w.r.t. the surrounding
operation:

– C →S C′, if C is a valid right-hand side for a DL-Lite axiom
– ¬C →S ¬C′, where C →G C′ (i.e., C is generalized),

or C ∈ syns or children(∃R.C, T , T ′).
– ∃R.C →S C′, C′ = ∃RC .> with T ′ := T ′ ∪ {RCv̇R, ∃R−C .>v̇C},

or C′ = ∃R.> with T ′ := T ′ ∪ {∃R−.>v̇C},
or C ∈ syns or children(∃R.C, T , T ′) (note: C ∈ NCN )

– ∀R.C →S ∅, T ′ := T ′ ∪ {∃R−.>v̇C′}, where C →S C′

– C tD →S C′, C′ ∈ {C, D} ∪ syns or children(C tD, T , T ′)
– C uD →G C′, where C′ = C1 uD1, with C →S C1, D →S D1,

or C′ ∈ syns or children(C uD, T , T ′)
– for all other concepts C: C →S C′, C′ ∈ syns or children(C, T , T ′)

In principle, it is possible to use CuD →S CuDuE, for some E ∈ NCN , but the
same comments as given above (for CtD) apply. Please note that DL-Lite does
not permit disjunctions on the right-hand sides of axioms. Moreover, specialize
has a side-effect on T ′, since it may introduce additional axioms. For example,
the ∃R.C-rule introduces a new range restriction on R by adding ∃R−.>v̇C
to T ′. So, ∃R.C is in fact generalized to ∃R.>; however, due to the introduced
range restriction ∃R−.>v̇C we get ∃R.> |= ∃R.C. In combination this is a
specialization of ∃R.C, as required. Another possibility would be to introduce a
subrole RC , RCv̇R with range C, and rewrite ∃R.C to ∃RC .>, but this would
require a modification of the ABox during instance retrieval.

The rule ∀R.C →S ∅ deserves an explanation. The idea here is to completely
ignore this (sub)concept on the right-hand side, and instead put a new axiom
into T ′ (which is modified per side-effect): T ′ := T ′ ∪ {∃R−.>v̇C ′}. For ex-
ample, consider the TBox {Cv̇(∀R.D) u E}. Since the left-hand side is already
acceptable, only the right-hand side is rewritten: (∀R.D) u E →S > u E, since
∀R.D →S ∅ and E →S E. However, also ∃R−.>v̇D has been added to T ′, thus
the approximation is T ′ = {Cv̇E,∃R−.>v̇D}. It is easy to see that T ′ |= T
holds. In case the input TBox is {Cv̇(∀R.D)tE}, then the following rewriting
is possible: (∀R.D) t E →S ∀R.D →S ∅. Since approximate axiom will reject
axioms with right side′ = ∅, the approximation is simply T ′ = {∃R−.>v̇D}.
Another possibility is of course T ′ = {Cv̇E}, according to the t-rule.
Proposition 3. Let T ′ = approximate(T ) for a SHI TBox T . Then, T ′ is a
DL-Lite approximation of T .
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An Example Approximation If approximate is applied to the example TBox T ,
then after the preprocessing only the following non-DL-Lite axioms remain which
thus have to be approximated:
{>v̇∀publicationAuthor−.(book t conferencePaper),>v̇∀teacherOf.course,
person u ∃takesCourse.coursev̇student, studentv̇∃takesCourse.course,
person u ∃headOf.departmentv̇chair, chairv̇∃headOf.department }

One possible DL-Lite approximation T ′ is:
{ chairv̇∃headOf.>,∃headOf.>v̇chair, chairv̇person,
professorv̇faculty, bookv̇publication, facultyv̇person,
graduateStudentv̇student, studentv̇∃takesCourse.>, studentv̇person,
∃teacherOf−.>v̇course,∃takesCourse.>v̇student,∃teacherOf.>v̇faculty,
∃publicationAuthor.>v̇book,
∃headOf−.>v̇department,∃takesCourse−.>v̇course }

If this T ′ is used for retrieval on the example ABox, then no unsound answers to
atomic instance retrieval queries are delivered. Thus, the approximation is perfect
for every atomic concept of the ABox. Of course, this depends on the ABox. Note
that p2 is a chair instance, as required, since ∃headOf.>v̇chair ∈ T ′.

However, there also exist imperfect approximations. On the one hand, there
are many T ′’s containing incoherent concepts, or even unsatisfiable T ′’s. In
the latter case, the ABox is definitely inconsistent (unsatisfiable), and in the
former case, inconsistency of the ABox is likely (if the ABox contains instances
of incoherent concepts). From a logical perspective, an instance retrieval query
performed on an inconsistent ABox returns the set of all ABox individuals (since,
from an inconsistent theory, everything follows). So, such a query answer is still
complete.4

On the other hand, an example for an unsound approximation is given by
T ′, if >v̇∀publicationAuthor−.(book t conferencePaper) is approximated to
∃publicationAuthor.>v̇conferencePaper instead of the concept chosen before,
∃publicationAuthor.>v̇book. Then, b1 will be a false answer to the instance
retrieval query for conferencePaper .

Even for the simple example TBox we get 757 coherent approximations (there
are a few hundred thousand consistent approximations containing incoherent
concepts); w.r.t. retrieval, there is one perfect approximation (see above), and
the worst coherent approximation has an average failure of 2.5 individuals which
means that an atomic instance retrieval query, in the average, returns 2.5 false
query answers.

An Implementation of the Approximation Algorithm We have eliminated the
non-determinism in the approximate algorithm by implementing it in a depth-first
(backtracking) search algorithm. Thus, for a given axiom,
approximate axiom(axiom) returns a set of candidate axioms, representing pos-
sible approximations of axiom. Each axiom thus represents a state in the search
space, whose branching factor is given by the number of its candidate approxi-
mation axioms.
4 Of course, a DL reasoner typically does not permit ABox retrieval on inconsistent

ABoxes.
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In principle, the number of possible approximations is truly astronomic for
larger TBoxes. Consider a TBox with 500 axioms to approximate, in which each
axiom can be approximated in three different ways – the number of atoms in
the universe is 1080 ≈ 3167.6722 and thus tiny compared to the 3500 nodes in this
search space. Thus, clever heuristics are needed to guide the search. Since, in
principle, one is only interested in coherent approximations (containing only one
incoherent concept name, ⊥), it is a good idea to prune a path in the search tree
as soon as more than one incoherent concept is discovered in the partial T ′. Of
course, this requires a TBox coherence check by the DL reasoner (RacerPro)
at each step. This would be a good use case for incremental reasoning. In order
to filter out candidate axioms which are too specific, RacerPro is used as well.

It may not be possible to compute a coherent approximation at all. In this
case, an incoherent TBox is wanted which at least leaves the ABox satisfiable
(but even this may be impossible), or contains only a minimal number of inco-
herent concepts.

Sometimes it is possible to compute more than one approximation. Even if
each computed approximation is unsound for retrieval on an actual ABox, it is
good to have a multitude of approximations available, since their retrieval results
can be intersected. Even if no – w.r.t. an actual ABox – prefect approximation is
among the computed approximations, this intersected answer set may by perfect
for some concept C on this ABox.

4 Island-Based Instance Retrieval – The Refine Step

In the following section we discuss how to post-filter individuals, which were
obtained by the Filter Step before. The original algorithm was proposed in [8]
for the DL ALCHI. This section is only intended as a overview of the refine
step. Detailed explanations and proofs are omited in this paper.

The idea for the refine step is that only a subset of role and concept assertions
is necessary/used to perform instance checking for a particular given individual
a and a given concept C. The approach undertaken here is to identify role
assertions which can be used during the application of a tableau algorithm for
instance checking (note that 〈T ,A〉 �? a : C can be reduced to checking whether
〈T ,A ∪ {a : ¬C}〉 is unsatisfiable via a tableau algorithm).

First, we transform the ontolofy into some kind of normal form, called shallow
normal form. For the details of the transformation please refer to [8]. We only
provide an example for TEX from Example 1 in Shallow Normal Form. The TBox
TEX in SNF is as follows: Shallow(TEX) =

{ ¬Chair t ∃headOf.Department,¬Chair t Person,
∀headOf.¬Department t ¬Person t Chair,
¬Professor t Faculty,¬Book t Publication,
¬GraduateStudent t Student,¬Student t Person,
¬Student t ∃takesCourse.Course,
¬Person t ∀takesCourse.¬Course t Student,
∀teacherOf.Course,∀teacherOf.⊥ t Faculty,¬Faculty t Person,
∀publicationAuthor−.(Book t ConferencePaper) }
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Fig. 2. Example island for individual b1 in OEX

Given the shallow normal form, we use a so-called ∀-info structure for an
ontology O to determine which concepts are (worst-case) propagated over role
assertions in an ABox. This helps us to define a notion of separability. The
following definition of O-separability is used to determine the importance of role
assertions in a given ABox. Informally speaking, the idea is that O-separable
assertions will never be used to propagate “complex and new information” (see
below) via role assertions.
Definition 4. Given an ontology O = 〈T ,A〉, a role assertion R(a, b) is called
O-separable, if we have INC(O) iff INC(〈T ,A2}〉), where

A2 =A \ {R(a, b)} ∪ {R(a, i1), R(i2, b)} ∪ {i1 : C|b : C ∈ A} ∪ {i2 : C|a : C ∈ A},

s.t. i1 and i2 are fresh individual names.
The extraction of islands for instance checking in ontology O, given an individual
a, is now straightforward. From an individual a one just follows each non-O-
separable role assertion in the original ABox, until at most O-separable role
assertions are left. For the details of this algorithm please refer to [8]. In Figure
2 we show the island computed for individual b1. Please recall that b1 potentially
was a false answer to the conferencePaper instance retrieval query. It is easy
to see that the computed island does not entail b1 : conferencePaper and thus
b1 can be eliminated from the set of candidates. In Figure 2 it is also easy to
see that p2 can be verified to be an instance of Chair, by only taking into
account the corresponding island, since the headOf -edge was preserved during
the computation of the island.
Extension from DL ALCHI to DL SHI Transitive roles can be easily read off
from the TBox by additionally taking into account the role hierarchy. Then,
whenever we want to compute the island for an individual w.r.t. DL SHI, then
we have to additionally “follow” all transitive role assertions. This proposal for
the extension to DL SHI is quite straight-forward and we do not prove it here.

5 Preliminary Evaluation

We have performed an initial evaluation of our algorithms on a version of the
AEO ontology of the BOEMIE project. Using RacerPro, we have transformed
this OWL ontology into a DL ontology (= TBox, ABox). The utilized TBox
DL is ALCHf . It contains 1061 axioms which are already in DL-Lite, and 499
axioms which have to be approximated to DL-Lite. AEO also contains some
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so-called number restrictions, which we simply approximate to functional roles
in DL-LiteF (since only ≤1 R concepts appear).

The ABox of the AEO version we used is rather small – it only contains 138
individuals (266 concept assertions plus 70 role assertions = 336 assertions). We
have chosen this ABox since some interesting reasoning is required in order to
retrieve the instances of the concept HighJump (similar to the chair example,
but over 2 role fillers).

As illustrated previously, it is very demanding to approximate a TBox with
499 axioms. Unfortunately, we were not successful to compute a coherent approx-
imation of this AEO ontology in reasonable time. Better heuristics are needed
here. The reason for this is a massive number of disjointness axioms; e.g., axioms
of the form Av̇¬B, Av̇¬C, . . . . Additionally, get K4 closure introduces another
1110 additional axioms.

We have thus simplified AEO substantially by removing all disjointness ax-
ioms and ignoring transitivity (so get K4 closure adds no axioms). With this
version, a coherent approximation could be computed within 5 minutes. These
simplifications do not affect retrieval. In the average, it returns 0,984 false in-
stances for a concept (w.r.t. to the original AEO).

The original AEO contains one instance of HighJump, and no instances of
SprintCompetition. The approximated version is perfect for HighJump, but
delivers 7 wrong SprintCompetitions. The HighJump instance is in fact also a
(false) SprintCompetition here. Thus, 7 islands were computed by the partition-
ing method, ranging in size from 7 to 45 assertions. The average island contains
33.75 assertions. So, in the average, only one tenth of the assertions from the
original ABox have to be loaded in order to verify or falsify the candidates for
HighJump and SprintCompetition. Each instance test requires ≈ 180 msecs
per candidate, thus, after ≈ 1, 440 seconds the candidate individuals have been
refined. Some additional time is needed to compute the islands. Computation of
an islands needs milliseconds only (for such small islands).

Since this ABox was rather small, we expanded the ABox artificially by a
factor of 500. We thus created an ABox which contained 500 copies of the origi-
nal ABox, simply by prefixing the individuals with numbers (0 to 499). We then
connected these 500 separated ABox parts using some new artificial role asser-
tions, resulting in a connected ABox, containing 415330 assertions. The ABox
still fits into main memory, because otherwise we could not have performed this
experiment (the secondary memory-access is not yet realized). The ABox con-
sistency check already needs 3,5 minutes on this ABox now; retrieval requires
≈ 34 seconds (for each concepts). As expected, from the approximated version
of the TBox, we got 500 HighJump instances, and 3500 SprintCompetitions.
As expected, the newly introduced artificial role assertions connecting the 500
copies have no influence on the size of the islands. Thus, the average islands size
is still 33.75; that this is only 0.0008126068 % of the whole ABox. However, now
4000 candidate tests have to be performed, which will require ≈ 14 minutes of
RacerPro reasoning time. Additional time for accessing and loading from sec-
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ondary memory etc. (since also the island partitioning has to work on secondary
memory in the future) is taken5.

6 Conclusions, Related and Future Work
Summing up, the evaluation in the previous section has shown that retrieval
will require ≈ 20 minutes with our framework. This is not too bad compared
with the ≈ 5 minutes for retrieval on the original AEO (note that the ABox
consistency check needs to be performed only once). For a factor of ≈ 4, we have
removed the main memory burden.So, this evaluation should be understood as
a first preliminary proof of concept of the ideas conveyed in this paper.

Our framework rests on two central assumptions: (1) it must be possible
to compute a coherent approximation of the original ontology in DL-Lite (or
DL-LiteF ), or another less expressive DL, which allows for secondary memory
retrieval. As our preliminary evaluation with a real-world multimedia ontology
has shown, this may be very hard. Several problems regarding the efficient han-
dling of disjoint axioms and transitive roles still need to be solved, (2) the original
ontology must allow for effective partitioning, so that the individual partition
do not exceed main memory size. This may not be the case for all ontologies.
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