On the Scalability of
Description Logic Instance Retrieval

Ralf Moller?, Volker Haarslev!, Michael Wesselt

tHamburg University of Technology, TConcordia University, Montreal

Abstract. Although description logic systems can adequately be
used for representing and reasoning about incomplete information
(e.g., for John we know he is French or Italian), in practical ap-
plications it can be assumed that (only) for some tasks the ex-
pressivity of description logics really comes into play whereas for
building complete applications, it is often necessary to effectively
solve instance retrieval problems with respect to largely determin-
istic knowledge. In this paper we present and analyze the main
results we have found about how to contribute to this kind of scal-
ability problem. We assume familiarity with description logics in
general and tableau provers in particular.

1 Introduction

Although description logics (DLs) are becoming more and more expressive (e.g.,
[14]), our experience has been that it is only for some tasks that the expressivity
of description logics really comes into play; for many applications, it is necessary
to be able to deal with largely deterministic knowledge very effectively. Thus, in
practice, description logic systems offering high expressivity must also be able
to handle large bulks of data descriptions (Aboxes with concepts and role asser-
tions) which are largely deterministic. Users expect that DL systems scale w.r.t.
these practical needs. In our view there are two kinds of scalability problems:
scalability w.r.t. large sets of data descriptions (data description scalability) and
scalability w.r.t. high expressivity, which might only be important for small parts
of the data descriptions (expressivity scalability).

In the literature, the data description scalability problem has been tackled
from different perspectives. We see two main approaches, the layered approach
and the integrated approach. In the layered approach the goal is to use databases
for storing and accessing data, and exploit description logic ontologies for conve-
nient query formulation. The main idea is to support ontology-based query trans-
lation to relational query languages (SQL, datalog). See, e.g., [21,9] (DLDB),
[3] (Instance Store), or [4] (DL-Lite). We notice that these approaches are only
applicable if reduced expressivity does not matter. Despite the most appealing
argument of reusing database technology (in particular services for persistent
data), at the current state of the art it is not clear how expressivity can be

increased to, e.g., SHZQ without losing the applicability of database transfor-
mation approaches. Hence, while data description scalability is achieved, it is
not clear how to extend these approaches to achieve expressivity scalability (at
least for some parts of the data descriptions).

Tableau-based DL systems are now widely used in practical applications be-
cause these systems are quite successful w.r.t. the expressivity scalability prob-
lem. Therefore, for investigating solutions to both problems, the expressivity
and the data description scalability problem, we pursue the integrated approach
that considers query answering with a tableau-based description logic system
augmented with new techniques inspired from database systems. For the time
being we ignore the problems associated with persistency and investigate specific
knowledge bases (see below).

The contribution presents and analyzes the main results we have found about
how to start solving the scalability problem with tableau-based prover systems
given large sets of data descriptions for a large number of individuals. Note that
we do not discuss query answering speed of a particular system but investigate
the effect of optimization techniques that could be exploited by any (tableau-
based) DL inference system that already exists or might be built. Since DLs are
very popular now, and tableau-based systems have been extensively studied in
the literature (see [2] for references), we assume the reader is familiar with DLs
in general and tableau-based decision procedures in particular (see, e.g., [1]).

2 Lehigh University Benchmark

In order to investigate the data description scalability problem, we use the Lehigh
University BenchMark (LUBM, [8,9]). LUBM queries are conjunctive queries
referencing concept, role, and individual names from the Thbox. A query lan-
guage tailored to description logic applications that can express these queries
is described in [20].! The language is called nRQL and supports a restricted
form of conjunctive queries (variables are only bound to individuals mentioned
in the Abox and not to “anonymous” individuals that denote objects from the
domain that provably must exist). Although some work on standard conjunctive
queries is published [5,17,7], to the best of the authors’ knowledge, (efficient)
algorithms for answering full conjunctive queries for expressive description logics
such as SHZQ [16] are not known.

Below, LUBM queries 9 and 12 are shown in order to illustrate LUBM queries
— note that ‘www.University0.edu’ is an individual and subOrganizationOf is
a transitive role. Please refer to [8,9] for more information about the LUBM
queries.

Q9 : ans(z,y, z) « Student(x), Faculty(y), Course(z),

advisor(x,y), takesCourse(zx, z), teacherO f(y, 2)
Q12 : ans(z,y) « Chair(z), Department(y), memberO f(x,y),
subOrganizationOf (y," www.University0.edu’)

! In the notation for queries used in this paper we assume that different variables may
have the same bindings.

In order to investigate the data description scalability problem, we used a
TBox for LUBM with inverse and transitive roles as well as domain and range
restrictions but no number restrictions, value restrictions, or disjunctions (after
GCI absorption). Among other axioms, the LUBM TBox contains axioms that
express necessary and sufficient conditions for some concept names. For instance,
there is an axiom Chair = Person3headOf.Department. For evaluating opti-
mization techniques for query answering we consider runtimes for a whole query
set (queries 1 to 14 in the LUBM case).

3 Optimization Techniques

If the queries mentioned in the previous section are answered in a naive way by
evaluating subqueries in the sequence of syntactic notation, acceptable answering
times can hardly be achieved. Determining all bindings for a variable (with a
so-called generator) is much more costly than verifying a particular binding
(with a tester). Treating the one-place predicates Student, Faculty, and Course
as generators for bindings for corresponding variables results in combinatorial
explosion (cross product computation). Optimization techniques are required
that provide for efficient query answering in the average case.

3.1 Query Optimization

The optimization techniques that we investigated are inspired by database join
optimizations, and exploit the fact that there are few Faculties but many
Students in the data descriptions. For instance, in case of query Q9 from LUBM,
the idea is to use Faculty as a generator for bindings for y and then generate
the bindings for z following the role teacherO f. The heuristics applied here is
that the average cardinality of a set of role fillers is rather small. For the given z
bindings we apply the predicate Course as a tester (rather than as a generator
as in the naive approach). Given the remaining bindings for z, bindings for x
can be established via the inverse of takesCourse. These x bindings are then
filtered with the tester Student.

If z was not mentioned in the head, i.e., in set of variables for which bindings
are to be computed, and the tester Course was not used, there would be no
need to generate bindings for z at all. One could just check for the existence of
a takesCourse role filler for bindings w.r.t. x.

In the second example, query Q12, the constant ‘www.University0.edu’ is
mentioned. Starting from this individual the inverse of subOrganizationOf is
applied as a generator for bindings for y which are filtered with the tester
Department. With the inverse of memberO f, bindings for x are computed which
are then filtered with C'hair. Since for the concept C'hair sufficient conditions
are declared in the TBox, instance retrieval reasoning is required if Chair is a
generator. Thus, it is advantageous that Chair is applied as a tester (and only
instance tests are performed).

For efficiently answering queries, a query execution plan is determined by a
cost-based optimization component (c.f., [6, p. 787{f.]) which orders query atoms
such that queries can be answered effectively. For computing a total order rela-
tion on query atoms with respect to a given set of data descriptions (assertions
in an ABox), we need information about the number of instances of concept and
role names. An estimate for this information can be computed in a preprocessing
step by considering given data descriptions, or could be obtained by examining
the result set of previously answered queries. We assume that ABox realization
is too costly (takes about 6 minutes for LUBM with one university, excluding
the initial Abox consistency test), so this alternative is ruled out.

3.2 Indexing by Exploiting Told and Taxonomical Information

In many practical applications that we encountered, data descriptions often di-
rectly indicate (some of the) concept names of which an individual is an instance.
Therefore, in a preprocessing step, it is useful to compute an index that maps
concept names to sets of individuals which are their instances. In a practical
implementation this index might be realized with some form of hashtable.

Classifying the TBox yields the set of ancestors for each concept name, and
if an individual 7 is an instance of a concept name A due to explicit data de-
scriptions, it is also an instance of the ancestors of A. This information can be
made accessible by an index that maps concept names to instances. The index
is organized in such a way that retrieving the instances of a concept name A, or
one of its ancestors, requires (almost) constant time. The index is particularly
useful to provide bindings for variables if, despite all optimization attempts for
deriving query execution plans, concept names must be used as generators. In
addition, the index is used to estimate the cardinality of concept extensions. The
estimates are used to compute an order relation for query atoms. The smaller the
cardinality of a concept or a set of role fillers is assumed to be, the more priority
is given to the query atom. Optimizing LUBM query Q9 with the techniques
discussed above yields the following query execution plan (denoted as a query,
substeps to be read from left to right).

QY : ans(z,y, z) «— Faculty(y), teacherOf(y, z), Course(z),

advisor~'(y, x), Student(z), takesCourse(z, z)
Using this kind of rewriting, queries can be answered much more efficiently.

If the TBox contains only GCIs of the form A C A;M...MA,, i.e., if the TBox
forms a hierarchy, the index-based retrieval discussed in this section is complete
(see [3]). However, this is not the case for LUBM. In LUBM, besides domain
and range restrictions, axioms are also of the form A = A1 M A M ...M AL M
dRy.B; M ... M 3R,,.By, (actually, m = 1). If sufficient conditions with exists
restrictions are specified as in the case of Chair, optimization is much more
complex. In LUBM data descriptions, no individual is explicitly declared as a
Chair and, therefore, reasoning is required, which is known to be rather costly.
If Chair is used as a generator and not as a tester such as in the simple query
ans(z) « Chair(z), optimization is even more important. The idea to optimize
instance retrieval is to detect an additional number of obvious instances using

further incomplete tests, and, in addition, to determine obvious non-instances.
We first present the latter technique and continue with the former afterwards.

3.3 Obvious Non-Instances: Exploiting Information from one
Completion

The detection of “obvious” non-instances of a given concept C can be imple-
mented using a model merging operator defined for so-called individual pseudo
models (aka pmodels) as defined in [10]. Since these techniques have already
been published, we just sketch the main idea here for the sake of completeness.
The central idea is to compute a pmodel from a completion that is derived by
the tableau prover.

For instance, in the DL ALC a pseudo model for an individual 7 mentioned in
a consistent initial A-box A w.r.t. a Thox T is defined as follows. Since A is con-
sistent, there exists a set of completions C of A. Let A’ € C. An individual pseudo
model M for an individual i in A is defined as the tuple (MP, M™P M3, M")
w.r.t. A’ and A using the following definition.

MP ={D|i: D€ A, D is a concept name}
M™P ={DJi: =D e A, D is a concept name}
M7 ={R|i:3R.Cc AYU{R|(i,j): R€ A}
MY ={R|i:VR.C € A"}

Note the distinction between the initial A-box A and its completion A’.
It is important that all restrictions for a certain individual are “reflected” in
the pmodel. The idea of model merging is that there is a simple sound but
incomplete test for showing that adding the assertion i : =C to the ABox will
not lead to a clash (see [10] for details) and, hence, i is not an instance of the
query concept C. Let MS be a set of pmodels. The pmodel merging test is:
atoms_mergable(M S) Aroles_mergable(M S) where atoms_mergable tests for a
possible primitive clash between pairs of pseudo models. It is applied to a set of
pseudo models MS and returns false if there exists a pair {My, My} C MS with
(MP N MyP) # 0 or (M7P N MP) # (). Otherwise it returns true.

The algorithm roles_mergable tests for a possible role interaction between
pairs of pseudo models. It is applied to a set of pseudo models MS and returns
false if there exists a pair { My, Mo} C MS with (M7 NMJ) # 0 or (MY NM3) #
(). Otherwise it returns ¢rue. The reader is referred to [11] for the proof of the
soundness of this technique and for further details.

It should be emphasized that the complete set of data structures for a par-
ticular completion is not maintained by a DL reasoner. The pmodels provide for
an appropriate excerpt of a completion needed to determine non-instances.

3.4 Obvious Instances: Exploiting Information from the
Precompletion

Another central optimization technique to ensure data description scalability as
it is required for LUBM is to also find “obvious” instances with minimum effort.
Given an initial ABox consistency test and a completion one can consider all
deterministic restrictions, i.e., one considers only those completion data struc-
tures (from now on called constraints) for which there are no choice points in the
tableau proof (in other words, consider only those constraints that do not have
dependency information attached). These constraints constitute a so-called pre-
completion.? Note that in a precompletion, no constraints are violated because
we assume that the precompletion is computed from an existing completion.

Given the precompletion constraints, for each individual 4, an approximation
of the most-specific concept (M SC') is computed as follows (the approximation is
called M SC"). For all constraints representing role assertions of the form (4, j) :
R (or (j,4) : R) add constraints of the form i : IR.T (ori: IR~L.T). Afterwards,
constraints for a certain individual ¢ are collected into a set {i : C,...,i: Cy}.
Then, MSC'(i) :== Cy M ...NC,. Now, if MSC’(i) is subsumed by the query
concept C, then ¢ must be an instance of C'. In the case of LUBM many of the
assertions lead to deterministic constraints in the tableau proof which, in turn,
results in the fact that for many instances of a query concept C (e.g., Faculty
as in query 9) the instance problem is decided with a subsumption test based
on the MSC’ of each individual. Subsumption tests are known to be fast due
to caching and model merging [13]. The more precisely M SC’(i) approximates
MSC(i), the more often an individual can be determined to be an obvious
instance of a query concept. Obviously, it might be possible to determine obvious
instances by directly considering the precompletion data structures. However, at
this implementation level a presentation would be too detailed. The main point
is that, due to our findings, the crude approximation with M SC’ suffices to solve
many instance tests in LUBM.

If query atoms are used as testers, in LUBM it is the case that in a large num-
ber of cases the test for obvious non-instances or the test for obvious instances
determines the result. However, for some individuals ¢ and query concepts C
both tests do not determine whether 4 is an instance of C' (e.g., this is the case
for Chair). Since both of these “cheap” tests are incomplete, for some individu-
als ¢ a refutational ABox consistency test resulting from adding the claim 4 : =C'
(refutational instance test) must be decided with a sound and complete tableau
prover. For some concepts C, the set of candidates is quite large. Considering the
volume of assertions in LUBM (see below for details), it is easy to see that the
refutational instance test should not start from the initial, unprocessed ABox in
order to ensure scalability.

2 Cardinality measures for concept names, required for determining optimized query
execution plans, could be made more precise if cardinality information was computed
by considering a precompletion. However, in the case of LUBM this did not result
in better query execution plans.

For large ABoxes and many repetitive instance tests it is a waste of resources
to “expand” the very same initial constraints over and over again. Therefore,
the precompletion resulting from the initial ABox consistency test is used as
a starting point for refutational instance tests. The tableau prover keeps the
precompletion in memory. All deterministic constraints are expanded, so if some
constraint is added, only a limited amount of work is to be done. To understand
the impact of refutation-based instance tests on the data description scalability
problem, a more low-level analysis on tableau provers architectures is required.

3.5 Index Structures for Optimizing Tableau Provers

Tableau provers are fast w.r.t. backtracking, blocking, caching and the like. But
not fast enough if applied in a naive way. If a constraint ¢ : =C is added to
a precompletion, the tableau prover must be able to very effectively determine
related constraints for ¢ that already have been processed. Rather than using
linear search through lists of constraints, index structures are required for bulk
data descriptions.

First of all, it is relatively easy to classify various types of constraints (for
exists restrictions, value restrictions, atomic restrictions, negated atomic restric-
tions, etc.) and access them effectively according to their type. We call the
corresponding data structure an active record of constraint sets (one set for
each kind of constraint). For implementing a tableau prover, the question for
an appropriate data structure for these sets arises. Since ABoxes are not mod-
els, (dependency-directed) backtracking cannot be avoided in general. In this
case, indexing the set of “relevant” constraints in order to provide algorithms
for checking if an item is an element of a set or list (element problem) is all
but easy. Indexing requires hashtables (or trees), but backtracking requires ei-
ther frequent copying of index structures (i.e., hashtables) or frequent insertion
and deletion operations concerning hashtables. Both operations are known to be
costly.

Practical experiments with LUBM and the DL system RacerPro (see below
for a detailed evaluation) indicate that the following approach is advantageous
in the average case. For frequent updates of the search space structures during
a tableau proof, we found that simple lists for different kinds of constraints
are most efficient, thus we have an active record of lists of constraints. New
constraints are added to the head of the corresponding list, a very fast operation.
During backtracking, the head is chopped off with minimum effort. The list
representation is used if there are few constraints, and the element problem can
be decided efficiently. However, if these lists of constraints get large, performance
decreases due to linear search. Therefore, if some list from the active record of
constraints gets longer than a certain threshold, the record is restructured and
the list elements are entered into an appropriate index structure (hashtables
with individuals as keys). Afterwards the tableau prover continues with a new
record of empty lists as the active record. The pair of previous record of lists
and associated hashtable is called a generation. From now on, new constraints
are added to the new active record of constraints and the list(s) of the first

generation are no longer used. For the element problem the lists from the active
record are examined first (linear search over small lists) and then, in addition,
the hashtable from the first generation is searched (almost linear search). If a list
from the active record gets too large again, a new generation is created. Thus,
in general we have a sequence of such generations, which are then considered
for the element test in the obvious way. If backtracking occurs, the lists of the
appropriate generation are installed again as the active record of lists. This way
of dealing with the current search state allows for a functional implementation
style of the tableau prover which we prefer for debugging purposes. However,
one might also use a destructive way to manage constraints during backtracking.
Obviously, all (deterministic) constraints from the initial Abox can be stored in
a hashtable. In any case, the main point here is that tableau provers need an
individual-based index to efficiently find all constraints in which an individual
is involved. In the evaluation of other optimization techniques (see below) we
presuppose that a tableau prover is equipped with this technology, and thus we
can assume that each refutational instance test is rather fast.

3.6 Transforming Sufficient Conditions into Conjunctive Queries

Up to now we can detect obvious instances based on told and taxonomical infor-
mation (almost constant time, see Section 3.2) as well as information extracted
from the precompletion (linear time w.r.t. the number of remaining candidate
individuals and a very fast test, see Section 3.4). Known non-instances can be
determined with model merging techniques applied to individual pmodels (also
a linear process w.r.t. the number of remaining candidate individuals but with
a very fast test, see Section 3.3). However, there might still be some candidates
left. Using the results in [10] it is possible to use dependency-directed instance
retrieval and binary partitioning. Our findings suggest that in the case of LUBM,
for example for the concept Chair, the remaining refutational tableau proofs are
very fast. However, for Chair a considerable number of candidates remain since
there are many Persons in LUBM. In application scenarios such as those we
investigate with LUBM we have 200,000 individuals and more (see the evalua-
tion below) with many Persons. Even if each single instance test lasts only a
few dozen microseconds, query answering will be too slow, and hence additional
techniques should be applied to solve the data description scalability problem.

The central insight for another optimization technique is that in the pres-
ence of sufficient conditions for concept names given in the Thox, query atoms
that refer to names might be transformed. Let us consider the query ans(x) «—
Chair(z). For Chair, sufficient conditions are given as part of the TBox (see
above). Thus, in principle, we are looking for instances of the concept Person N
JheadOf .Department. The key to optimizing query answering becomes appar-
ent if we transform the definition of C'hair into a conjunctive query and derive
the optimized version Q15

Q15 : ans(z) « Person(x), headOf (x,y), Department(y)

Q15" : ans(x) < Department(y), headOf ~*(y, z), Person(z)

Because there exist fewer Departments than Persons in LUBM, search for
bindings for z is substantially more focused in Q15" (which is the result of
automatic query optimization, see above). In addition, in LUBM, the extension
of Department can be determined with simple index-based tests only (only
hierarchies are involved) and thus the heuristics of the query optimizer produce
optimal results. With the Chair example one can easily see that the standard
approach for instance retrieval can be optimized dramatically with rewriting
concept query atoms if certain conditions are met.

Algorithm 1 rewrite(tbox, concept, var):

if meta_constraints(tbox) # 0V definition(concept) = T then
return (concept(var))

else
{atom, . ..,atomy} =
rewrite_0(tbox, concept, definition(tbox, concept), var, {})
return (atoms,...,atom,)

Algorithm 2 rewrite_0(tbox, concept, var, exp):

if definition(concept) = T V concept € exp then
return {concept(var)}
else
;; catch installs a marker to which the control flow can be thrown
catchnot_rewritable
rewrite_1(tbox, concept, definition(tbox, concept), var, {concept} U exp)

Algorithm 3 rewrite_1(tboxz, concept_name, definition, var, exp):

if (definition = A) where A is an atomic concept then
return rewrite_0(tbox, definition, var, {definition} U exp)
else
if (definition = 3R.C') then
filler war := fresh_variable()
return {R(var, filler_var)} U rewrite_0(tbox, C, filler_var, exp)
else
if (definition = C1M...MCY) then
return rewrite_1(tbox, concept_name, C1, var, exp)
U...uU
rewrite_1(tbox, concept_name, Cy, var, exp)
else
;; throw the control flow out of rewrite_1 recursion
;; back to the call to rewrite_1 in rewrite_0 and return {concept_name(var)}
throw not_rewritable {concept_name(var)}

The rewriting algorithm is defined in Algorithms 1, 2, and 3. Every concept
query atom C'(x) in a conjunctive query used is replaced with rewrite(query_tbox,
C,z) (and afterwards, the query is optimized).

Some auxiliary functions are used. The function definition(C) returns suffi-
cient conditions for a concept name C' (the result is a concept), and the function
meta_constraints(tbox) indicates whether there are some meta constraints left
after GCI transformation (see [15], the result is a set of concepts). In addition,
we use a function fresh_variable that generates a new variable that was not
used before.

If there is no specific definition or there are meta constraints, rewriting is
not applied (see Algorithm 1). It is easy to see that the rewriting approach
is sound. However, it is complete only under specific conditions, which can be
automatically detected. If we consider the Thox T' = {D = JR.C}, the Abox
A = {i : AR.C} and the query ans(x) «— D(z), then due to the algorithm
presented above the query will be rewritten as ans(z) «— R(x,y),C(y). For
variable bindings, the query language nRQL (see above) considers only those
individuals that are explicitly mentioned in the Abox. Thus ¢ will not be part of
the result set because there is no binding for y in the Abox A. Examining the
LUBM Tbox and Abox it becomes clear that in this case for every IR.C that
is applicable to an individual 7 in a tableau proof there already exist constraints
(i,7) : R and j : C in the original Abox (LUBM was derived from a database
scenario). However, even if this is not the case, the technique can be employed
under some circumstances.

Usually, in order to construct a model (or a completion to be more precise),
tableau provers create a new individual for each constraint of the form i : 3R.C
and add corresponding concept and role assertions. These newly created individ-
uals are called anonymous individuals. Let us assume, during the initial Abox
consistency test a completion is found. As we have discussed above, a precom-
pletion is computed by removing all constraints that depend on a choice point.
If there is no such constraint, the precompletion is identical to the completion
that the tableau prover computed. Then, the set of bindings for variables is ex-
tended to the anonymous individuals found in the precompletion. The rewriting
technique for concept query atoms is applicable (i.e., is complete) under these
conditions. Even if the rewriting technique is not complete (i.e., s.th. is removed
from the completion in order to derive the precompletion), it can be employed to
reduce the set of candidates for binary partitioning techniques that can speed-up
this process considerably in the average case (c.f., [10]).

The transformation approach discussed in this section is reminiscent of an
early transformation approach discussed in [19]. In fact, ideas from translational
approaches from DLs to disjunctive datalog [18] can also be integrated in tableau-
based approaches. In the following section, we will evaluate how the optimization
techniques introduced up to now provide a contribution to the data description
scalability problem.

RacerPro Performance
1800 T

- Conéistency "4
Index v
L Load e i
1600 Prepare ¢
1400 i
1200 B
g 1000 | 8
S v
(53
Q
2 800 B
600 - - B
v v
400 | v g
a
.
v .
200 | o v . b3 © ° b
: v ° ® o
0 + 't ® bt ? ¢ ‘ ‘ ‘ ‘
1 2 3 4 5 6 7 8 9 10

No. of Universities

Fig. 1. Runtimes for loading, preparation, abox consistency checking and indexing.

4 Evaluation

The significance of the optimization techniques introduced in this contribution is
analyzed with the system RacerPro 1.9. RacerPro is freely available for research
and educational purposes (http://www.racer-systems.com). The runtimes we
present in this section are used to demonstrate the order of magnitude of time
resources that are required for solving inference problems. They allow us to
analyze the impact of proposed optimization techniques. We start with an eval-
uation of optimizations for (restricted) conjunctive queries with LUBM and turn
to instance retrieval w.r.t. applications-specific knowledge bases afterwards.

An overview about the size of the LUBM benchmarks is given in Table 1.
The runtimes for loading the data descriptions, transforming them into abstract
syntax trees (preparation), and indexing are shown in Figure 1 (AMD 64bit pro-
cessor, 4GB, Linux OS). It is important to note that these curves are roughly
linear, thus, no reasoning is included in these phases. In Figure 1, also the run-

lUnivs[Inds [Concept Assertions[Role Assertionsl

1 |17174 53738 49336
3 | 55664 181324 166682
5 (102368 336256 309393
10 |207426 685569 630753

Table 1. Linearly increasing number of individuals, concept assertions and role asser-
tions for different numbers of universities.

RacerPro Performance
12 T ry T T

‘Mode A ‘

.
ModeB &
ModeC ©
10 1
8l i
.
1%}
©
c
g °r I
A A
4+ . IN i
A
.
2+ ° & o o i
A]
A] o
[} © °
[0}
0 Q Il Il Il Il Il Il Il Il Il
1 2 3 4 5 6 7 8 9 10

No. of Universities

Fig. 2. Runtimes of 14 LUBM queries with different optimization settings (see text).

times for checking ABox consistency together with the computation of the pre-
completion are indicated (Consistency, black triangle). The “quadratic” shape
reveals that this phase should be subject to further optimizations.

In Figure 2, average query-answering times for running all 14 LUBM queries
on data descriptions for an increasing number of universities are presented (see
Table 1 for an overview on the number of individuals, concept assertions, and
role assertions). We use different modes (A, B, and C) to indicate the effects of
optimization techniques. All modes are complete with respect to the Tbox and
data descriptions (Abox) we used for the LUBM experiments in this paper.

In mode A and B, concept definitions are not rewritten into conjunctive
queries (see Section 3.6). In mode A, full constraint reasoning on OWL datatypes
is provided. Thus, datatype properties are encoded in the obvious way as roles
referring to individuals which, in turn, refer to values via concrete domain at-
tributes. With concrete domains, arbitrary constraint systems can be specified
in an Abox [12]. This means, (multiple) attribute values of multiple Abox indi-
viduals can constrained. In OWL one can only restrict (multiple) attributes of a
single individual (nominal). For LUBM, however, only OWL datatypes are used,
and no constraint reasoning is required because datatypes are used only to asso-
ciate individuals with strings in the Abox. In order to answer queries, only “told
values” must be retrieved. Therefore, in mode B, told value retrieval is performed
only. As Figure 2 shows, this is much more efficient (but less powerful in the gen-

eral case, of course). Mode C in Figure 2 presents the runtimes achieved when
definitions of concept names are rewritten to conjunctive queries (and told value
reasoning on datatypes only is employed, as in mode B). The results for mode
C indicate that for deterministic knowledge bases such as LUBM, scalability for
instance retrieval can be achieved with tableau-based retrieval engines.

5 Conclusion and Future Work

We take LUBM as a representative for largely deterministic data descriptions
that can be found in practical applications. The investigations reveal that de-
scription logic systems can be optimized to also be able to deal with large bulks of
deterministic descriptions quite effectively. Mode C indicates that performance
scales well with an increasing number of data descriptions given the expressivity
of the language used in the ontology meets certain requirements. Our work is
based on a tableau calculus which has shown to be reliable if expressivity is
increased (see the results in mode B). The linear shape of the curve in mode C
suggests that the proposed technology ensures that performance scales if high
expressivity is not required. LUBM is in a sense too simple but the benchmark
allows us to study the data description scalability problem.

Note that we argue that the concept rewriting technique is advantageous
not only for RacerPro but also for other tableau-based systems. Future work
will investigate optimizations of large Aboxes and more expressive Tboxes. Our
work is based on the thesis that for investigating optimization techniques for
Abox retrieval w.r.t. more expressive Thoxes, we first have to ensure scalability
for Aboxes and Tboxes such as those we discussed in this paper. We have shown
that the results are encouraging.

References

1. F. Baader and U. Sattler. An overview of tableau algorithms for description logics.
Studia Logica, 69:5-40, 2001.

2. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementa-
tion, and Applications. Cambridge University Press, 2003.

3. S. Bechhofer, I. Horrocks, and D. Turi. The OWL instance store: System descrip-
tion. In Proceedings CADE-20, LNCS. Springer Verlag, 2005.

4. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data com-
plexity of query answering in description logics. In Proc. of the 2005 Description
Logic Workshop (DL 2005). CEUR Electronic Workshop Proceedings, http://ceur-
ws.org/, 2005.

5. Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the decid-
ability of query containment under constraints. In Proc. of the 17th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS’98), pages
149-158, 1998.

6. H. Garcia-Molina, J.D. Ullman, and J. Widom. Database Systems: The Complete
Boook. Prentice Hall, 2092.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Birte Glimm and Ian Horrocks. Handling cyclic conjunctive queries. In Proc.
of the 2005 Description Logic Workshop (DL 2005), volume 147. CEUR (http:
//ceur-us.org/), 2005.

Y. Guo, J. Heflin, and Z. Pan. Benchmarking DAML+4OIL repositories. In Proc. of
the Second Int. Semantic Web Conf. (ISWC 2008), number 2870 in LNCS, pages
613-627. Springer Verlag, 2003.

Y. Guo, Z. Pan, and J. Heflin. An evaluation of knowledge base systems for large
OWL datasets. In Proc. of the Third Int. Semantic Web Conf. (ISWC 2004),
LNCS. Springer Verlag, 2004.

V. Haarslev and R. Moller. Optimization techniques for retrieving resources de-
scribed in OWL/RDF documents: First results. In Ninth International Conference
on the Principles of Knowledge Representation and Reasoning, KR 2004, Whistler,
BC, Canada, June 2-5, pages 163-173, 2004.

Volker Haarslev, Ralf Méller, and Anni-Yasmin Turhan. Exploiting pseudo models
for tbox and abox reasoning in expressive description logics. In Proc. of the Int.
Joint Conf. on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes
in Artificial Intelligence. Springer-Verlag, 2001.

Volker Haarslev, Ralf Moller, and Michael Wessel. The description logic
ALCNHR+ extended with concrete domains: A practically motivated approach.
In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2001), pages
29-44, 2001.

I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD
thesis, University of Manchester, 1997.

I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROZ Q. Technical
report, University of Manchester, 2006.

I. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice. In Proc.
of the 7Tth Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2000), pages 285-296, 2000.

Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning with individuals for
the description logic SHZQ. In David McAllester, editor, Proc. of the 17th Int.
Conf. on Automated Deduction (CADE 2000), volume 1831 of Lecture Notes in
Computer Science, pages 482-496. Springer-Verlag, 2000.

Tan Horrocks and Sergio Tessaris. A conjunctive query language for descrip-
tion logic ABoxes. In Proc. of the 17th Nat. Conf. on Artificial Intelligence
(AAAT 2000), pages 399-404, 2000.

B. Motik. Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Univ. Karlsruhe, 2006.

B. Motik, R. Volz, and A. Maedche. Optimizing query answering in description
logics using disjunctive deductive databases. In Proceedings of the 10th Inter-
national Workshop on Knowledge Representation Meets Databases (KRDB-2003),
pages 39-50, 2003.

M. Wessel and R. Moller. A high performance semantic web query answering
engine. In Proc. of the 2005 Description Logic Workshop (DL 2005). CEUR Elec-
tronic Workshop Proceedings, http://ceur-ws.org/, 2005.

Z. Zhang. Ontology query languages for the semantic web: A performance evalu-
ation. Master’s thesis, University of Georgia, 2005.

