
Querying the Semantic Web
with Racer + nRQL

Applications on Description Logics ’04

Volker Haarslev, Ralf Möller, Michael Wessel

Software Systems Group

Hamburg University of Science and Technology

r.f.moeller@tuhh.de

ADL ’04, 24.9.2004, Ralf Möller – p.1/22

Overview of Talk
• Introducing nRQL

• Introductory Example
• Overview of Features
• Query Processing Modes
• Syntax & Semantics

• Querying Racer ABoxes with nRQL
• Example Session

• Benchmarking Racer + nRQL
• The Lehigh University Benchmark (LUBM)
• Evaluation

• Conclusion & Future Work

ADL ’04, 24.9.2004, Ralf Möller – p.2/22

Overview of Talk
• Introducing nRQL

• Introductory Example
• Overview of Features
• Query Processing Modes
• Syntax & Semantics

• Querying Racer ABoxes with nRQL
• Example Session

• Benchmarking Racer + nRQL
• The Lehigh University Benchmark (LUBM)
• Evaluation

• Conclusion & Future Work

ADL ’04, 24.9.2004, Ralf Möller – p.2/22

Overview of Talk
• Introducing nRQL

• Introductory Example
• Overview of Features
• Query Processing Modes
• Syntax & Semantics

• Querying Racer ABoxes with nRQL

• Example Session

• Benchmarking Racer + nRQL
• The Lehigh University Benchmark (LUBM)
• Evaluation

• Conclusion & Future Work

ADL ’04, 24.9.2004, Ralf Möller – p.2/22

Overview of Talk
• Introducing nRQL

• Introductory Example
• Overview of Features
• Query Processing Modes
• Syntax & Semantics

• Querying Racer ABoxes with nRQL
• Example Session

• Benchmarking Racer + nRQL
• The Lehigh University Benchmark (LUBM)
• Evaluation

• Conclusion & Future Work

ADL ’04, 24.9.2004, Ralf Möller – p.2/22

Overview of Talk
• Introducing nRQL

• Introductory Example
• Overview of Features
• Query Processing Modes
• Syntax & Semantics

• Querying Racer ABoxes with nRQL
• Example Session

• Benchmarking Racer + nRQL

• The Lehigh University Benchmark (LUBM)
• Evaluation

• Conclusion & Future Work

ADL ’04, 24.9.2004, Ralf Möller – p.2/22

Overview of Talk
• Introducing nRQL

• Introductory Example
• Overview of Features
• Query Processing Modes
• Syntax & Semantics

• Querying Racer ABoxes with nRQL
• Example Session

• Benchmarking Racer + nRQL
• The Lehigh University Benchmark (LUBM)
• Evaluation

• Conclusion & Future Work

ADL ’04, 24.9.2004, Ralf Möller – p.2/22

Overview of Talk
• Introducing nRQL

• Introductory Example
• Overview of Features
• Query Processing Modes
• Syntax & Semantics

• Querying Racer ABoxes with nRQL
• Example Session

• Benchmarking Racer + nRQL
• The Lehigh University Benchmark (LUBM)
• Evaluation

• Conclusion & Future Work

ADL ’04, 24.9.2004, Ralf Möller – p.2/22

Motivating Simple Example

PSfrag replacements

Alice

Betty

CharlesBetty

age = 80

has_mother

has_child

mother(alice), age(alice) = 80 ,

has_mother(betty , alice),

has_mother(charles , alice),

mother(betty), mother(betty)

• How do we retrieve pairs of siblings (e.g.,
{(betty, charles)})?

	 write a “search program” (not declarative)

⊕ use nRQL:

ADL ’04, 24.9.2004, Ralf Möller – p.3/22

Motivating Simple Example

PSfrag replacements

Alice

Betty

CharlesBetty

age = 80

has_mother

has_child

mother(alice), age(alice) = 80 ,

has_mother(betty , alice),

has_mother(charles , alice),

mother(betty), mother(betty)

• How do we retrieve pairs of siblings (e.g.,
{(betty, charles)})?

	 write a “search program” (not declarative)

⊕ use nRQL:

ADL ’04, 24.9.2004, Ralf Möller – p.3/22

Motivating Simple Example

PSfrag replacements

Alice

Betty

CharlesBetty

age = 80

has_mother

has_child

mother(alice), age(alice) = 80 ,

has_mother(betty , alice),

has_mother(charles , alice),

mother(betty), mother(betty)

• How do we retrieve pairs of siblings (e.g.,
{(betty, charles)})?

	 write a “search program” (not declarative)

⊕ use nRQL:

ADL ’04, 24.9.2004, Ralf Möller – p.3/22

Motivating Simple Example

PSfrag replacements

Alice

Betty

CharlesBetty

age = 80

has_mother

has_child

mother(alice), age(alice) = 80 ,

has_mother(betty , alice),

has_mother(charles , alice),

mother(betty), mother(betty)

• How do we retrieve pairs of siblings (e.g.,
{(betty, charles)})?

	 write a “search program” (not declarative)

⊕ use nRQL:
(retrieve (?x ?y)

(and (has-child ?z ?x)

(has-child ?z ?y)))
ADL ’04, 24.9.2004, Ralf Möller – p.3/22

Motivating Simple Example

PSfrag replacements

Alice

Betty

CharlesBetty

age = 80

has_mother

has_child

mother(alice), age(alice) = 80 ,

has_mother(betty , alice),

has_mother(charles , alice),

mother(betty), mother(betty)

• How do we retrieve pairs of siblings (e.g.,
{(betty, charles)})?

	 write a “search program” (not declarative)

⊕ use nRQL:
⇒ (((?X CHARLES) (?Y BETTY))

((?X BETTY) (?Y CHARLES)))

ADL ’04, 24.9.2004, Ralf Möller – p.3/22

nRQL Language – Features
• Concept and role query atoms

• Concept and role query atoms
• Concrete domain (CD): constraint query atoms

(with role chains ended by CD attribute)
• Negation as failure (NAF)
• True negation (also in role query atoms!)

• (retrieve (?x) (?x (not woman)))

• (retrieve (?x ?y)

(?x ?y (not has-child)))

• Projection operators to fillers of CD attributes
(OWL datatype properties)

• Projection to told values of the CD
• Extended Racer concept syntax for OWL

datatype properties
• “pseudo-nominals” for concept expressions

ADL ’04, 24.9.2004, Ralf Möller – p.4/22

nRQL Language – Features
• Concept and role query atoms

• With variables:
(retrieve (?x) (?x woman))

• Without variables:
(retrieve () (betty woman))

• With individuals:

(retrieve (betty) (betty woman))

=

(retrieve (?betty-var)

(and (?betty-var woman)

(same-as ?betty-var betty)))

• Concept and role query atoms
• Concrete domain (CD): constraint query atoms

(with role chains ended by CD attribute)
• Negation as failure (NAF)
• True negation (also in role query atoms!)

• (retrieve (?x) (?x (not woman)))

• (retrieve (?x ?y)

(?x ?y (not has-child)))

• Projection operators to fillers of CD attributes
(OWL datatype properties)

• Projection to told values of the CD
• Extended Racer concept syntax for OWL

datatype properties
• “pseudo-nominals” for concept expressions

ADL ’04, 24.9.2004, Ralf Möller – p.4/22

nRQL Language – Features
• Concept and role query atoms

• (retrieve (?x ?y)

(?x ?y has-child))

• (retrieve (betty ?y)

(betty ?y has-child))

• . . .

• Concept and role query atoms
• Concrete domain (CD): constraint query atoms

(with role chains ended by CD attribute)
• Negation as failure (NAF)
• True negation (also in role query atoms!)

• (retrieve (?x) (?x (not woman)))

• (retrieve (?x ?y)

(?x ?y (not has-child)))

• Projection operators to fillers of CD attributes
(OWL datatype properties)

• Projection to told values of the CD
• Extended Racer concept syntax for OWL

datatype properties
• “pseudo-nominals” for concept expressions

ADL ’04, 24.9.2004, Ralf Möller – p.4/22

nRQL Language – Features
• Concept and role query atoms
• Concrete domain (CD): constraint query atoms

(with role chains ended by CD attribute)

• Negation as failure (NAF)
• True negation (also in role query atoms!)

• (retrieve (?x) (?x (not woman)))

• (retrieve (?x ?y)

(?x ?y (not has-child)))

• Projection operators to fillers of CD attributes
(OWL datatype properties)

• Projection to told values of the CD
• Extended Racer concept syntax for OWL

datatype properties
• “pseudo-nominals” for concept expressions

ADL ’04, 24.9.2004, Ralf Möller – p.4/22

nRQL Language – Features
• Concept and role query atoms
• Concrete domain (CD): constraint query atoms

(with role chains ended by CD attribute)

• (retrieve (?x)

(?x ?x (:constraint

(has-child has-father age)

(has-child has-mother age)

(> age-1 (+ 10 age-2)))))

• Negation as failure (NAF)
• True negation (also in role query atoms!)

• (retrieve (?x) (?x (not woman)))

• (retrieve (?x ?y)

(?x ?y (not has-child)))

• Projection operators to fillers of CD attributes
(OWL datatype properties)

• Projection to told values of the CD
• Extended Racer concept syntax for OWL

datatype properties
• “pseudo-nominals” for concept expressions

ADL ’04, 24.9.2004, Ralf Möller – p.4/22

nRQL Language – Features
• Concept and role query atoms
• Concrete domain (CD): constraint query atoms

(with role chains ended by CD attribute)
• Negation as failure (NAF)

• True negation (also in role query atoms!)
• (retrieve (?x) (?x (not woman)))

• (retrieve (?x ?y)

(?x ?y (not has-child)))

• Projection operators to fillers of CD attributes
(OWL datatype properties)

• Projection to told values of the CD
• Extended Racer concept syntax for OWL

datatype properties
• “pseudo-nominals” for concept expressions

ADL ’04, 24.9.2004, Ralf Möller – p.4/22

nRQL Language – Features
• Concept and role query atoms
• Concrete domain (CD): constraint query atoms

(with role chains ended by CD attribute)
• Negation as failure (NAF)

• (retrieve (?x) (neg (?x woman)))

• (retrieve (?x ?y)

(neg (?x ?y has-child)))

• True negation (also in role query atoms!)
• (retrieve (?x) (?x (not woman)))

• (retrieve (?x ?y)

(?x ?y (not has-child)))

• Projection operators to fillers of CD attributes
(OWL datatype properties)

• Projection to told values of the CD
• Extended Racer concept syntax for OWL

datatype properties
• “pseudo-nominals” for concept expressions

ADL ’04, 24.9.2004, Ralf Möller – p.4/22

nRQL Language – Features
• Concept and role query atoms
• Concrete domain (CD): constraint query atoms

(with role chains ended by CD attribute)
• Negation as failure (NAF)

• NAF for atoms with individuals can be tricky:
(retrieve (betty)

(neg (betty woman)))

=

(retrieve (?betty-var)

(neg (and (?betty-var woman)

(same-as ?betty-var betty))))

• True negation (also in role query atoms!)
• (retrieve (?x) (?x (not woman)))

• (retrieve (?x ?y)

(?x ?y (not has-child)))

• Projection operators to fillers of CD attributes
(OWL datatype properties)

• Projection to told values of the CD
• Extended Racer concept syntax for OWL

datatype properties
• “pseudo-nominals” for concept expressions

ADL ’04, 24.9.2004, Ralf Möller – p.4/22

nRQL Language – Features
• Concept and role query atoms
• Concrete domain (CD): constraint query atoms

(with role chains ended by CD attribute)
• Negation as failure (NAF)

• NAF for atoms with individuals can be tricky:
(retrieve (betty)

(neg (betty woman)))

=

(retrieve (?betty-var)

(UNION (neg (?betty-var woman))

(neg (same-as ?betty-var betty))))

• True negation (also in role query atoms!)
• (retrieve (?x) (?x (not woman)))

• (retrieve (?x ?y)

(?x ?y (not has-child)))

• Projection operators to fillers of CD attributes
(OWL datatype properties)

• Projection to told values of the CD
• Extended Racer concept syntax for OWL

datatype properties
• “pseudo-nominals” for concept expressions

ADL ’04, 24.9.2004, Ralf Möller – p.4/22

nRQL Language – Features
• Concept and role query atoms
• Concrete domain (CD): constraint query atoms

(with role chains ended by CD attribute)
• Negation as failure (NAF)
• True negation (also in role query atoms!)

• (retrieve (?x) (?x (not woman)))

• (retrieve (?x ?y)

(?x ?y (not has-child)))

• Projection operators to fillers of CD attributes
(OWL datatype properties)

• Projection to told values of the CD
• Extended Racer concept syntax for OWL

datatype properties
• “pseudo-nominals” for concept expressions

ADL ’04, 24.9.2004, Ralf Möller – p.4/22

nRQL Language – Features
• Concept and role query atoms
• Concrete domain (CD): constraint query atoms

(with role chains ended by CD attribute)
• Negation as failure (NAF)
• True negation (also in role query atoms!)

• (retrieve (?x) (?x (not woman)))

• (retrieve (?x ?y)

(?x ?y (not has-child)))

• Projection operators to fillers of CD attributes
(OWL datatype properties)

• Projection to told values of the CD
• Extended Racer concept syntax for OWL

datatype properties
• “pseudo-nominals” for concept expressions

ADL ’04, 24.9.2004, Ralf Möller – p.4/22

nRQL Language – Features
• Concept and role query atoms
• Concrete domain (CD): constraint query atoms

(with role chains ended by CD attribute)
• Negation as failure (NAF)
• True negation (also in role query atoms!)

• (retrieve (?x) (?x (not woman)))

• (retrieve (?x ?y)

(?x ?y (not has-child)))

• Projection operators to fillers of CD attributes
(OWL datatype properties)

• Projection to told values of the CD
• Extended Racer concept syntax for OWL

datatype properties
• “pseudo-nominals” for concept expressions

ADL ’04, 24.9.2004, Ralf Möller – p.4/22

nRQL Language – Features
• Concept and role query atoms
• Concrete domain (CD): constraint query atoms

(with role chains ended by CD attribute)
• Negation as failure (NAF)
• True negation (also in role query atoms!)
• Projection operators to fillers of CD attributes

(OWL datatype properties)

• Projection to told values of the CD
• Extended Racer concept syntax for OWL

datatype properties
• “pseudo-nominals” for concept expressions

ADL ’04, 24.9.2004, Ralf Möller – p.4/22

nRQL Language – Features
• Concept and role query atoms
• Concrete domain (CD): constraint query atoms

(with role chains ended by CD attribute)
• Negation as failure (NAF)
• True negation (also in role query atoms!)
• Projection operators to fillers of CD attributes

(OWL datatype properties)

• (retrieve (?x (AGE ?x))

(?x (and human (an age))))

• Projection to told values of the CD
• Extended Racer concept syntax for OWL

datatype properties
• “pseudo-nominals” for concept expressions

ADL ’04, 24.9.2004, Ralf Möller – p.4/22

nRQL Language – Features
• Concept and role query atoms
• Concrete domain (CD): constraint query atoms

(with role chains ended by CD attribute)
• Negation as failure (NAF)
• True negation (also in role query atoms!)
• Projection operators to fillers of CD attributes

(OWL datatype properties)
• Projection to told values of the CD

• Extended Racer concept syntax for OWL
datatype properties

• “pseudo-nominals” for concept expressions

ADL ’04, 24.9.2004, Ralf Möller – p.4/22

nRQL Language – Features
• Concept and role query atoms
• Concrete domain (CD): constraint query atoms

(with role chains ended by CD attribute)
• Negation as failure (NAF)
• True negation (also in role query atoms!)
• Projection operators to fillers of CD attributes

(OWL datatype properties)
• Projection to told values of the CD

• (retrieve (?x (FILLERS (AGE ?x)))

(?x (and human (an age))))

• Extended Racer concept syntax for OWL
datatype properties

• “pseudo-nominals” for concept expressions

ADL ’04, 24.9.2004, Ralf Möller – p.4/22

nRQL Language – Features
• Concept and role query atoms
• Concrete domain (CD): constraint query atoms

(with role chains ended by CD attribute)
• Negation as failure (NAF)
• True negation (also in role query atoms!)
• Projection operators to fillers of CD attributes

(OWL datatype properties)
• Projection to told values of the CD
• Extended Racer concept syntax for OWL

datatype properties

• “pseudo-nominals” for concept expressions

ADL ’04, 24.9.2004, Ralf Möller – p.4/22

nRQL Language – Features
• Concept and role query atoms
• Concrete domain (CD): constraint query atoms

(with role chains ended by CD attribute)
• Negation as failure (NAF)
• True negation (also in role query atoms!)
• Projection operators to fillers of CD attributes

(OWL datatype properties)
• Projection to told values of the CD
• Extended Racer concept syntax for OWL

datatype properties

• (retrieve ((fillers (OWL-DTP ?x)))

(?x (MIN OWL-DTP 10)))

• “pseudo-nominals” for concept expressions

ADL ’04, 24.9.2004, Ralf Möller – p.4/22

nRQL Language – Features
• Concept and role query atoms
• Concrete domain (CD): constraint query atoms

(with role chains ended by CD attribute)
• Negation as failure (NAF)
• True negation (also in role query atoms!)
• Projection operators to fillers of CD attributes

(OWL datatype properties)
• Projection to told values of the CD
• Extended Racer concept syntax for OWL

datatype properties
• “pseudo-nominals” for concept expressions

ADL ’04, 24.9.2004, Ralf Möller – p.4/22

nRQL Language – Features
• Concept and role query atoms
• Concrete domain (CD): constraint query atoms

(with role chains ended by CD attribute)
• Negation as failure (NAF)
• True negation (also in role query atoms!)
• Projection operators to fillers of CD attributes

(OWL datatype properties)
• Projection to told values of the CD
• Extended Racer concept syntax for OWL

datatype properties
• “pseudo-nominals” for concept expressions

• (retrieve (?x) (?x (some has-child BETTY)))
ADL ’04, 24.9.2004, Ralf Möller – p.4/22

nRQL Language – Features
• Concept and role query atoms
• Concrete domain (CD): constraint query atoms

(with role chains ended by CD attribute)
• Negation as failure (NAF)
• True negation (also in role query atoms!)
• Projection operators to fillers of CD attributes

(OWL datatype properties)
• Projection to told values of the CD
• Extended Racer concept syntax for OWL

datatype properties
• “pseudo-nominals” for concept expressions

ADL ’04, 24.9.2004, Ralf Möller – p.4/22

nRQL Engine – Features (1)
• Internal part of Racer (otherwise drastic

communication overhead!)

• Cost-based optimizer (uses ABox statistics and
well-known CSP optimization techniques)

• Set-at-a-time mode (“Get all tuples”)
• Tuple-at-a-time mode (“Get next tuple”)

⇒ Incremental, concurrent querying!
• “Max. no. of tuples” bound and timeout settable,

cancelable
• Degree of completeness configurable (next slide)

• Additional index structures for Racer ABoxes,
suitable for mass-data processing

ADL ’04, 24.9.2004, Ralf Möller – p.5/22

nRQL Engine – Features (1)
• Internal part of Racer (otherwise drastic

communication overhead!)
• Cost-based optimizer (uses ABox statistics and

well-known CSP optimization techniques)

• Set-at-a-time mode (“Get all tuples”)
• Tuple-at-a-time mode (“Get next tuple”)

⇒ Incremental, concurrent querying!
• “Max. no. of tuples” bound and timeout settable,

cancelable
• Degree of completeness configurable (next slide)

• Additional index structures for Racer ABoxes,
suitable for mass-data processing

ADL ’04, 24.9.2004, Ralf Möller – p.5/22

nRQL Engine – Features (1)
• Internal part of Racer (otherwise drastic

communication overhead!)
• Cost-based optimizer (uses ABox statistics and

well-known CSP optimization techniques)
• Set-at-a-time mode (“Get all tuples”)

• Tuple-at-a-time mode (“Get next tuple”)

⇒ Incremental, concurrent querying!
• “Max. no. of tuples” bound and timeout settable,

cancelable
• Degree of completeness configurable (next slide)

• Additional index structures for Racer ABoxes,
suitable for mass-data processing

ADL ’04, 24.9.2004, Ralf Möller – p.5/22

nRQL Engine – Features (1)
• Internal part of Racer (otherwise drastic

communication overhead!)
• Cost-based optimizer (uses ABox statistics and

well-known CSP optimization techniques)
• Set-at-a-time mode (“Get all tuples”)
• Tuple-at-a-time mode (“Get next tuple”)

⇒ Incremental, concurrent querying!
• “Max. no. of tuples” bound and timeout settable,

cancelable
• Degree of completeness configurable (next slide)

• Additional index structures for Racer ABoxes,
suitable for mass-data processing

ADL ’04, 24.9.2004, Ralf Möller – p.5/22

nRQL Engine – Features (1)
• Internal part of Racer (otherwise drastic

communication overhead!)
• Cost-based optimizer (uses ABox statistics and

well-known CSP optimization techniques)
• Set-at-a-time mode (“Get all tuples”)
• Tuple-at-a-time mode (“Get next tuple”)

• Lazy: compute next tuple if requested
• Eager: precompute next tuples (proactive)

⇒ Incremental, concurrent querying!
• “Max. no. of tuples” bound and timeout settable,

cancelable
• Degree of completeness configurable (next slide)

• Additional index structures for Racer ABoxes,
suitable for mass-data processing

ADL ’04, 24.9.2004, Ralf Möller – p.5/22

nRQL Engine – Features (1)
• Internal part of Racer (otherwise drastic

communication overhead!)
• Cost-based optimizer (uses ABox statistics and

well-known CSP optimization techniques)
• Set-at-a-time mode (“Get all tuples”)
• Tuple-at-a-time mode (“Get next tuple”)

⇒ Incremental, concurrent querying!

• “Max. no. of tuples” bound and timeout settable,
cancelable

• Degree of completeness configurable (next slide)

• Additional index structures for Racer ABoxes,
suitable for mass-data processing

ADL ’04, 24.9.2004, Ralf Möller – p.5/22

nRQL Engine – Features (1)
• Internal part of Racer (otherwise drastic

communication overhead!)
• Cost-based optimizer (uses ABox statistics and

well-known CSP optimization techniques)
• Set-at-a-time mode (“Get all tuples”)
• Tuple-at-a-time mode (“Get next tuple”)

⇒ Incremental, concurrent querying!
• “Max. no. of tuples” bound and timeout settable,

cancelable

• Degree of completeness configurable (next slide)

• Additional index structures for Racer ABoxes,
suitable for mass-data processing

ADL ’04, 24.9.2004, Ralf Möller – p.5/22

nRQL Engine – Features (1)
• Internal part of Racer (otherwise drastic

communication overhead!)
• Cost-based optimizer (uses ABox statistics and

well-known CSP optimization techniques)
• Set-at-a-time mode (“Get all tuples”)
• Tuple-at-a-time mode (“Get next tuple”)

⇒ Incremental, concurrent querying!
• “Max. no. of tuples” bound and timeout settable,

cancelable
• Degree of completeness configurable (next slide)

• Additional index structures for Racer ABoxes,
suitable for mass-data processing

ADL ’04, 24.9.2004, Ralf Möller – p.5/22

nRQL Engine – Features (1)
• Internal part of Racer (otherwise drastic

communication overhead!)
• Cost-based optimizer (uses ABox statistics and

well-known CSP optimization techniques)
• Set-at-a-time mode (“Get all tuples”)
• Tuple-at-a-time mode (“Get next tuple”)

⇒ Incremental, concurrent querying!
• “Max. no. of tuples” bound and timeout settable,

cancelable
• Degree of completeness configurable (next slide)
• Additional index structures for Racer ABoxes,

suitable for mass-data processing
ADL ’04, 24.9.2004, Ralf Möller – p.5/22

nRQL Engine – Features (2)
• Degree of completeness configurable:

• Told information (very incomplete)
• Told information + exploited TBox

information (similar to DLDB, Ins.Store, . . .)

• Complete Racer ABox Retrieval (expensive!)

• 3×#{set_at_a_time,tuple_at_a_time} = 6

• Variations: realize ABox / classify TBox (or not)

• 7th tuple-at-a-time mode: “two-phase
processing”
• Phase 1: deliver cheap tuples (incomplete)
• Warn user; then, if next tuple requested, start
• Phase 2: use full ABox reasoning to deliver

remaining tuples (complete)

ADL ’04, 24.9.2004, Ralf Möller – p.6/22

nRQL Engine – Features (2)
• Degree of completeness configurable:

• Told information (very incomplete)

• Told information + exploited TBox
information (similar to DLDB, Ins.Store, . . .)

• Complete Racer ABox Retrieval (expensive!)

• 3×#{set_at_a_time,tuple_at_a_time} = 6

• Variations: realize ABox / classify TBox (or not)

• 7th tuple-at-a-time mode: “two-phase
processing”
• Phase 1: deliver cheap tuples (incomplete)
• Warn user; then, if next tuple requested, start
• Phase 2: use full ABox reasoning to deliver

remaining tuples (complete)

ADL ’04, 24.9.2004, Ralf Möller – p.6/22

nRQL Engine – Features (2)
• Degree of completeness configurable:

• Told information (very incomplete)
• Told information + exploited TBox

information (similar to DLDB, Ins.Store, . . .)

• Complete Racer ABox Retrieval (expensive!)

• 3×#{set_at_a_time,tuple_at_a_time} = 6

• Variations: realize ABox / classify TBox (or not)

• 7th tuple-at-a-time mode: “two-phase
processing”
• Phase 1: deliver cheap tuples (incomplete)
• Warn user; then, if next tuple requested, start
• Phase 2: use full ABox reasoning to deliver

remaining tuples (complete)

ADL ’04, 24.9.2004, Ralf Möller – p.6/22

nRQL Engine – Features (2)
• Degree of completeness configurable:

• Told information (very incomplete)
• Told information + exploited TBox

information (similar to DLDB, Ins.Store, . . .)
• Complete Racer ABox Retrieval (expensive!)

• 3×#{set_at_a_time,tuple_at_a_time} = 6

• Variations: realize ABox / classify TBox (or not)

• 7th tuple-at-a-time mode: “two-phase
processing”
• Phase 1: deliver cheap tuples (incomplete)
• Warn user; then, if next tuple requested, start
• Phase 2: use full ABox reasoning to deliver

remaining tuples (complete)

ADL ’04, 24.9.2004, Ralf Möller – p.6/22

nRQL Engine – Features (2)
• Degree of completeness configurable:

• Told information (very incomplete)
• Told information + exploited TBox

information (similar to DLDB, Ins.Store, . . .)
• Complete Racer ABox Retrieval (expensive!)

• 3×#{set_at_a_time,tuple_at_a_time} = 6

• Variations: realize ABox / classify TBox (or not)

• 7th tuple-at-a-time mode: “two-phase
processing”
• Phase 1: deliver cheap tuples (incomplete)
• Warn user; then, if next tuple requested, start
• Phase 2: use full ABox reasoning to deliver

remaining tuples (complete)

ADL ’04, 24.9.2004, Ralf Möller – p.6/22

nRQL Engine – Features (2)
• Degree of completeness configurable:

• Told information (very incomplete)
• Told information + exploited TBox

information (similar to DLDB, Ins.Store, . . .)
• Complete Racer ABox Retrieval (expensive!)

• 3×#{set_at_a_time,tuple_at_a_time} = 6

• Variations: realize ABox / classify TBox (or not)

• 7th tuple-at-a-time mode: “two-phase
processing”
• Phase 1: deliver cheap tuples (incomplete)
• Warn user; then, if next tuple requested, start
• Phase 2: use full ABox reasoning to deliver

remaining tuples (complete)

ADL ’04, 24.9.2004, Ralf Möller – p.6/22

nRQL Engine – Features (2)
• Degree of completeness configurable:

• Told information (very incomplete)
• Told information + exploited TBox

information (similar to DLDB, Ins.Store, . . .)
• Complete Racer ABox Retrieval (expensive!)

• 3×#{set_at_a_time,tuple_at_a_time} = 6

• Variations: realize ABox / classify TBox (or not)
• 7th tuple-at-a-time mode: “two-phase

processing”

• Phase 1: deliver cheap tuples (incomplete)
• Warn user; then, if next tuple requested, start
• Phase 2: use full ABox reasoning to deliver

remaining tuples (complete)

ADL ’04, 24.9.2004, Ralf Möller – p.6/22

nRQL Engine – Features (2)
• Degree of completeness configurable:

• Told information (very incomplete)
• Told information + exploited TBox

information (similar to DLDB, Ins.Store, . . .)
• Complete Racer ABox Retrieval (expensive!)

• 3×#{set_at_a_time,tuple_at_a_time} = 6

• Variations: realize ABox / classify TBox (or not)
• 7th tuple-at-a-time mode: “two-phase processing”

• Phase 1: deliver cheap tuples (incomplete)

• Warn user; then, if next tuple requested, start
• Phase 2: use full ABox reasoning to deliver

remaining tuples (complete)

ADL ’04, 24.9.2004, Ralf Möller – p.6/22

nRQL Engine – Features (2)
• Degree of completeness configurable:

• Told information (very incomplete)
• Told information + exploited TBox

information (similar to DLDB, Ins.Store, . . .)
• Complete Racer ABox Retrieval (expensive!)

• 3×#{set_at_a_time,tuple_at_a_time} = 6

• Variations: realize ABox / classify TBox (or not)
• 7th tuple-at-a-time mode: “two-phase processing”

• Phase 1: deliver cheap tuples (incomplete)
• Warn user; then, if next tuple requested, start

• Phase 2: use full ABox reasoning to deliver
remaining tuples (complete)

ADL ’04, 24.9.2004, Ralf Möller – p.6/22

nRQL Engine – Features (2)
• Degree of completeness configurable:

• Told information (very incomplete)
• Told information + exploited TBox

information (similar to DLDB, Ins.Store, . . .)
• Complete Racer ABox Retrieval (expensive!)

• 3×#{set_at_a_time,tuple_at_a_time} = 6

• Variations: realize ABox / classify TBox (or not)
• 7th tuple-at-a-time mode: “two-phase processing”

• Phase 1: deliver cheap tuples (incomplete)
• Warn user; then, if next tuple requested, start
• Phase 2: use full ABox reasoning to deliver

remaining tuples (complete)
ADL ’04, 24.9.2004, Ralf Möller – p.6/22

Incremental Query Processing

TBox: ABox :

person v > spouse(doris)

man v person spouse(betty)

woman v person man(adam)

spouse
.
= woman u woman(eve)

(∃married_to.man) maried_to(eve, adam)

• (retrieve (?x) (?x spouse))

⇒ (:QUERY-1 :RUNNING)

• (get-answer :query-1)

⇒ (((?X DORIS)) ((?X BETTY)) ((?X EVE)))

ADL ’04, 24.9.2004, Ralf Möller – p.7/22

Incremental Query Processing

TBox: ABox :

person v > spouse(doris)

man v person spouse(betty)

woman v person man(adam)

spouse
.
= woman u woman(eve)

(∃married_to.man) maried_to(eve, adam)

• (retrieve (?x) (?x spouse))

⇒ (:QUERY-1 :RUNNING)

• (get-next-tuple :query-1)

⇒ ((?X DORIS))

• (get-answer :query-1)

⇒ (((?X DORIS)) ((?X BETTY)) ((?X EVE)))

ADL ’04, 24.9.2004, Ralf Möller – p.7/22

Incremental Query Processing

TBox: ABox :

person v > spouse(doris)

man v person spouse(betty)

woman v person man(adam)

spouse
.
= woman u woman(eve)

(∃married_to.man) maried_to(eve, adam)

• (retrieve (?x) (?x spouse))

⇒ (:QUERY-1 :RUNNING)

• (get-next-tuple :query-1)

⇒ ((?X BETTY))

• (get-answer :query-1)

⇒ (((?X DORIS)) ((?X BETTY)) ((?X EVE)))

ADL ’04, 24.9.2004, Ralf Möller – p.7/22

Incremental Query Processing

TBox: ABox :

person v > spouse(doris)

man v person spouse(betty)

woman v person man(adam)

spouse
.
= woman u woman(eve)

(∃married_to.man) maried_to(eve, adam)

• (retrieve (?x) (?x spouse))

⇒ (:QUERY-1 :RUNNING)

• (get-next-tuple :query-1)

⇒ :WARNING-EXPENSIVE-PHASE-TWO-STARTS

• (get-answer :query-1)

⇒ (((?X DORIS)) ((?X BETTY)) ((?X EVE)))

ADL ’04, 24.9.2004, Ralf Möller – p.7/22

Incremental Query Processing

TBox: ABox :

person v > spouse(doris)

man v person spouse(betty)

woman v person man(adam)

spouse
.
= woman u woman(eve)

(∃married_to.man) maried_to(eve, adam)

• (retrieve (?x) (?x spouse))

⇒ (:QUERY-1 :RUNNING)

• (get-next-tuple :query-1)

⇒ ((?X EVE))

• (get-answer :query-1)

⇒ (((?X DORIS)) ((?X BETTY)) ((?X EVE)))

ADL ’04, 24.9.2004, Ralf Möller – p.7/22

Incremental Query Processing

TBox: ABox :

person v > spouse(doris)

man v person spouse(betty)

woman v person man(adam)

spouse
.
= woman u woman(eve)

(∃married_to.man) maried_to(eve, adam)

• (retrieve (?x) (?x spouse))

⇒ (:QUERY-1 :RUNNING)

• (get-next-tuple :query-1)

⇒ :EXHAUSTED

• (get-answer :query-1)

⇒ (((?X DORIS)) ((?X BETTY)) ((?X EVE)))

ADL ’04, 24.9.2004, Ralf Möller – p.7/22

Incremental Query Processing

TBox: ABox :

person v > spouse(doris)

man v person spouse(betty)

woman v person man(adam)

spouse
.
= woman u woman(eve)

(∃married_to.man) maried_to(eve, adam)

• (retrieve (?x) (?x spouse))

⇒ (:QUERY-1 :RUNNING)

• (get-answer :query-1)

⇒ (((?X DORIS)) ((?X BETTY)) ((?X EVE)))
ADL ’04, 24.9.2004, Ralf Möller – p.7/22

nRQL Engine – Features (3)
• Reasoning with Queries

• Incomplete for full nRQL, but still useful
• Complete for restricted nRQL
• Query consistency check
• Query entailment check (subsumption)

⇒ maintenance of a “Query repository” lattice
(similar to a TBox)

⇒ use cached tuples of queries in repository for
optimization purposes (“materialized views”)

• Semantic optimization: query “realization”
(similar to ABox realization)
⇒ add implied conjuncts to enhance

informdness of backtracking search

ADL ’04, 24.9.2004, Ralf Möller – p.8/22

nRQL Engine – Features (3)
• Reasoning with Queries

• Incomplete for full nRQL, but still useful
• Complete for restricted nRQL
• Query consistency check
• Query entailment check (subsumption)
⇒ maintenance of a “Query repository” lattice

(similar to a TBox)

⇒ use cached tuples of queries in repository for
optimization purposes (“materialized views”)

• Semantic optimization: query “realization”
(similar to ABox realization)
⇒ add implied conjuncts to enhance

informdness of backtracking search

ADL ’04, 24.9.2004, Ralf Möller – p.8/22

nRQL Engine – Features (3)
• Reasoning with Queries

• Incomplete for full nRQL, but still useful
• Complete for restricted nRQL
• Query consistency check
• Query entailment check (subsumption)
⇒ maintenance of a “Query repository” lattice

(similar to a TBox)
⇒ use cached tuples of queries in repository for

optimization purposes (“materialized views”)

• Semantic optimization: query “realization”
(similar to ABox realization)
⇒ add implied conjuncts to enhance

informdness of backtracking search

ADL ’04, 24.9.2004, Ralf Möller – p.8/22

nRQL Engine – Features (3)
• Reasoning with Queries

• Incomplete for full nRQL, but still useful
• Complete for restricted nRQL
• Query consistency check
• Query entailment check (subsumption)
⇒ maintenance of a “Query repository” lattice

(similar to a TBox)
⇒ use cached tuples of queries in repository for

optimization purposes (“materialized views”)
• Semantic optimization: query “realization”

(similar to ABox realization)
⇒ add implied conjuncts to enhance

informdness of backtracking search
ADL ’04, 24.9.2004, Ralf Möller – p.8/22

nRQL Engine – Features (4)
• Defined queries (simple Macro-mechanism)

• Simple rule mechanism
• Complex TBox queries
• . . . most of the present nRQL features have been

requested by users (special thanks to R. v.d.
Straeten)

• Future work:
• Projection operators within query body
• “Rolling up”?
• Approach OWL-QL?
• Connect to real DB

• . . . for more nRQL peculiarities: see manual

ADL ’04, 24.9.2004, Ralf Möller – p.9/22

nRQL Engine – Features (4)
• Defined queries (simple Macro-mechanism)

• (defquery mother

(?x ?y)

(and (?x woman)

(?x ?y has-child)))

(defquery mother-with-male-child

(?x ?child)

(and (:substitute

(mother ?x ?child))

(?child man)))

• Simple rule mechanism
• Complex TBox queries
• . . . most of the present nRQL features have been

requested by users (special thanks to R. v.d.
Straeten)

• Future work:
• Projection operators within query body
• “Rolling up”?
• Approach OWL-QL?
• Connect to real DB

• . . . for more nRQL peculiarities: see manual

ADL ’04, 24.9.2004, Ralf Möller – p.9/22

nRQL Engine – Features (4)
• Defined queries (simple Macro-mechanism)
• Simple rule mechanism

• Complex TBox queries
• . . . most of the present nRQL features have been

requested by users (special thanks to R. v.d.
Straeten)

• Future work:
• Projection operators within query body
• “Rolling up”?
• Approach OWL-QL?
• Connect to real DB

• . . . for more nRQL peculiarities: see manual

ADL ’04, 24.9.2004, Ralf Möller – p.9/22

nRQL Engine – Features (4)
• Defined queries (simple Macro-mechanism)
• Simple rule mechanism

• (defrule

((instance (new-ind child-of ?x ?y) human)

(instance ?x mother)

(instance ?y father)

(related (new-ind child-of ?x ?y) ?x

has-mother)

(related (new-ind child-of ?x ?y) ?y

has-father))

(and (?x woman) (?y man) (?x ?y married))

(neg (?x (:has-known-successor has-child)))

• Complex TBox queries
• . . . most of the present nRQL features have been

requested by users (special thanks to R. v.d.
Straeten)

• Future work:
• Projection operators within query body
• “Rolling up”?
• Approach OWL-QL?
• Connect to real DB

• . . . for more nRQL peculiarities: see manual

ADL ’04, 24.9.2004, Ralf Möller – p.9/22

nRQL Engine – Features (4)
• Defined queries (simple Macro-mechanism)
• Simple rule mechanism
• Complex TBox queries

• . . . most of the present nRQL features have been
requested by users (special thanks to R. v.d.
Straeten)

• Future work:
• Projection operators within query body
• “Rolling up”?
• Approach OWL-QL?
• Connect to real DB

• . . . for more nRQL peculiarities: see manual

ADL ’04, 24.9.2004, Ralf Möller – p.9/22

nRQL Engine – Features (4)
• Defined queries (simple Macro-mechanism)
• Simple rule mechanism
• Complex TBox queries

• (tbox-query (?x ?y)

(and (?x woman)

(?x ?y has-descendant)))

• . . . most of the present nRQL features have been
requested by users (special thanks to R. v.d.
Straeten)

• Future work:
• Projection operators within query body
• “Rolling up”?
• Approach OWL-QL?
• Connect to real DB

• . . . for more nRQL peculiarities: see manual

ADL ’04, 24.9.2004, Ralf Möller – p.9/22

nRQL Engine – Features (4)
• Defined queries (simple Macro-mechanism)
• Simple rule mechanism
• Complex TBox queries
• . . . most of the present nRQL features have been

requested by users (special thanks to R. v.d.
Straeten)

• Future work:
• Projection operators within query body
• “Rolling up”?
• Approach OWL-QL?
• Connect to real DB

• . . . for more nRQL peculiarities: see manual

ADL ’04, 24.9.2004, Ralf Möller – p.9/22

nRQL Engine – Features (4)
• Defined queries (simple Macro-mechanism)
• Simple rule mechanism
• Complex TBox queries
• . . . most of the present nRQL features have been

requested by users (special thanks to R. v.d.
Straeten)

• Future work:
• Projection operators within query body
• “Rolling up”?
• Approach OWL-QL?
• Connect to real DB

• . . . for more nRQL peculiarities: see manual

ADL ’04, 24.9.2004, Ralf Möller – p.9/22

nRQL Engine – Features (4)
• Defined queries (simple Macro-mechanism)
• Simple rule mechanism
• Complex TBox queries
• . . . most of the present nRQL features have been

requested by users (special thanks to R. v.d.
Straeten)

• Future work:
• Projection operators within query body
• “Rolling up”?
• Approach OWL-QL?
• Connect to real DB

• . . . for more nRQL peculiarities: see manual
ADL ’04, 24.9.2004, Ralf Möller – p.9/22

nRQL - Syntax (1)
Let a, b ∈ O; C be an ALCQHIR+(D−) concept expression, R a nRQL role

expression (a nRQL role expression is either a ALCQHIR+(D−) role

expression, or a negated ALCQHIR+(D−) role expression); P one of the

concrete domain expressions offered by Racer; and f, g be so-called attributes

(whose range is defined to be one of the available concrete domains offered by

Racer). Then, the set of nRQL atoms is given as follows:

• Unary concept query atoms: C(a)

• Binary role query atoms: R(a, b)

• Binary constraint query atoms: P (f(a), g(b))

• Binary same-as atoms: same_as(a, i)

• Unary has-known-successor atoms: has_known_successor(a, R)

• Negated atoms: If A is a nRQL atom, then so is \(A), a so-called

negation as failure atom or simply negated atom.

ADL ’04, 24.9.2004, Ralf Möller – p.10/22

nRQL - Syntax (2)
A nRQL Query has a head and a body. Query bodies are defined inductively

as follows:

• Each nRQL atom A is a body; and

• If b1 . . . bn are bodies, then the following are also bodies:

• b1 ∧ · · · ∧ bn, b1 ∨ · · · ∨ bn, \(bi)

We use the syntax body(a1, . . . , an) to indicate that a1, . . . , an are all the

object names (ai ∈ O) mentioned in body. A nRQL Query is then an

expression of the form

ans(ai1 , . . . , aim
)← body(a1, . . . , an),

The expression ans(ai1 , . . . , aim
) is also called the head, and (i1, . . . , im) is

an index vector with ij ∈ 1 . . . n. A conjunctive nRQL query is a query which

does not contain any ∨ and \ operators.

ADL ’04, 24.9.2004, Ralf Möller – p.11/22

nRQL - Semantics (1)
Let K = (T ,A) be an ALCQHIR+(D−) knowledge base.

A positive ground query atom A is logically entailed (or implied) by K iff

every model I of K is also a model of A. In this case we write K |= A.

Moreover, if I is a model of K (A) we write I |= K (I |= A). We therefore

have to specify when I |= A holds. In the following, if the atom A contains

individuals i, j, it will always be the case that i, j ∈ inds(A). From this it

follows that iI ∈ ∆I and jI ∈ ∆I , for any I = (∆I , ·I) with I |= K:

• If A = C(i), then I |= A iff iI ∈ CI .

• If A = R(i, j), then I |= A iff (iI , jI) ∈ RI .

• If A = P (f(i), g(j)), then I |= A iff (fI(iI), gI(jI)) ∈ P I .

• If A = same_as(i, i), then I |= A.

• If A = same_as(i, j), then I 6|= A.

• If A = has_known_successor(i, R), then I |= A iff for some

j ∈ inds(A): I |= R(i, j).
ADL ’04, 24.9.2004, Ralf Möller – p.12/22

nRQL - Semantics (2)
Let ans(ai1 , . . . , aim)← body(a1, . . . , an) be a nRQL query q

such that body is in NNF. Let β(ai) =def xai
if ai ∈ I, and ai

otherwise; i.e., if ai is an individual we replace it with its

representative unique variable which we denote by xai
. Let K be

the knowledge base to be queried, and A be its ABox. The

answer set of the query q is then the following set of tuples:

{ (ji1 , . . . , jim) | ∃j1, . . . , jn ∈ inds(A),∀m,n,m 6= n : jm 6= jn,

K |=NF α(body)[β(a1)←j1,...,β(an)←jn] }

Finally, we state that {()} =def TRUE and {} =def FALSE.

ADL ’04, 24.9.2004, Ralf Möller – p.13/22

The LUBM
• Lehigh University Benchmark for benchmarking

semantic web repositories
• See http://www.lehigh.edu/˜yug2/Research/

SemanticWeb/LUBM/LUBM.htm

• Modeling of a university
• OWL (DAML+OIL) classes for
departments, various kinds of professors,
students, . . .

• roles like worksFor, subOrganization
(transitive),

• Datatype properties telephone, age, . . .

• Benchmark generator generates “ABoxes”
• 14 benchmarking queries

ADL ’04, 24.9.2004, Ralf Möller – p.14/22

The LUBM
• Lehigh University Benchmark for benchmarking

semantic web repositories
• See http://www.lehigh.edu/˜yug2/Research/

SemanticWeb/LUBM/LUBM.htm

• Modeling of a university
• OWL (DAML+OIL) classes for
departments, various kinds of professors,
students, . . .

• roles like worksFor, subOrganization
(transitive),

• Datatype properties telephone, age, . . .

• Benchmark generator generates “ABoxes”
• 14 benchmarking queries

ADL ’04, 24.9.2004, Ralf Möller – p.14/22

The LUBM
• Lehigh University Benchmark for benchmarking

semantic web repositories
• See http://www.lehigh.edu/˜yug2/Research/

SemanticWeb/LUBM/LUBM.htm

• Modeling of a university
• OWL (DAML+OIL) classes for
departments, various kinds of professors,
students, . . .

• roles like worksFor, subOrganization
(transitive),

• Datatype properties telephone, age, . . .
• Benchmark generator generates “ABoxes”

• 14 benchmarking queries

ADL ’04, 24.9.2004, Ralf Möller – p.14/22

The LUBM
• Lehigh University Benchmark for benchmarking

semantic web repositories
• See http://www.lehigh.edu/˜yug2/Research/

SemanticWeb/LUBM/LUBM.htm

• Modeling of a university
• OWL (DAML+OIL) classes for
departments, various kinds of professors,
students, . . .

• roles like worksFor, subOrganization
(transitive),

• Datatype properties telephone, age, . . .
• Benchmark generator generates “ABoxes”
• 14 benchmarking queries

ADL ’04, 24.9.2004, Ralf Möller – p.14/22

The LUBM
Query 9: (retrieve

(?x ?y ?z)

(and (?x Student)

(?y Faculty)

(?z Course)

(?x ?y advisor)

(?x ?z takesCourse)

(?y ?z teacherOf)))

“Retrieve all triples <?x,?y,?z> such that ?x is (bound

to) a student undertaking a course ?z whose teacher ?y

(from the faculty) happens to be his/her advisor”

ADL ’04, 24.9.2004, Ralf Möller – p.14/22

The LUBM
Query 12: (retrieve

(?x ?y www.University0.edu)

(and (?x chair)

(?y Department)

(?x ?y memberOf)

(?y www.University0.edu

subOrganizationOf)))

Cite LUBM: “The benchmark data do not produce any in-

stances of class Chair. Instead, each Department individual

is linked to the chair professor of that department by pro-

perty headOf. Hence this query requires realization, i.e., in-

ference that that professor is an instance of class Chair be-

cause he or she is the head of a department.”
ADL ’04, 24.9.2004, Ralf Möller – p.14/22

LUBM and Racer + nRQL?
• How far can we get with Racer + nRQL using

complete ABox querying?

• How many LUBM departments can we “process”
with a Racer ABox?

• With incomplete ABox querying?
• How many LUBM departments can we process

with a nRQL “ABox mirror”?
• How bad is the incompleteness? How many

tuples do we miss?
• Does it scale?
• How does Racer + nRQL perform (speed &

completeness) compared to DLDB?

ADL ’04, 24.9.2004, Ralf Möller – p.15/22

LUBM and Racer + nRQL?
• How far can we get with Racer + nRQL using

complete ABox querying?
• How many LUBM departments can we “process”

with a Racer ABox?

• With incomplete ABox querying?
• How many LUBM departments can we process

with a nRQL “ABox mirror”?
• How bad is the incompleteness? How many

tuples do we miss?
• Does it scale?
• How does Racer + nRQL perform (speed &

completeness) compared to DLDB?

ADL ’04, 24.9.2004, Ralf Möller – p.15/22

LUBM and Racer + nRQL?
• How far can we get with Racer + nRQL using

complete ABox querying?
• How many LUBM departments can we “process”

with a Racer ABox?
• With incomplete ABox querying?

• How many LUBM departments can we process
with a nRQL “ABox mirror”?

• How bad is the incompleteness? How many
tuples do we miss?

• Does it scale?
• How does Racer + nRQL perform (speed &

completeness) compared to DLDB?

ADL ’04, 24.9.2004, Ralf Möller – p.15/22

LUBM and Racer + nRQL?
• How far can we get with Racer + nRQL using

complete ABox querying?
• How many LUBM departments can we “process”

with a Racer ABox?
• With incomplete ABox querying?
• How many LUBM departments can we process

with a nRQL “ABox mirror”?

• How bad is the incompleteness? How many
tuples do we miss?

• Does it scale?
• How does Racer + nRQL perform (speed &

completeness) compared to DLDB?

ADL ’04, 24.9.2004, Ralf Möller – p.15/22

LUBM and Racer + nRQL?
• How far can we get with Racer + nRQL using

complete ABox querying?
• How many LUBM departments can we “process”

with a Racer ABox?
• With incomplete ABox querying?
• How many LUBM departments can we process

with a nRQL “ABox mirror”?
• How bad is the incompleteness? How many

tuples do we miss?

• Does it scale?
• How does Racer + nRQL perform (speed &

completeness) compared to DLDB?

ADL ’04, 24.9.2004, Ralf Möller – p.15/22

LUBM and Racer + nRQL?
• How far can we get with Racer + nRQL using

complete ABox querying?
• How many LUBM departments can we “process”

with a Racer ABox?
• With incomplete ABox querying?
• How many LUBM departments can we process

with a nRQL “ABox mirror”?
• How bad is the incompleteness? How many

tuples do we miss?
• Does it scale?

• How does Racer + nRQL perform (speed &
completeness) compared to DLDB?

ADL ’04, 24.9.2004, Ralf Möller – p.15/22

LUBM and Racer + nRQL?
• How far can we get with Racer + nRQL using

complete ABox querying?
• How many LUBM departments can we “process”

with a Racer ABox?
• With incomplete ABox querying?
• How many LUBM departments can we process

with a nRQL “ABox mirror”?
• How bad is the incompleteness? How many

tuples do we miss?
• Does it scale?
• How does Racer + nRQL perform (speed &

completeness) compared to DLDB?
ADL ’04, 24.9.2004, Ralf Möller – p.15/22

Benchmarking Racer + nRQL
• We ran LUBM queries in 3 settings:

• Setting 1: complete ABox querying using an
unrealized ABox

• Setting 2: complete ABox reasoning using a
realized ABox

• Setting 3: “told information querying” enhanced
with TBox information – “upward saturation”:
⇒ for each ABox axiom C(i) ∈ A, for all

D ∈ concept_ancestors(C, TBox): put D(i)
into “ABox”: A := A ∪ {D(i)}

⇒ same for role relationships due to role
hierarchies

• nRQL is always complete w.r.t. roles

ADL ’04, 24.9.2004, Ralf Möller – p.16/22

Benchmarking Racer + nRQL
• We ran LUBM queries in 3 settings:
• Setting 1: complete ABox querying using an

unrealized ABox

• Setting 2: complete ABox reasoning using a
realized ABox

• Setting 3: “told information querying” enhanced
with TBox information – “upward saturation”:
⇒ for each ABox axiom C(i) ∈ A, for all

D ∈ concept_ancestors(C, TBox): put D(i)
into “ABox”: A := A ∪ {D(i)}

⇒ same for role relationships due to role
hierarchies

• nRQL is always complete w.r.t. roles

ADL ’04, 24.9.2004, Ralf Möller – p.16/22

Benchmarking Racer + nRQL
• We ran LUBM queries in 3 settings:
• Setting 1: complete ABox querying using an

unrealized ABox
• Setting 2: complete ABox reasoning using a

realized ABox

• Setting 3: “told information querying” enhanced
with TBox information – “upward saturation”:
⇒ for each ABox axiom C(i) ∈ A, for all

D ∈ concept_ancestors(C, TBox): put D(i)
into “ABox”: A := A ∪ {D(i)}

⇒ same for role relationships due to role
hierarchies

• nRQL is always complete w.r.t. roles

ADL ’04, 24.9.2004, Ralf Möller – p.16/22

Benchmarking Racer + nRQL
• We ran LUBM queries in 3 settings:
• Setting 1: complete ABox querying using an

unrealized ABox
• Setting 2: complete ABox reasoning using a

realized ABox
• Setting 3: “told information querying” enhanced

with TBox information – “upward saturation”:

⇒ for each ABox axiom C(i) ∈ A, for all
D ∈ concept_ancestors(C, TBox): put D(i)
into “ABox”: A := A ∪ {D(i)}

⇒ same for role relationships due to role
hierarchies

• nRQL is always complete w.r.t. roles

ADL ’04, 24.9.2004, Ralf Möller – p.16/22

Benchmarking Racer + nRQL
• We ran LUBM queries in 3 settings:
• Setting 1: complete ABox querying using an

unrealized ABox
• Setting 2: complete ABox reasoning using a

realized ABox
• Setting 3: “told information querying” enhanced

with TBox information – “upward saturation”:
⇒ for each ABox axiom C(i) ∈ A, for all

D ∈ concept_ancestors(C, TBox): put D(i)
into “ABox”: A := A ∪ {D(i)}

⇒ same for role relationships due to role
hierarchies

• nRQL is always complete w.r.t. roles
ADL ’04, 24.9.2004, Ralf Möller – p.16/22

Results - Setting 1

0.01

0.1

1

10

100

1000

10000

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

S
ec

on
ds

No. of Individuals

Runtime Performance of LUBM Queries 1-13 (Setting 1, Logarithmic Scale, Unrealized ABox)

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10
Q11
Q12
Q13

ADL ’04, 24.9.2004, Ralf Möller – p.17/22

Results - Setting 2

0.01

0.1

1

10

100

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

S
ec

on
ds

No. of Individuals

Runtime Performance of LUBM Queries 1-13 (Setting 2, Logarithmic Scale, Realized ABox)

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10
Q11
Q12
Q13

ADL ’04, 24.9.2004, Ralf Möller – p.18/22

Results - Setting 3

ADL ’04, 24.9.2004, Ralf Möller – p.19/22

Evaluation
• Using complete ABox querying we have to stop

at approx. 10.000 LUBM individuals

• Initial ABox consistency test kills Racer
• If completeness is sacrificed, we can easily load

and process more than 30.000 individuals (1
university)

• All but Q8 and Q9 can be answered in fractions
of a second

• Only one tuple is missed (for Q12)

⇒ not severely incomplete

⇒ even more complete than DLDB

⇒ in this scale, answering time is quite okay!

ADL ’04, 24.9.2004, Ralf Möller – p.20/22

Evaluation
• Using complete ABox querying we have to stop

at approx. 10.000 LUBM individuals
• Initial ABox consistency test kills Racer

• If completeness is sacrificed, we can easily load
and process more than 30.000 individuals (1
university)

• All but Q8 and Q9 can be answered in fractions
of a second

• Only one tuple is missed (for Q12)

⇒ not severely incomplete

⇒ even more complete than DLDB

⇒ in this scale, answering time is quite okay!

ADL ’04, 24.9.2004, Ralf Möller – p.20/22

Evaluation
• Using complete ABox querying we have to stop

at approx. 10.000 LUBM individuals
• Initial ABox consistency test kills Racer
• If completeness is sacrificed, we can easily load

and process more than 30.000 individuals (1
university)

• All but Q8 and Q9 can be answered in fractions
of a second

• Only one tuple is missed (for Q12)

⇒ not severely incomplete

⇒ even more complete than DLDB

⇒ in this scale, answering time is quite okay!

ADL ’04, 24.9.2004, Ralf Möller – p.20/22

Evaluation
• Using complete ABox querying we have to stop

at approx. 10.000 LUBM individuals
• Initial ABox consistency test kills Racer
• If completeness is sacrificed, we can easily load

and process more than 30.000 individuals (1
university)

• All but Q8 and Q9 can be answered in fractions
of a second

• Only one tuple is missed (for Q12)

⇒ not severely incomplete

⇒ even more complete than DLDB

⇒ in this scale, answering time is quite okay!

ADL ’04, 24.9.2004, Ralf Möller – p.20/22

Evaluation
• Using complete ABox querying we have to stop

at approx. 10.000 LUBM individuals
• Initial ABox consistency test kills Racer
• If completeness is sacrificed, we can easily load

and process more than 30.000 individuals (1
university)

• All but Q8 and Q9 can be answered in fractions
of a second

• Only one tuple is missed (for Q12)

⇒ not severely incomplete

⇒ even more complete than DLDB

⇒ in this scale, answering time is quite okay!

ADL ’04, 24.9.2004, Ralf Möller – p.20/22

Evaluation
• Using complete ABox querying we have to stop

at approx. 10.000 LUBM individuals
• Initial ABox consistency test kills Racer
• If completeness is sacrificed, we can easily load

and process more than 30.000 individuals (1
university)

• All but Q8 and Q9 can be answered in fractions
of a second

• Only one tuple is missed (for Q12)

⇒ not severely incomplete

⇒ even more complete than DLDB

⇒ in this scale, answering time is quite okay!

ADL ’04, 24.9.2004, Ralf Möller – p.20/22

Evaluation
• Using complete ABox querying we have to stop

at approx. 10.000 LUBM individuals
• Initial ABox consistency test kills Racer
• If completeness is sacrificed, we can easily load

and process more than 30.000 individuals (1
university)

• All but Q8 and Q9 can be answered in fractions
of a second

• Only one tuple is missed (for Q12)

⇒ not severely incomplete

⇒ even more complete than DLDB

⇒ in this scale, answering time is quite okay!

ADL ’04, 24.9.2004, Ralf Möller – p.20/22

Evaluation
• Using complete ABox querying we have to stop

at approx. 10.000 LUBM individuals
• Initial ABox consistency test kills Racer
• If completeness is sacrificed, we can easily load

and process more than 30.000 individuals (1
university)

• All but Q8 and Q9 can be answered in fractions
of a second

• Only one tuple is missed (for Q12)

⇒ not severely incomplete

⇒ even more complete than DLDB

⇒ in this scale, answering time is quite okay!
ADL ’04, 24.9.2004, Ralf Möller – p.20/22

Conclusion & Outlook
• Racer + nRQL is a semantic web repository

• If completeness is sacrificed, the LUBM queries
are easy to answer for a relatively small number
of individuals (say, up to 100.000)

• The simple ABox “upward saturation” technique
achieves a great degree of LUBM-completeness
(an OWL TBox classifier is nevertheless needed)

⇒ the LUBM is probably “to easy” in this respect

⇒ the amount of data generated by the LUBM is
demanding

⇒ hope: future versions of Racer will be able to
process much bigger ABoxes

ADL ’04, 24.9.2004, Ralf Möller – p.21/22

Conclusion & Outlook
• Racer + nRQL is a semantic web repository
• If completeness is sacrificed, the LUBM queries

are easy to answer for a relatively small number
of individuals (say, up to 100.000)

• The simple ABox “upward saturation” technique
achieves a great degree of LUBM-completeness
(an OWL TBox classifier is nevertheless needed)

⇒ the LUBM is probably “to easy” in this respect

⇒ the amount of data generated by the LUBM is
demanding

⇒ hope: future versions of Racer will be able to
process much bigger ABoxes

ADL ’04, 24.9.2004, Ralf Möller – p.21/22

Conclusion & Outlook
• Racer + nRQL is a semantic web repository
• If completeness is sacrificed, the LUBM queries

are easy to answer for a relatively small number
of individuals (say, up to 100.000)

• The simple ABox “upward saturation” technique
achieves a great degree of LUBM-completeness
(an OWL TBox classifier is nevertheless needed)

⇒ the LUBM is probably “to easy” in this respect

⇒ the amount of data generated by the LUBM is
demanding

⇒ hope: future versions of Racer will be able to
process much bigger ABoxes

ADL ’04, 24.9.2004, Ralf Möller – p.21/22

Conclusion & Outlook
• Racer + nRQL is a semantic web repository
• If completeness is sacrificed, the LUBM queries

are easy to answer for a relatively small number
of individuals (say, up to 100.000)

• The simple ABox “upward saturation” technique
achieves a great degree of LUBM-completeness
(an OWL TBox classifier is nevertheless needed)

⇒ the LUBM is probably “to easy” in this respect

⇒ the amount of data generated by the LUBM is
demanding

⇒ hope: future versions of Racer will be able to
process much bigger ABoxes

ADL ’04, 24.9.2004, Ralf Möller – p.21/22

Conclusion & Outlook
• Racer + nRQL is a semantic web repository
• If completeness is sacrificed, the LUBM queries

are easy to answer for a relatively small number
of individuals (say, up to 100.000)

• The simple ABox “upward saturation” technique
achieves a great degree of LUBM-completeness
(an OWL TBox classifier is nevertheless needed)

⇒ the LUBM is probably “to easy” in this respect

⇒ the amount of data generated by the LUBM is
demanding

⇒ hope: future versions of Racer will be able to
process much bigger ABoxes

ADL ’04, 24.9.2004, Ralf Möller – p.21/22

Conclusion & Outlook
• Racer + nRQL is a semantic web repository
• If completeness is sacrificed, the LUBM queries

are easy to answer for a relatively small number
of individuals (say, up to 100.000)

• The simple ABox “upward saturation” technique
achieves a great degree of LUBM-completeness
(an OWL TBox classifier is nevertheless needed)

⇒ the LUBM is probably “to easy” in this respect

⇒ the amount of data generated by the LUBM is
demanding

⇒ hope: future versions of Racer will be able to
process much bigger ABoxes

ADL ’04, 24.9.2004, Ralf Möller – p.21/22

Thanks

for your

attention!

ADL ’04, 24.9.2004, Ralf Möller – p.22/22

	Overview of Talk
	Motivating Simple Example
	nRQL Language -- Features
	nRQL Engine -- Features (1)
	nRQL Engine -- Features (2)
	Incremental Query Processing
	nRQL Engine -- Features (3)
	nRQL Engine -- Features (4)
	nRQL - Syntax (1)
	nRQL - Syntax (2)
	nRQL - Semantics (1)
	nRQL - Semantics (2)
	The LUBM
	LUBM and Racer + nRQL?
	Benchmarking Racer + nRQL
	Results - Setting 1
	Results - Setting 2
	Results - Setting 3
	Evaluation
	Conclusion & Outlook
	

