

Overview of PRAESINT / CASAM Media Interpretation Agent

- A stream-based media interpretation agent
- multiple modalities (speech, video, text, audio, video OCR, ...)
- extended BOEMIE architecture, agent's interpretation loop
- Assertions / „observations" arrive via SOAP
- get accumulated in an Abox (Abox gets bigger and bigger)
\rightarrow scalability?
- Determine what to explain: FIAT generation rules (forward rules)
\rightarrow strategy?
- Explain the FIAT assertion: abduction, extend best interpretation
\rightarrow very expensive on big Aboxes, optimization?
- Collect explanations, probabilistic ranking of interpretations
- Inform clients about changes in / of the best interpretation
- Inform clients about alternative interpretations: queries!

\square ABox Representation of MultiMedia Document

Example: „Text to Audio in local Video" (Politician to Speech)

Example: „Text to Audio in local Video" (Politician to Speech)

Identification of Coocurrences: Text X Audio

```
(defquery text-to-audio-in-local-video (?x ?y)
    (and
        (?mmd #!mco:MultimediaDocument)
        (?mmd ?vc #!mco:hasLogicalDecomposition)
        (?vc #!mco:VideoContent)
        (?vc ?vs #!mco:hasMediaDecomposition)
        (?vs #!mco:VideoSegment)
        (?vs ?vl #!mco:hasSegmentLocator)
        (not (?vs #!mco:GlobalVideoSegment))
        (?mmd ?tc #!mco:hasLogicalDecomposition)
        (?tc #!mco:TextContent)
(?tc ?vs #!mco:belongsTo)
(?tc ?ts #!mco:hasMediaDecomposition)
(?mmd ?ac #!mco:hasLogicalDecomposition)
(?ac #!mco:AudioContent)
(?ac ?as #!mco:hasMediaDecomposition)
(?as #!mco:AudioSegment)
(?as ?al #!mco:hasSegmentLocator)
(?al ?sm #!mco:overlaps)
(?sm #!mco:SegmentLocator)
(?sm ?vl #!mco:overlaps)
(lambda (audio-near-video-p ?al ?vl "00:00:05,000"))
(?ts ?x #!mco:depicts)
(?as ?y #!mco:depicts)
(not (?x ?y same-as))))
```


Fiat Generation

Coocurence of „Politician" and „Speech" \rightarrow FIAT rule fires

FIAT Generation Rule - Coocurence of Speech and Politician requires Explanation

```
(define-rule (?x ?y \#!edo:politicianToSpeech)
    (and
    (?x \#!edo:Politician)
    (?y \#!edo:Speech)
    (?x ?y text-to-audio-in-local-video)
    (?x nil \#!edo:politicianToSpeech)
    (nil ?y \#!edo:politicianToSpeech))
    : backward-rule-p nil)
```


Explanation

Explanation of FIAT politicianToSpeech: PoliticalInterview

Abduction Rule for Fiat „politicianToSpeech"

```
(define-rule (?x ?y \#!edo:politicianToSpeech)
    (and
    (?x \#!edo:Politician)
    (?y \#!edo:Speech)
    (?z \#!edo:PoliticalInterview)
    (?z ?x \#!mco:builtFrom)
    (?z ?y \#!mco:builtFrom))
:forward-rule-p nil)
```


Link Interpretation Result to VideoSegment

Explanation of FIAT politicianToSpeech: PoliticalInterview

Problems \& Solutions - 1

- Scalability
- Coocurence identification with defined queries, e.g. text-to-audio-in-local-video
- results are not cached
- Fiat rules get very complex (def. queries treated by unfolding!)
- relationships were found / computed again and again
- coocurences have to be found again for linking the interpretation result to the VideoSegment
Solution: prepare the Abox before processing
- Establish links from VideoSegments to all „coocurring" EDO concept instances
- cooccurence only computed once and result stored
- EDO information per Segment directly available and explicit

Link Interpretation Result to VideoSegment

Explanation of FIAT politicianToSpeech: PoliticalInterview

Optimized Fiat Rule „politicianToSpeech"

(define-rule (?x ?y \#!edo:speechToPolitician) (and
(?vs ?x \#!mco:ourDepicts)
(?vs ?y \#!mco:ourDepicts)
(?x \#!edo:Speech)
(?y \#!edo:Politician))
:backward-rule-p nil)

Problems \& Solutions - 2

- Realization of Incrementality (,,stream-based")
- for new assertions, identify the affected part of the Abox!
- add new assertions to global Abox
- check if there are changes in the „ourDepicts" relations
- for affected segments, collect required assertions for interpret.
$\rightarrow 80 \%$ reduction
- Multiple interpretations (many!)
- how to keep the interpretation Aboxes small?
\rightarrow decouple the big common part of the intepretations
- Optimization of abduction
- Query generation problem
- How to inform the client about alternative interpretations?

RMI Implementation of receiveAssertions

- Manage agenda (updates, query answers, ...)
-Abox augmentation
-Determine focus, compute relevant part of CP ABox

Perform the abduction in a loop until termination criterion met
(max. \# fiats, no more fiats, no probability increase, ...)

RMI Input Processor

RMI Interpretation Processor

RMI Communicate Changes

RMI Create Queries

Computation of Queries

- Computation of characteristic (,,key") assertions Ξ_{i} for
$\Delta_{i}, 1 \leq i \leq n$
- Compute the „common differences" by intersecting all differences to all other Δ_{j}

$$
\Xi_{i}=\bigcap_{i \neq j, 1 \leq j \leq n} \Delta_{i} \backslash \Delta_{j}
$$

- From each Ξ_{i} select an assertion (preferable an instance assertion)
$\rightarrow \mathrm{n}$ disjuncts for OR query
\rightarrow simple score: $1-1 / n$
- „" may be ABox difference, but...

What is the blank relational structure and why is it required?

- Problem:
- queries can only be formulated against the communicated „best" interpretation: Δ_{i}
- However, all but one query disjuncts come from $\Xi_{j} \subseteq \Delta_{j}$
- the relational structures may be completely different
- different hypothesized RMI INDs, different edges, etc.
- Example: how to communicate the difference between

- HCI only knows Ind1!
- Q-Disjunct1: Ind1 : Person
- Q-Disjunct2: Ind1 : Interview ?? Ind1 : Interviewer ??
- Solution: avoid the problem in the first place!

What is the blank relational structure and why is it required? (2)

- Instead of only sending the best interpretation, we also include the „blank relational structure" of ALL other interpretations
\rightarrow relational structure and all hypothesized INDs known to HCI

- HCI knows Ind1, Ind2, Ind3!
- Q-Disjunct1: Ind1 : Person
- Q-Disjunct2: Ind2 : Interview
[Ind3 : Interviewer]
[(Ind2, Ind3) : b.F.]
- No ,new-ind mapping" needed

Abductive Query Answering

- Simple example
- Query: $\operatorname{ans}() \leftarrow C(x), D(y), R(x, y)$
- Abox: $\{(i, j): R, i: C\}$
- Preferred solution (optimal, according to score defined below)

$$
\begin{aligned}
& x \leftarrow i, y \rightarrow j: \\
& \Delta=\{j: D\}
\end{aligned}
$$

- Other solution (plus 7 more, $3^{2}=9$), e.g.

$$
\begin{aligned}
& x \leftarrow n e w 1, y \leftarrow n e w_{2}: \\
& \Delta=\left\{n e w_{1}: C, n e w_{2}: D,\left(n e w_{1}, n e w_{2}\right): R\right\}
\end{aligned}
$$

- Exponential number of solutions has to be computed to find „the best"
- optimization idea: early dynamic cutoff of search space based on score evaluation on partially computed explanations (deltas)

„Depth First" Abductive Query Evaluation

$$
\mathcal{A}=\{(i, j): R, i: C\}
$$

CASAM Preference Score

Very simple:
entailed Assertions minus hypothesized Assertions

$$
\operatorname{score}(\Delta)={ }_{\text {def }}\left|\Delta^{+}\right|-\left|\Delta^{-}\right| \rightarrow \text { maximize }
$$

$\Delta=\Delta^{+} \cup \Delta^{-}$(entailed, hypothesized)

Illustrations of (Partial) Scores

$$
\mathcal{A}=\{(i, j): R, i: C\} \quad\left|\Delta^{+}\right|-\left|\Delta^{-}\right|=\text {score } \rightarrow \text { max. }
$$

Score-Based Cutoff of Search Space

$$
\mathcal{A}=\{(i, j): R, i: C\}
$$

Rem. points I can make: 2

More formally...

$n=\left|\Delta^{+}\right|+\left|\Delta^{-}\right|(n$ const. for each rule body) score $(\Delta)={ }_{\text {def }}\left|\Delta^{+}\right|-\left|\Delta^{-}\right| \rightarrow$ maximize (not monotone) $n+\operatorname{score}(\Delta)=2\left|\Delta^{+}\right|$
score $(\Delta)=2\left|\Delta^{+}\right|-n \rightarrow$ maximize (and monotone!)

- Let $\Delta_{p} \subseteq \Delta, m_{p}=n-\left|\Delta_{p}\right|$ (remaining conjuncts)
- If score $\left(\Delta_{p}\right)+\left(n-\left|\Delta_{p}\right|\right)<\operatorname{score}\left(\Delta_{\text {best_so_far }}\right)$ $\operatorname{score}\left(\Delta_{\text {best_so_far }}\right)-\operatorname{score}\left(\Delta_{p}\right)>\left(n-\left|\Delta_{p}\right|\right)$ reject Δ_{p}

How Effective is this?

- Synthetic benchmark: finding graph isomorphisms (n nodes)
- Problem reductions:

Graph Isomorphism \rightarrow ABox Difference \rightarrow Abduction

Appreciation of Complexity

- Some numbers
- video 6, after bunch 3: 283 Fiats (new rule set)
- potential quadratic number of Fiats (in terms of inds in the Abox)

Reduce gen. Fiats

- „external complexity" of interpretation loop
- each Fiat may generate 2 to 3 explanations
- branching will easily kill the system
- „internal complexity" of abduction (hidden in RacerPro)
- in order to find these 2 to 3 best explanations PER FIAT, yet another exponential number of explanations has to be considered!
- exponential in the number of indiviuals in the ABox
\rightarrow RMI handles serious complex problems, more must be done for meta reasoning (we stop after 30 Fiats per bunch)

Open Issues

- Reimplementation of probabilistic valuation and

Sort
Agenda

- React to removed / confirmed tags
- React to „negative" query answers
- only positive query answers considered so far
- „shuffle" the interpretations containing the answer assertions to the front of the agenda
- More specific Fiat generation rules
- Anytime / meta reasoning
- reduce set of assertions if timeout occurs, etc.
- some dumb strategies already implemented
- Q: do we really have to keep all interpretations on the agenda?

