

- A stream-based media interpretation agent
 - multiple modalities (speech, video, text, audio, video OCR, ...)
 - extended BOEMIE architecture, agent's interpretation loop
 - Assertions / "observations" arrive via SOAP
 - get accumulated in an Abox (Abox gets bigger and bigger)
 → scalability?
 - Determine what to explain: FIAT generation rules (forward rules) → strategy?
 - Explain the FIAT assertion: abduction, extend best interpretation → very expensive on big Aboxes, optimization?
 - Collect explanations, probabilistic ranking of interpretations
 - Inform clients about changes in / of the best interpretation
 - Inform clients about alternative interpretations: queries!

ABox Representation of MultiMedia Document

Example: "Text to Audio in local Video" (Politician to Speech)

Example: "Text to Audio in local Video" (Politician to Speech)

Identification of Coocurrences: Text X Audio

(defquery	text-to-audio-in-local-video (?x ?y)
(a	nd
	(?mmd #!mco:MultimediaDocument)
	(?mmd ?vc #!mco:hasLogicalDecomposition)
	(?vc #!mco:VideoContent)
	(?vc ?vs #!mco:hasMediaDecomposition)
	(?vs #!mco:VideoSegment)
	(?vs ?vl #!mco:hasSegmentLocator)
	(not (?vs #!mco:GlobalVideoSegment))
	(?mmd ?tc #!mco:hasLogicalDecomposition)
	(?tc #!mco:TextContent)
	(?tc ?vs #!mco:belongsTo)
	(?tc ?ts #!mco:hasMediaDecomposition)
	(?mmd ?ac #!mco:hasLogicalDecomposition)
	(?ac #!mco:AudioContent)
	(?ac ?as #!mco:hasMediaDecomposition)
	(?as #!mco:AudioSegment)
	(?as ?al #!mco:hasSegmentLocator)
	(?al ?sm #!mco:overlaps)
	(?sm #!mco:SegmentLocator)
	(?sm ?vl #!mco:overlaps)
	(lambda (audio-near-video-p ?al ?vl "00:00:05,000"))
	(?ts ?x #!mco:depicts)
	(?as ?y #!mco:depicts)
	(not (?x ?y same-as))))

Explanation of FIAT politicianToSpeech: PoliticalInterview

Explanation of FIAT politicianToSpeech: PoliticalInterview

- Scalability
 - Coocurence identification with defined queries,
 - e.g. text-to-audio-in-local-video
 - results are not cached
 - Fiat rules get very complex (def. queries treated by unfolding!)
 - relationships were found / computed again and again
 - coocurences have to be found again for linking the interpretation result to the VideoSegment

Solution: prepare the Abox before processing

- Establish links from VideoSegments to all "coocurring" EDO concept instances
- cooccurrence only computed once and result stored
- EDO information per Segment directly available and explicit

Explanation of FIAT politicianToSpeech: PoliticalInterview

- Realization of Incrementality (,,stream-based")
 - for new assertions, identify the affected part of the Abox!
 - add new assertions to global Abox
 - check if there are changes in the ,,ourDepicts" relations
 - for affected segments, collect required assertions for interpret.
 → 80% reduction
- Multiple interpretations (many!)
 - how to keep the interpretation Aboxes small?
 - \rightarrow decouple the big common part of the intepretations
- Optimization of abduction
- Query generation problem
 - How to inform the client about alternative interpretations?

RMI Input Processor

RMI Interpretation Processor

RMI Communicate Changes

- Computation of characteristic (,,key") assertions Ξ_i for $\Delta_i, 1 \le i \le n$
- Compute the "common differences" by intersecting all differences to all other Δ_i

$$\Xi_i = \bigcap_{i \neq j, 1 \le j \le n} \Delta_i \setminus \Delta_j$$

• From each Ξ_i select an assertion (preferable an instance assertion)

 \rightarrow n disjuncts for OR query \rightarrow simple score: 1 - 1 / n

• "\" may be ABox difference, but...

- Problem:
 - queries can only be formulated against the communicated ,,best" interpretation: Δ_i
 - However, all but one query disjuncts come from $\Xi_j \subseteq \Delta_j$
 - the relational structures may be completely different
 - different hypothesized RMI INDs, different edges, etc.
- Example: how to communicate the difference between

- HCI only knows **Ind1**!
- 0 0
- Q-Disjunct1: Ind1 : Person
- Q-Disjunct2: Ind1 : Interview ?? Ind1 : Interviewer ??
- Solution: avoid the problem in the first place!

• Instead of only sending the best interpretation, we also include the "blank relational structure" of ALL other interpretations

 \rightarrow relational structure and all hypothesized INDs known to HCI

- Simple example
 - Query: $ans() \leftarrow C(x), D(y), R(x, y)$
 - Abox: $\{(i,j): R, i: C\}$
 - **Preferred** solution (optimal, according to score defined below)

$$\begin{aligned} x \leftarrow i, y \to j : \\ \Delta &= \{j : D\} \end{aligned}$$

- Other solution (plus 7 more, $3^2 = 9$), e.g.

$$x \leftarrow new1, y \leftarrow new_2 :$$

$$\Delta = \{new_1 : C, new_2 : D, (new_1, new_2) : R\}$$

- Exponential number of solutions has to be computed to find ,,the best"
 - **optimization idea:** early dynamic cutoff of search space based on score evaluation on partially computed explanations (deltas)

"Depth First" Abductive Query Evaluation

$$\mathcal{A} = \{(i,j) : R, i : C\}$$

CASAM Preference Score

Very simple: entailed Assertions minus hypothesized Assertions

score(
$$\Delta$$
) =_{def} $|\Delta^+| - |\Delta^-| \rightarrow \text{maximize}$
 $\Delta = \Delta^+ \cup \Delta^-$ (entailed, hypothesized)

 $n = |\Delta^+| + |\Delta^-|$ (n const. for each rule body) $\operatorname{score}(\Delta) =_{def} |\Delta^+| - |\Delta^-| \rightarrow \operatorname{maximize} (\operatorname{not monotone})$ $n + \operatorname{score}(\Delta) = 2|\Delta^+|$ $score(\Delta) = 2|\Delta^+| - n \rightarrow maximize (and monotone!)$ • Let $\Delta_p \subseteq \Delta, m_p = n - |\Delta_p|$ (remaining conjuncts) - If score(Δ_p) + $(n - |\Delta_p|) < \text{score}(\Delta_{best_so_far})$ $\operatorname{score}(\Delta_{best_so_far}) - \operatorname{score}(\Delta_p) > (n - |\Delta_p|)$ reject Δ_n

- Synthetic benchmark: finding graph isomorphisms (n nodes)
- Problem reductions: Graph Isomorphism \rightarrow ABox Difference \rightarrow Abduction

- Some numbers
 - video 6, after bunch 3: 283 Fiats (new rule set)
 - potential quadratic number of Fiats (in terms of inds in the Abox)

Reduce gen. Fiats

- after reduction ,,only one Fiat per type and shot": 46 Fiats
- "external complexity" of interpretation loop
 - each Fiat may generate 2 to 3 explanations
 - branching will easily kill the system
- ,,internal complexity" of abduction (hidden in RacerPro)
 - in order to find these 2 to 3 best explanations PER FIAT, yet another exponential number of explanations has to be considered!
 - exponential in the number of indiviuals in the ABox
- → RMI handles serious complex problems, more must be done for meta reasoning (we stop after 30 Fiats per bunch)

Sort

Agenda

- Reimplementation of probabilistic valuation and
- React to removed / confirmed tags
- React to "negative" query answers
 - only positive query answers considered so far
 - ,,shuffle" the interpretations containing the answer assertions to the front of the agenda
- More specific Fiat generation rules
- Anytime / meta reasoning
 - reduce set of assertions if timeout occurs, etc.
 - some dumb strategies already implemented
- Q: do we really have to keep all interpretations on the agenda?