Computer-Aided Semantic Annotation of Multimedia

Plenary Meeting: WP-3
Oliver Gries, Ralf Möller,
Maurice Rosenfeld, Michael Wessel
TUHH
Tasks

- Task 3.1: Optimized reasoning engine for probabilistic first-order structures (Lead TUHH)
 - New approach developed (Paper presented by Oliver at UniDL’10)

- Task 3.2: System supporting probabilistic abduction as a reasoning service (Lead TUHH)
 - Anahita presents paper at RR 2010
 - Michael’s presentation

- Task 3.4: Meta-level reasoning component (Lead TUHH)
 - Query generation integrated into second prototype (Michael’s pres)
 - See upcoming deliverable D3.4

- Task 6.2: MM Ontology: MESH ontology
New RMI Implementation

• Overview (I can skip slides on request)
 – Implemented architecture
 – Computation of queries
 – Optimization of abduction
 – Open issues

• CASAM Team @ STS / TUHH
 • Anahita Nafissi
 • Oliver Gries
 • Ralf Möller
 • Maurice Rosenfeld
 • Kamil Sokolski
 • Michael Wessel
What's new in a Nutshell...

- Agenda-based
 - manages RMI interpretations as small individual ABoxes
 + big „common part“ ABox CP (segments, EDO/MCO stuff, …)
 - incremental: **only reinterprets what needs to be reinterpreted**
 - uses only the relevant subset of CP (20% of CP) for Fiat rules
 - abduction performed on **subset** of CP + best interpretation
 → even „higher levels“ of interpretation possible
 - more control on interpretation process, by looking at the agenda
 (more information explicitly available) → **meta level reasoning**

- Queries computed for interpretations on agenda

- Lisp-based & multi-core ready
 - shares memory structures with RacerPro (no more OWL-in-out)
RMI Implementation of receiveAssertions

- Manage agenda (updates, query answers, ...)
- Abox augmentation
- Determine focus, compute relevant part of CP ABox

Perform the abduction in a loop until termination criterion met (max. # fiats, no more fiats, no probability increase, ...)

KDMA → Assertion Set → Input Processor → Interpretation Processor → Interpretation

HCI

RMI Interpretation Engine

Query
RMI Input Processor

- Hypothesized Assertions + hasInterpr.
- Common Part (CP)
- RMI Agenda
- Identify Assertions
- Add / rem. / mod. CP
- Remove incon. Int.
- TBox
- Identify Query Answ.
- Del. incompl. Interpret.
- Sort Agenda
- Commun. Changes
- Reject Ass. with low Cert.
- Identify relevant CP Subset
- Identify affected Segments
- Add Segments for EDOs
- "Database" queries /rules have to operate on FULL CP!
- our-Depicts Rules
- ABox Queries

20%
Apply Fiat rules to RMI Interpretation Processor

Fiat for \(\{ \} \)

Select Fiat for

Abduction Rules

Commun. Changes

Fiat Rules

Reduce gen. Fiats

Sort Agenda

Strategy

Best

Abd. Explain Fiat on

Best

Prob. Rules

Fiat on

Best...

one per type & video seg.

Yes

No

Yes

No

Terminate?

Fiats Agenda

1 \ldots k

Rel. CP

1 \ldots k \ldots n

Best

Best
RMI Communicate Changes

Augment best w. blank relational Structure

Added: Best \ Prev. Best

Removed: Prev. Best \ Best

Send Interpretation
ActionT.: remove

Yes

Removed = {} No

Send Interpretation
ActionT.: add

Yes

Added = {} No

Create Queries

Prev. Best ← Best
RMI Create Queries

- Identify Key Assertions for first \(m \geq k \)
- Interpretations

\[\Xi_1 \cdots \Xi_k \cdots \Xi_m \]

Create OR Query

End
Computation of Queries

- Computation of characteristic ("key") assertions Ξ_i for
 $\Delta_i, 1 \leq i \leq n$

- Compute the "common differences" by intersecting all differences to all other Δ_j

 $$\Xi_i = \bigcap_{i \neq j, 1 \leq j \leq n} \Delta_i \setminus \Delta_j$$

- From each Ξ_i select an assertion (preferable an instance assertion)
 \rightarrow n disjuncts for OR query
 \rightarrow simple score: $1 - 1 / n$

- "\" may be ABox difference, but...
What is the blank relational structure and why is it required?

- Problem:
 - queries can only be formulated against the communicated „best“ interpretation: Δ_i
 - However, all but one query disjuncts come from $\Xi_j \subseteq \Delta_j$
 - the relational structures may be completely different
 - different hypothesized RMI INDs, different edges, etc.
- Example: how to communicate the difference between

 - HCI only knows Ind1!
 - Q-Disjunct1: Ind1 : Person
 - Q-Disjunct2: Ind1 : Interviewer
 - Solution: avoid the problem in the first place!
What is the blank relational structure and why is it required? (2)

• Instead of only sending the best interpretation, we also include the „blank relational structure“ of ALL other interpretations

→ relational structure and all hypothesized INDs known to HCI

- HCI knows Ind1, Ind2, Ind3!
- Q-Disjunct1: Ind1 : Person
- Q-Disjunct2: Ind2 : Interview
 [Ind3 : Interviewer]
 [(Ind2, Ind3) : b.F.]
- No „new-ind mapping“ needed
Abductive Query Answering

- Simple example
 - Query: \(ans() \leftarrow C(x), D(y), R(x, y) \)
 - Abox: \(\{(i, j) : R, i : C\} \)
 - **Preferred** solution (optimal, according to score defined below)
 \[
 x \leftarrow i, y \rightarrow j :
 \Delta = \{j : D\}
 \]
 - **Other** solution (plus 7 more, \(3^2 = 9\)), e.g.
 \[
 x \leftarrow \text{new}_1, y \leftarrow \text{new}_2 :
 \Delta = \{\text{new}_1 : C, \text{new}_2 : D, (\text{new}_1, \text{new}_2) : R\}
 \]
- Exponential number of solutions has to be computed to find ,,the best“
 - **optimization idea**: early dynamic cutoff of search space based on score evaluation on partially computed explanations (deltas)
"Depth First" Abductive Query Evaluation

\[A = \{(i, j) : R, i : C\} \]

\[\text{Partial Delta} \]

\[\text{Leaf} = \text{compl. Delta} \]

\[\text{Query Evaluation Plan} \]

1. \(G \)
2. \(G \)
3. \(T \)
CASAM Preference Score

Very simple:
entailed Assertions minus hypothesized Assertions

\[\text{score}(\Delta) = \text{def} |\Delta^+| - |\Delta^-| \rightarrow \text{maximize} \]

\[\Delta = \Delta^+ \cup \Delta^- \text{ (entailed, hypothesized)} \]
Illustrations of (Partial) Scores

\[A = \{(i, j) : R, i : C\} \quad |\Delta^+| - |\Delta^-| = \text{score} \rightarrow \text{max.} \]

-1 new1

C(x)

-2 y

D(y)

0 y

R(x, y)

| \Delta_1 = 0 - 3 = -3 | \Delta_4 = 1 - 2 = -1 | \Delta_6 = 2 - 1 = 1 | \Delta_9 = 0 - 3 = -3 |
Score-Based Cutoff of Search Space

\[A = \{(i, j) : R, i : C\} \]

\[new_1 \]

\[i \]

\[j \]

\[x \]

\[-1 \]

Rem. points I can make: 2

\[-1 + 2 = 1 \rightarrow \text{continue} \]

(may be as good as B.S.F)

\[Rem. \text{ points I can make: } 1 \]

\[-2 + 1 = -1 \rightarrow \text{CUTOFF} \]

(is worse than B.S.F)

CAN PRUNE WHOLE SUBTREES!

\[\Delta_1 \]

\[0 - 3 = -3 \]

Best so far

\[\Delta_6 \]

\[2 - 1 = 1 \]

Rem. points I can make: 1

\[-2 + 1 = -1 \rightarrow \text{CUTOFF} \]

(is worse than B.S.F)

CAN PRUNE WHOLE SUBTREES!
More formally...

\[n = |\Delta^+| + |\Delta^-| \quad (n \text{ const. for each rule body}) \]

\[\text{score}(\Delta) = \text{def} \; |\Delta^+| - |\Delta^-| \rightarrow \text{maximize} \quad (\text{not monotone}) \]

\[n + \text{score}(\Delta) = 2|\Delta^+| \]

\[\text{score}(\Delta) = 2|\Delta^+| - n \rightarrow \text{maximize} \quad (\text{and monotone!}) \]

- Let \(\Delta_p \subseteq \Delta, m_p = n - |\Delta_p| \) (remaining conjuncts)
 - If \(\text{score}(\Delta_p) + (n - |\Delta_p|) < \text{score}(\Delta_{best_so_far}) \)
 \[\text{score}(\Delta_{best_so_far}) - \text{score}(\Delta_p) > (n - |\Delta_p|) \]
 reject \(\Delta_p \)
How Effective is this?

- Synthetic benchmark: finding graph isomorphisms (n nodes)
- Problem reductions:
 Graph Isomorphism → ABox Difference → Abduction

Graph: ABox A

Graph: ABox B

Diagram:
- Optimized vs Unoptimized performance
- # Nodes in Ring vs Seconds

Chart:
- Y-axis: Seconds
- X-axis: # Nodes in Ring
- Optimized: Blue squares
- Unoptimized: Red diamond

Legend:
- Optimized
- Unoptimized

Cloud Note:
- isomorph
- <= diff. empty
- <= max. score
Appreciation of Complexity

- Some numbers
 - video 6, after bunch 3: 283 Fiats (new rule set)
 - potential quadratic number of Fiats (in terms of inds in the Abox)
 - after reduction „only one Fiat per type and shot“: 46 Fiats
 - „external complexity“ of interpretation loop
 - each Fiat may generate 2 to 3 explanations
 - branching will easily kill the system
 - „internal complexity“ of abduction (hidden in RacerPro)
 - in order to find these 2 to 3 best explanations PER FIAT, yet another exponential number of explanations has to be considered!
 - exponential in the number of individials in the ABox

→ RMI handles serious complex problems, more must be done for meta reasoning (we stop after 30 Fiats per bunch)
Open Issues

- Reimplementation of probabilistic valuation and
- React to removed / confirmed tags
- React to „negative“ query answers
 - only positive query answers considered so far
 - „shuffle“ the interpretations containing the answer assertions to the front of the agenda
- More specific Fiat generation rules
- Anytime / meta reasoning
 - reduce set of assertions if timeout occurs, etc.
 - some dumb strategies already implemented
- Q: do we really have to keep all interpretations on the agenda?