

Computer-Aided Semantic Annotation of Multimedia

Plenary Meeting: WP-3

Oliver Gries, Ralf Möller, Maurice Rosenfeld, Michael Wessel **TUHH**

CASAM Schedule

8																																				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	1.34	35	1
WP1	_		1			2		4	1			3			1			2		4	1			3			1			2		4	1			3
TL2																																				
WP2	1		2,3			4						5												4		_								5		3
12.1																																				
122																																				
WP3						1						5						2						3						4,6						1
T3.1																																<u>]</u>				144
T3.2																																				
T3.3																																				
134																															L					
WP4												1						3						2						4						1
14.1																										[_					W. W.
14.2																																				
T4.3																																				
WP5						1												2												3					4	
T5.1																										[1
152																																				·**
15.3																																				I
WP6						1,3		2				3											4										4			Ĩ
T6.1												_																								1
T6.2																																				
T6.3														20-0-0-0-0-0-0-0			1.1.1.1.1.1.1.1.1.1.	h-1-1-1-1-1-1				-1-1-1-1-1-1-1-1	(P-1+P-1+P-)			Andari na kata		*******		de l'effet (effe		() () () () () () () ()	0-1-10-1-10-1	-1	1 - In 1 - In 1 - In 1 - In 1 -	1
16.4																																<u> </u>				Ĩ
WP7												1								2											2				3	f
17.1																																8				- m
17.2																																1				44.
173																																				t
destone.						1						2	<u> </u>							3											4				5	ľ
										*****			1												2										3	F

Sep 2010

Task 3.1: Optimized reasoning engine for probabilistic firstorder structures (Lead TUHH)

> New approach developed (Paper presented by Oliver at UniDL'10)

Task 3.2: System supporting probabilistic abduction as a reasoning service (Lead TUHH)

> Anahita presents paper at RR 2010

Michael's presentation

- Task 3.4: Meta-level reasoning component (Lead TUHH)
 - > Query generation integrated into second prototype (Michael's pres)
 - See upcoming deliverable D3.4
- Task 6.2: MM Ontology: MESH ontology

- Overview (I can skip slides on request)
 - Implemented architecture
 - Computation of queries
 - Optimization of abduction
 - Open issues
- CASAM Team @ STS / TUHH
 - Anahita Nafissi
 - Oliver Gries
 - Ralf Möller
 - Maurice Rosenfeld
 - Kamil Sokolski
 - Michael Wessel

- Agenda-based
 - manages RMI interpretations as small individual ABoxes
 - + big "common part" ABox CP (segments, EDO/MCO stuff, ...)
 - incremental : only reinterprets what needs to be reinterpreted
 - uses only the relevant subset of CP (20% of CP) for Fiat rules
 - abduction performed on subset of CP + best interpretation
 → even ,,higher levels" of interpretation possible
 - more control on interpretation process, by looking at the agenda (more information explicitly available) → meta level reasoning
- Queries computed for interpretations on agenda
- Lisp-based & multi-core ready
 - shares memory structures with RacerPro (no more OWL-in-out)

RMI Input Processor

RMI Interpretation Processor

RMI Communicate Changes

- Computation of characteristic (,,key") assertions Ξ_i for $\Delta_i, 1 \le i \le n$
- Compute the "common differences" by intersecting all differences to all other Δ_i

$$\Xi_i = \bigcap_{i \neq j, 1 \le j \le n} \Delta_i \setminus \Delta_j$$

• From each Ξ_i select an assertion (preferable an instance assertion)

 \rightarrow n disjuncts for OR query \rightarrow simple score: 1 - 1 / n

• "\" may be ABox difference, but...

$$\begin{array}{c} \Xi_1 \cdots \Xi_k \cdots \Xi_n \\ \subseteq \quad \subseteq \quad \subseteq \\ \Delta_1 \cdots \Delta_k \cdots \Delta_n \end{array}$$

- Problem:
 - queries can only be formulated against the communicated ,,best" interpretation: Δ_i
 - However, all but one query disjuncts come from $\Xi_j \subseteq \Delta_j$
 - the relational structures may be completely different
 - different hypothesized RMI INDs, different edges, etc.
- Example: how to communicate the difference between

- HCI only knows **Ind1**!
- 0 0
- Q-Disjunct1: Ind1 : Person
- Q-Disjunct2: Ind1 : Interview ?? Ind1 : Interviewer ??
- Solution: avoid the problem in the first place!

• Instead of only sending the best interpretation, we also include the "blank relational structure" of ALL other interpretations

 \rightarrow relational structure and all hypothesized INDs known to HCI

- Simple example
 - Query: $ans() \leftarrow C(x), D(y), R(x, y)$
 - Abox: $\{(i,j): R, i: C\}$
 - **Preferred** solution (optimal, according to score defined below)

$$\begin{aligned} x \leftarrow i, y \to j : \\ \Delta &= \{j : D\} \end{aligned}$$

- Other solution (plus 7 more, $3^2 = 9$), e.g.

$$x \leftarrow new1, y \leftarrow new_2 :$$

$$\Delta = \{new_1 : C, new_2 : D, (new_1, new_2) : R\}$$

- Exponential number of solutions has to be computed to find ,,the best"
 - **optimization idea:** early dynamic cutoff of search space based on score evaluation on partially computed explanations (deltas)

"Depth First" Abductive Query Evaluation

$$\mathcal{A} = \{(i,j) : R, i : C\}$$

CASAM Preference Score

Very simple: entailed Assertions minus hypothesized Assertions

score(
$$\Delta$$
) =_{def} $|\Delta^+| - |\Delta^-| \rightarrow \text{maximize}$
 $\Delta = \Delta^+ \cup \Delta^-$ (entailed, hypothesized)

 $n = |\Delta^+| + |\Delta^-|$ (n const. for each rule body) $\operatorname{score}(\Delta) =_{def} |\Delta^+| - |\Delta^-| \rightarrow \operatorname{maximize} (\operatorname{not monotone})$ $n + \operatorname{score}(\Delta) = 2|\Delta^+|$ $score(\Delta) = 2|\Delta^+| - n \rightarrow maximize (and monotone!)$ • Let $\Delta_p \subseteq \Delta, m_p = n - |\Delta_p|$ (remaining conjuncts) - If score(Δ_p) + $(n - |\Delta_p|) < \text{score}(\Delta_{best_so_far})$ $\operatorname{score}(\Delta_{best_so_far}) - \operatorname{score}(\Delta_p) > (n - |\Delta_p|)$ reject Δ_n

- Synthetic benchmark: finding graph isomorphisms (n nodes)
- Problem reductions: Graph Isomorphism \rightarrow ABox Difference \rightarrow Abduction

- Some numbers
 - video 6, after bunch 3: 283 Fiats (new rule set)
 - potential quadratic number of Fiats (in terms of inds in the Abox)

Reduce gen. Fiats

- after reduction ,,only one Fiat per type and shot": 46 Fiats
- "external complexity" of interpretation loop
 - each Fiat may generate 2 to 3 explanations
 - branching will easily kill the system
- ,,internal complexity" of abduction (hidden in RacerPro)
 - in order to find these 2 to 3 best explanations PER FIAT, yet another exponential number of explanations has to be considered!
 - exponential in the number of indiviuals in the ABox
- → RMI handles serious complex problems, more must be done for meta reasoning (we stop after 30 Fiats per bunch)

Sort

Agenda

- Reimplementation of probabilistic valuation and
- React to removed / confirmed tags
- React to "negative" query answers
 - only positive query answers considered so far
 - ,,shuffle" the interpretations containing the answer assertions to the front of the agenda
- More specific Fiat generation rules
- Anytime / meta reasoning
 - reduce set of assertions if timeout occurs, etc.
 - some dumb strategies already implemented
- Q: do we really have to keep all interpretations on the agenda?