RacerPro Demos

STS
Software Technology & Systems Group
Technical University of Hamburg-Harburg (TUHH)
Hamburg, Germany

Note: RacerPro ©
Racer Systems GmbH & Co. KG
www.racer-systems.com
Blumenau 50
22089 Hamburg, Germany
RacerPro is . . .

• . . . a Description Logic System for $ALCQHI_{R+}(D^-)$ (aka $SHIQ(D^-)$)
 • TBox: Terminological Box, defines domain vocabulary: “A mother is a woman and a parent”
 • Ontology: Formal Specification of a Conceptualization (Gruber)
 • ABox: Assertional Box, “Intelligent Database”, Individuals and Relationships
 • Reasoning about descriptions and information
 • “Mother without children” $\Rightarrow \neg \exists \exists$
 • “Betty is a female human with a child” \Rightarrow “Betty is a mother”
RacerPro is...

- a Semantic Web reasoning engine and repository, supports W3C standards
 - Web Ontology Language
 - OWL Lite
 - OWL DL ($\approx SHO\\up I Q(\mathcal{D}_n)$)
 - Resource Description Framework (RDF)
 - Preliminary support for OWL QL
 (RacerManager semantic middleware)
 www.sts-tu-harburg.de/~at.kaya/racerManager
 - Preliminary support for SWRL
 - Expressive query language nRQL
 - ABox query language
 - RDF & OWL query language
RacerPro: System Overview

![Diagram of RacerPro system overview](image)

- Your Application
- Java API
- Lisp API
- DIG
- HTTP
- TCP/IP
- Racer extensions
 - OWL-DL
 - OWL-Lite
 - RDF
- RacerPro Kernel
 - nRQL
 - SWRL
 - Web Services
 - OWL-QL
 - SPARQL
OWL Reasoning

- “A vegetarian is defined as an animal that eats no other animals, or parts of animals.”
- “Cows are naturally vegetarians”
- “A mad cow is a cow that has been eating the brains of sheep.”
- “Sheep are animals.”
- \[\Rightarrow\] “There are no mad cows!” (inference)
- OWL modeling support with RacerPro:
 - Identification of inconsistent classes during modeling (e.g. “mad cow”)
 - Computation of logically implied inheritance relationships (“Taxonomy”)
OWL Modeling with Protégé

[Image: Screen capture of Protégé interface showing OWL modeling with classes and properties]
Ontology Based Querying

- Benefits: Use domain specific vocabulary for queries
- Detection of inconsistent queries
- Handling of incomplete and unknown information
- Example:
 - “Minnie is known to be elderly and female”
 - \Rightarrow “Minnie is an old lady!” (inference)
 - “Minnie has Tom as a pet”
 - Nothing is known about Tom
 - \Rightarrow “Tom must be a cat, since old ladies are cat lovers!” (inference)
RacerPorter GUI

©2005 by
Racer Systems GmbH & Co. KG
All rights reserved.

Authors:
RacerPro is developed by:
Volker Haarslev
Ralf Möller
Michael Wessel

RacerPorter is developed by:
Michael Wessel
Ralf Möller
Minnie is elderly and female
Minnie has Tom as a pet
Definition of concept old lady
Minnie is an old lady!
Graphical network display
No knowledge concerning Tom
Tom is a cat!
Highlighting “types” of Tom
Graphical OWL Querying

- OWL Tree: Graphical interactive query composition and result browsing
- Background ontology: Lehigh University Benchmark (LUBM) Ontology
- Modeling of a university (classes for professors, courses, students, ...)
- “Real” web resources → “real” Semantic Web application!
- Queries are translated into nRQL queries, processed by RacerPro w.r.t. the background ontology
- Presentation given by RIKA students (?)

owltree.in-terminus.net/OWLTTree/index.jsp
LUBM Background Ontology
Interactive Query Composition

University Information System

Welcome to the homepage of the new university information system. The data you will see here is no real-life data. Currently, this is only dummy information. Thanks for your understanding.

FullProfessor

TeacherOf GraduateCourse

Absenden

Get a url (link) to preserve the complete state.

If you want to throw away the complete tree and start all over please click <<here>>.

Info:

Your choice:
- Start the query by clicking "submit query"
- Add a new Branch on a node by clicking on the plus sign (+) next to it
- Delete a branch by clicking the minus sign (-) next to it
University Information System

<table>
<thead>
<tr>
<th>#</th>
<th>FullProfessor</th>
<th>GraduateCourse</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Prof. Dr. Joachim W. Schmidt</td>
<td>Einführung in Datenbanksysteme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Details</td>
</tr>
<tr>
<td>1</td>
<td>Prof. Dr. Joachim W. Schmidt</td>
<td>GraduateCourse1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Details</td>
</tr>
<tr>
<td>2</td>
<td>Prof. Dr. Ralf Müller</td>
<td>GraduateCourse2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Details</td>
</tr>
<tr>
<td>3</td>
<td>FullProfessor2</td>
<td>GraduateCourse3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Details</td>
</tr>
</tbody>
</table>
Ontology-based GIS

- **DLMAPS** = Description Logic Maps
- Map Data © Amt für Geoinformation und Vermessung Hamburg
- DISK ("Digitale Stadtkarte")
- Uses RacerPro as ontology server and reasoning engine
- Remodeling of "Objektschlüsselkatalog" (geographic categories) as RacerPro ontology
- Representation of map objects in an ABox
- Hybrid representation: additional spatial layer
- Spatio-thematic hybrid queries

www.sts.tu-harburg.de/~mi.wessel/dlmaps/dlmaps.html