Software Abstractions for Description Logic Systems

Michael Wessel

Institute for Software Systems
Hamburg University of Technology (TUHH)
Germany
Contents

- Motivation
- Description Logics
 - Syntax, Semantics, Satisfiability
- Software Abstractions
 - Substrate Data Model
 - MIDELORA Space and Provers
- Tableau Calculi
 - Mathematical Perspective
 - Software Perspective
- Why Lisp?
- Conclusion
Motivation for MiDELoRA

- Statement: description logic (DL) systems are very complicated software artefacts
 - Intellectual complexity (tableau calculi, optimizations)
 - Software complexity
- Thesis: problem-specific software abstractions can reduce complexity and enhance comprehensibility → maintainability, ...
- Flexibility / genericity w.r.t. various “dimensions” in the knowledge-representation design space
 - Support different DLs
 - Support different information representation media
⇒ Toolkit/framework with orthogonal building blocks
Research Questions & Answers

? What are reasonable building blocks for DL systems?
 ⇒ Standard DL notions like TBox, ABox (too coarse)
 ⇒ Idea: turn mathematical notions into software abstractions (e.g., tableau rules)

? Enable (implementation) reuse
 • Implementation reuse is important here, due to the complexity
 • Via inheritance (open-closed principle)
 • Via configurable components (black-box reuse)

? How to organize the design & inheritance space in which these software abstractions reside?
 ⇒ MiDELORA space
Description Logics

- Family of (decidable) logics, most are (strict) subsets of predicate logic in a variable-free syntax, or modal logics
- Central notions (1):
 - Concepts (classes): denote / represent sets of individuals in some UOD (interpretation domain Δ^I)
 - atomic concepts (concept names): woman
 - Semantics: $\text{woman}^I \subseteq \Delta^I$
 - complex concepts (descriptions): $\text{person} \sqcap \text{female}$
 - $(\text{person} \sqcap \text{female})^I = \text{person}^I \sqcap \text{female}^I$
 - Roles: denote binary relationships, has_child
 - Subsumption: woman is more general than mother:
 $\text{mother} \sqsubseteq \text{woman}$, $\text{mother}^I \subseteq \text{woman}^I$
Description Logics

Illustration of an interpretation

Universe Δ^I
Description Logics

Illustration of an interpretation

Universe $\Delta^\mathcal{I}$

person$^\mathcal{I}$
Description Logics

Illustration of an interpretation

Universe $\Delta^\mathcal{I}$

$\text{person}^\mathcal{I}$

$female^\mathcal{I}$
Description Logics

Illustration of an interpretation

Universe Δ^I

person^I

$(\text{person} \cap \text{female})^I = \text{person}^I \cap \text{female}^I$

female^I
Description Logics

Illustration of an interpretation

Universe $\Delta^\mathcal{I}$

$\text{person}^\mathcal{I}$

$(\text{person} \sqcap \text{female})^\mathcal{I}$

$\text{mother}^\mathcal{I}$

$\text{female}^\mathcal{I}$
Description Logics (2)

- Central notions (2):
 - Concept Satisfiability: is there some interpretation \(\mathcal{I} \) such that \(C^\mathcal{I} \neq \emptyset \)? \(\mathcal{I} \) is called a model of \(C \) then.
 \[\Rightarrow \] e.g., \(C \sqcap \neg C \) unsatisfiable
 - Concept Subsumption: does \(C^\mathcal{I} \subseteq D^\mathcal{I} \) hold in all \(\mathcal{I} \)'s?
 \[\Rightarrow \] \(D \) is more general than \(C \), \(C \sqsubseteq D \), e.g.
 \[\text{person} \sqcap \text{female} \sqsubseteq \text{person} \]

- TBox (terminological box), “background knowledge”
 - set of axioms, \(C \sqsubseteq D \), \(C \equiv D \)
 - reduce possible interpretations: \(C^\mathcal{I} \subseteq D^\mathcal{I} \), \(C^\mathcal{I} = D^\mathcal{I} \)
 - definitions: \(\{ \text{woman} \equiv \text{person} \sqcap \text{female} \} \)
 \[\Rightarrow \] \(\text{woman}^\mathcal{I} = \text{person}^\mathcal{I} \sqcap \text{female}^\mathcal{I} \)
 - \(\text{woman} \sqcap \neg \text{female} \) now unsatisfiable
Description Logics (3)

• Central notions (3):

 • ABox (assertional Box), individuals and relationships

 • individuals = constants, e.g., betty

 ⇒ \(\text{betty}^I = \text{the real betty} \)

 • set of assertions, betty : woman,

 \((\text{betty}, \text{charles}) : \text{has_child} \) (concept and role assertions)

 • constrain / reduce possible interpretations:

 \(\text{betty}^I \in \text{woman}^I, \)

 \((\text{betty}^I, \text{charles}^I) \in \text{has_child}^I \)

 • ABox = node- and edge-labeled graph

 • ABox satisfiability (“Database consistent?”)

 ⇒ \(\{ \text{betty} : \text{woman}, \text{betty} : \neg \text{female} \} \) is unsatisfiable
Description Logics (3)

Effect of TBox axiom $woman \equiv person \sqcap female$

Universe $\Delta^\mathcal{I}$

$person^\mathcal{I}$

$(person \sqcap female)^\mathcal{I}$

$= woman^\mathcal{I}$

$female^\mathcal{I}$
Description Logics (4)

- Central notions (4):
 - not only boolean operators offered, but also quantifiers (over role fillers = “slot fillers”)

 \[\textbf{existential: } \text{mother} \equiv \text{woman} \sqcap \exists \text{has_child_person} \]

 \[\Rightarrow \text{ (equivalent mother} \\
 \text{ (and woman (some has_child person))}) \]

 \[\Rightarrow \textbf{FOPL: } \forall x. (\text{mother}(x) \iff \\
 \text{woman}(x) \land \exists y. (\text{has_child}(x, y) \land \text{person}(y))) \]

 \[\Rightarrow \textbf{universal: } \text{mother_without_daughters} \equiv \text{mother} \sqcap \\
 \forall \text{has_child_male} \]

 \[\Rightarrow \textbf{FOPL: } \forall x. (\text{mother_without_daughters}(x) \iff \\
 \text{mother}(x) \land \forall y. (\text{has_child}(x, y) \rightarrow \text{person}(y))) \]
Description Logics (5)

- Core inference problem: (concept, TBox, ABox) satisfiability
- Decidable with Tableau calculi
 - attempt to construct a model (satisfying interpretation), witnessing satisfiability
 - if unsuccessful, unsatisfiable
- Tableau = finite representation of a model
- Very similar to an ABox (node- and edge-labeled graph)
- Input ABox augmented with assertions added by the calculus
- Illustration of models
Description Logics (5)

Concept model of mother w.r.t. TBox
{mother ≡ woman \sqcap ∃ has_child.person}:

\[(i, j) \in has_child^I\]

\[i \in woman^I\]

\[j \in person^I\]

\[i \in \exists has_child_person^I\]
Description Logics (5)

\(\text{ABox model of } \{ \text{betty : mother} \} \text{ w.r.t. TBox } \)
\(\{ \text{mother} \equiv \text{woman} \land \exists \text{has_child.person} \} \)

\[\begin{array}{c}
(betty^I, j) \in \text{has_child}^I \\
\text{betty}^I \in \text{woman}^I \\
\text{betty}^I \in \exists \text{has_child.person}^I \\
\text{betty}^I \in \text{woman}^I \\
j \in \text{person}^I
\end{array} \]
Description Logics (5)

ABox model of \{betty : mother, (betty, charles) : has_child\} w.r.t. TBox \{mother \equiv woman \sqcap \exists has_child.person\}

![Diagram](image)

- \(betty^I \in woman^I\)
- \(charles^I \in person^I\)
- \(betty^I \in \exists has_child.person^I\)
Description Logics (5)

ABox model of \{betty : mother, (betty, charles) : has_child\} w.r.t. TBox \{mother \equiv \text{woman} \sqcap \exists \text{has_child.person}\} (2)
The DL Family

- A DL is a logic
 ⇒ formal language (set of well-formed expressions)
 ⇒ with model-theoretic semantics (⇒ reasoning)

- \mathcal{ALC}: concept constructors $\{\sqcap, \sqcup, \exists R.C, \forall R.C\}$

- \mathcal{ALCI}: \mathcal{ALC} plus so-called inverse roles (R^{-1})

- Subset relationship between DLs: $\mathcal{ALC} \subseteq \mathcal{ALCI}$

- An \mathcal{ALCI} prover can of course be used for \mathcal{ALCI}

- Often: $\mathcal{DL} \subseteq \mathcal{DL}'$ ⇒ more expressive ⇒ higher (computational) complexity

- Optimizations sometimes only for “smaller” DLs known (e.g., model merging for DLs without inverse roles)
Motivation Continued - Optimizations

- Optimizations strictly necessary (many practically relevant DLs are at least \textsc{ExpTime}-complete)
- Applicable optimizations have to be detected and applied automatically by the DL prover

\Rightarrow Complicates implementation quite a bit (\(i \mathrel{\text{if}} \ldots\))

- MIDELORA approach: instead of defining one prover for a very expressive DL, define many small and concise provers for DLs:
 - Optimizations can be “pinpointed” and localized
 - Non-comparable (w.r.t. \(\subseteq\)) branches in the DL family can be implemented (e.g., non-standard DLs)

$?\,$ Many small provers instead of one big prover \Rightarrow easier?
MiDELoRA Design Rationales

- Only easier, if provers are very concise
- Common components have to be reused by different provers (tableau rules) ⇒ move **software complexity** in reusable tableau rules, provers focus on **intellectual complexity**
- Define dedicated prover for \mathcal{DL} only for **good reasons**, otherwise **inherit** a prover for $\mathcal{DL} \subseteq \mathcal{DL}'$ (if possible)
 ⇒ define CLOS language classes for DLs (e.g., ALC, ALCI), use method dispatch for prover selection
 - a good reason: \mathcal{DL} allows for certain optimization (⇒ complicates implementation), but \mathcal{DL}' doesn’t
- If possible, provers do not commit to a concrete ABox representation (**substrate protocol**)
Substrate Data Model

- Node- and edge-labeled graph \(S = (V, E, L_V, L_E, \mathcal{L}_V, \mathcal{L}_E) \)
- Variable description languages \(\mathcal{L}_V, \mathcal{L}_E \), e.g. \(\mathcal{L}_V =_{\text{def}} \text{ALC} \), \(\mathcal{L}_E =_{\text{def}} \mathcal{N}_R \) for \(\text{ALC} \) ABox (⇒ flexibility)
- Abstract CLOS classes substrate, node, edge, node-description, edge-description etc. (but “template methods”)
- Substrate protocol (data abstraction)
 - create-node, create-edge
 - get-nodes, get-edges
 - loop-over-nodes, loop-over-edges
 - (indexed) access: get-matching-nodes <descr.>, loop-over-matching-nodes,...
MiDELORA Space

Language (DL)

(abox-sat, alc, abox)

Substrate

Task

- Prover: ternary multi-method
 (defprover (abox-sat alc abox) ...)

- CLOS classes for DLs and Substrates (ABoxes)

- Symbol dispatch for Task axis

⇒ Provers can cover “planes” (not spaces)
MIDELORA Space (2)

- Language classes: $\mathcal{ALC} \subseteq \mathcal{ALCI}$, $\mathcal{ALC} \subseteq \mathcal{ALC}_{R^+}$
 1. (defclass alc (alci) ...)(co-variant)
 \Rightarrow \mathcal{ALCI} prover is sufficient, dedicated \mathcal{ALC} prover can be defined if reasonable, standard dispatch will work
 2. (defclass alci (alc) ...)(contra-variant)
 \Rightarrow \mathcal{ALC} prover incomplete for \mathcal{ALCI}, thus, both provers are needed if standard dispatch shall work (bad)

- Represent characteristic properties as mixin classes
 - co-variant properties: (defclass alc (alci admits-model-merging-p) ...)
 - contra-variant properties: (defclass alcr+ (alc needs-blocking-p) ...)
MiDELORa Space (3)

- Decisions
 - Most properties are in fact contra-variant
 - Arrange language classes in a contra-variant way . . .
 - ... and define non-standard dispatch for \mathcal{L}-argument
 (downcast \mathcal{L} argument until prover found)
 - Alternative idea (thanks to a reviewer): **negative properties**
 - however, **positive properties** needed for dispatch
 - solution: assume properties to be **true by default**
 - specialized behavior on the absence of information??

- S-axis: co-variant standard CLOS dispatch

- T-axis: reuse via delegation, not inheritance (problem reduction, e.g. `individual_instance? ? $\overline{\text{abox_sat}}$?`)
Tableau Calculi

Tableau Expansion of $C \sqcap (\exists R.D \sqcup \exists R.E) \sqcap \forall R.\neg D$

1. Create initial node:

$$C \sqcap (\exists R.D \sqcup \exists R.E) \sqcap \forall R.\neg D$$
Tableau Calculi

Tableau Expansion of $C \sqcap \exists R. (D \sqcup E) \sqcap \forall R. \neg D$

2. Break up conjunction (\sqcap-rule)

\[
\begin{array}{c}
C \sqcap (\exists R. D \sqcup \exists R. E) \sqcap \forall R. \neg D \\
\hline
\hline
C \\
(\exists R. D) \sqcup (\exists R. E) \\
\forall R. \neg D
\end{array}
\]
Tableau Calculi

Tableau Expansion of $C \sqcap \exists R. (D \sqcup E) \sqcap \forall R. \neg D$

3. Expand disjunction $(\exists R. D) \sqcup (\exists R. E)$ (\sqcup-rule)

$C \sqcap (\exists R. D \sqcup \exists R. E) \sqcap \forall R. \neg D$

C

$(\exists R. D) \sqcup (\exists R. E)$

$\forall R. \neg D$

$\exists R. D$
Tableau Calculi

Tableau Expansion of $C \sqcap \exists R.(D \sqcup E) \sqcap \forall R.\neg D$

4. Expand existential restriction $\exists R.D$ (\exists-rule)

$C \sqcap (\exists R.D \sqcup \exists R.E) \sqcap \forall R.\neg D$

D

C

$(\exists R.D) \sqcup (\exists R.E)$

$\forall R.\neg D$

$\exists R.D$
Tableau Calculi

Tableau Expansion of $C \cap \exists R.(D \sqcup E) \cap \forall R.\neg D$

5. Apply universal restriction $\forall R.\neg D$ (\forall-rule) ➔

\[
\begin{align*}
C \cap (\exists R. D \sqcup \exists R. E) & \cap \forall R.\neg D \\
D, [\neg D] & \downarrow
\end{align*}
\]

\[
\begin{align*}
C \\
(\exists R. D) \sqcup (\exists R. E) \\
\forall R.\neg D \\
\exists R. D
\end{align*}
\]
Tableau Calculi

Tableau Expansion of $C \cap \exists R. (D \sqcup E) \cap \forall R. \neg D$

6. **Backtracking**, reconsider disjunction $(\exists R. D) \sqcup (\exists R. E)$

$$
C \cap (\exists R. D \sqcup \exists R. E) \cap \forall R. \neg D
$$

$$
C
(\exists R. D) \sqcup (\exists R. E)
\forall R. \neg D
\exists R. E
$$
Tableau Calculi

Tableau Expansion of $C \cap \exists R. (D \sqcup E) \cap \forall R. \neg D$

7. Expand existential restriction $\exists R. E$ (\exists-rule)

$$C \cap (\exists R. D \sqcup \exists R. E) \cap \forall R. \neg D$$

E

C

$(\exists R. D) \sqcup (\exists R. E)$

$\forall R. \neg D$

$\exists R. E$
Tableau Calculi

Tableau Expansion of $C \cap \exists R.(D \sqcup E) \sqcap \forall R.\neg D$

8. Apply universal restriction $\forall R.\neg D$ (\forall-rule) \Rightarrow done

\[C \cap (\exists R.D \sqcup \exists R.E) \sqcap \forall R.\neg D \]

\[E, \boxed{\neg D} \]

\[C \]

\[(\exists R.D) \sqcup (\exists R.E) \]

\[\forall R.\neg D \]

\[\exists R.E \]
Tableau Rules for ALC

\sqcap-Regel :
if 1. $x : C_1 \sqcap C_2 \in \mathcal{A}$
2. $\{x : C_1, x : C_2\} \not\subseteq \mathcal{A}$
then $\mathcal{A}' := \mathcal{A} \cup \{x : C_1, x : C_2\}$

\exists-Regel :
if 1. $x : \exists R.C_1 \in \mathcal{A}$
2. es gibt kein y, sodass $\{y : C_1, (x, y) : R\} \subseteq \mathcal{A}$
then $\mathcal{A}' := \mathcal{A} \cup \{y : C_1, (x, y) : R\}$

\sqcup-Regel :
if 1. $x : C_1 \sqcup C_2 \in \mathcal{A}$
2. $\{x : C_1, x : C_2\} \cap \mathcal{A} = \emptyset$
then $\mathcal{A}' := \mathcal{A} \cup \{x : C_1\}$
$\mathcal{A}_1 := \mathcal{A} \cup \{x : C_2\}$

\forall-Regel :
if 1. $\{x : \forall R.C_1, (x, y) : R\} \subseteq \mathcal{A}$
2. $y : C_1 \not\in \mathcal{A}$
then $\mathcal{A}' := \mathcal{A} \cup \{y : C_1\}$

- non-determinism: \sqcap-rule \Rightarrow search needed
- if the rules can be applied in such a way that a complete and clash-free tableau is produced \Rightarrow ABox satisfiable
5-Port Model for Rules

- **MAIN ENTRY:** new rule incarnation
- **POSITIVE EXIT:** rule was applied
- **NEGATIVE EXIT:** rule was not applied
- **BACKTRACK EXIT:** return control to parent incarnation
- **RE-ENTER ENTRY:** get control back from parent incarnation
Simple \mathcal{ALC} Prover in Lisp (1)

(defun alc-sat (concept)
 (labels ((alc-satl (expanded unexpanded)
 (labels ((get-negated-concept (concept)
 (nnf `(not ,concept)))
 (select-concept-if-present (type)
 (find-if `#'(lambda (concept)
 (and (consp concept)
 (eq (first concept) type)))
 unexpanded))
 (select-atom-if-present ()
 (find-if `#'(lambda (concept)
 (or (symbolp concept)
 (and (consp concept)
 (eq (first concept) 'not)
 (symbolp (second concept)))))
 unexpanded))
 (clash (concept)
 (let ((negated-concept (get-negated-concept concept)))
 (find negated-concept expanded :test #'equal)))
 (register-as-expanded (concept)
 (unless (clash concept)
 (alc-satl (cons concept expanded)
 (remove concept unexpanded :test #'equal)))))
 (remove concept unexpanded :test #'equal))))
 (remove concept unexpanded :test #'equal))))

(defun alc-sat (concept)
 (labels ((alc-satl (expanded unexpanded)
 (labels ((get-negated-concept (concept)
 (nnf `(not ,concept)))
 (select-concept-if-present (type)
 (find-if `#'(lambda (concept)
 (and (consp concept)
 (eq (first concept) type)))
 unexpanded))
 (select-atom-if-present ()
 (find-if `#'(lambda (concept)
 (or (symbolp concept)
 (and (consp concept)
 (eq (first concept) 'not)
 (symbolp (second concept)))))
 unexpanded))
 (clash (concept)
 (let ((negated-concept (get-negated-concept concept)))
 (find negated-concept expanded :test #'equal)))
 (register-as-expanded (concept)
 (unless (clash concept)
 (alc-satl (cons concept expanded)
 (remove concept unexpanded :test #'equal)))))
 (remove concept unexpanded :test #'equal))))
Simple ALC Prover in Lisp (2)

(let ((atom (select-atom-if-present)))
 (if atom
 (register-as-expanded atom)
 ;; else
 (let (((and-concept (select-concept-if-present 'and)))
 (if and-concept
 (progn
 (dolist (conjunct (rest and-concept))
 (when (clash conjunct)
 (return-from alc-sat1 nil))
 (push conjunct unexpanded))
 (register-as-expanded and-concept))
 ;; else
 (let (((or-concept (select-concept-if-present 'or)))
 (if or-concept
 (let (((unexpanded-old unexpanded))
 (some #'(lambda (arg)
 (unless (clash arg)
 (setf unexpanded
 (cons arg unexpanded-old))
 (register-as-expanded or-concept))))
 (rest or-concept)))
 ;; else
))
(let ((some-concept (select-concept-if-present 'some)))
 (if some-concept
 (let* ((qualification (third some-concept))
 (role (second some-concept))
 (initial-label
 (cons
 qualification
 (mapcar #'third
 (remove-if-not
 #'(lambda (concept)
 (and (consp concept)
 (eq (first concept) 'all)
 (eq (second concept) role)))
 unexpanded)))))
 (and (alc-sat1 nil initial-label)
 (register-as-expanded some-concept)))
 ;; else
 t))))))))))
...concise, but too simple

- Satisfiability of concepts in NNF only (without TBox)
- No ABox representation (of course), but ...
- ...implicit tableau representation (stack)
- Stack frame = tableau state = state in search space = rule incarnation
- No tableau / ABox data abstraction (and lists don’t scale): suppose hash tables were used for set representation? \(\Rightarrow\) generic substrate data model
- No optimizations, many \(i \neq f\)'s would have to be included
- But backtracking for free! (unboxed data structures)
\(\Rightarrow\) Cannot survive complex input
abox_sat in MIDELORA for ALC

(defprover ((abox-sat alc abox))
 (:init
 (perform (initial-abox-saturation)
 (:body
 (start-main))))
 (:main
 (perform (deterministic-expansion)
 (:body
 (if clashes
 (handle-clashes)
 (perform (or-expansion)
 (:positive
 (if clashes
 (handle-clashes)
 (restart-main)))
 (:negative
 (perform (some-expansion)
 (:positive
 (if clashes
 (handle-clashes)
 (restart-main)))
 (:negative
 (success))))))))
 (:success
 (completion-found)))

- Focus on intellectual complexity, not software complexity
- ABox representation data abstraction
- Optimizations = additional rule applications
Prover: main in the 5-Port-Model
Tableau Rule Definition

(defrule some-expansion (dl-with-somes abox)
 (multiple-value-bind (some-concept node)
 (select-some-concept abox *strategy* language)
 (cond ((not node)
 +insert-negative-code+)
 (t
 (let ((role (role some-concept))
 (new-node nil))
 (register-as-expanded some-concept :node node)
 (setf new-node
 (create-anonymous-node abox
 :depends-on (list (list node some-concept))))
 (relate node new-node role
 :old-p nil
 :depends-on (list (list node some-concept)))
 (perform (compute-new-some-successor-label
 :new-node new-node
 :node node :role role
 :concept some-concept))
 +insert-positive-code+))))))

- Reusable components, often parameterizable (not shown here)
- ABox representation data abstraction
- Focus on software complexity, optimizations = clever programming
Data Abstraction and Backtracking

• Conceptually, an ABox substrate can be a simple list
 (simple \mathcal{ALC} prover)

\Rightarrow Backtracking easy if list is modified via `push`, `cons`;
 simply keep a pointer

• However, most substrate implementations will be boxed
 ($\text{ABox} = \text{CLOS object graph}, \text{or RDF triple store}, \ldots$)

• Backtracking?
 • histories of command objects ("log file")
 • compensation operations (undo method)

\Rightarrow Memory intensive, lightweight objects (list structures)

• Rules are responsible to revert / “roll back” the tableau (not
 the prover)
Why Lisp? (1)

- Problem- / domain-specific macros
 - defprover
 - defrule
 - enforce thinking in a conceptual model
- Multiple inheritance
 - to organize reuse in the MIDELORA space
 - mixin arbitrary properties in language classes (alc) (ok, possible with interfaces too), ...
 - …but also rules defined for mixin classes (e.g., some-expansion for dl-with-somes)
 - multiple substrate superclasses, e.g. spatial-abox (spatial-substrate, abox)
Why Lisp? (2)

- Multi-methods
 - mostly used at macro expansion time during expansion of `(perform <rule>)` (“prover compile time”): `get-rule-body-code` (fixes ABox class and DL), but also generic function calls can be coded
 - `defprover`: 3 ternary multi-methods `prover-init`, `-main`, `-succes`
 - often used: `entails-p` (relation specializations with binary methods)
Why Lisp? (3)

- Method combinations
 - often, **sound but incomplete** predicates are used as guards, e.g., for `entails-p (subsumes-p)`
 - if guard test returns `t` (resp. `nil`), return `t`, otherwise invoke “true” expensive test

 ⇒ :around / call-next-method idiom or :and method combination type

- contra-variant dispatch possible in CLOS

- Other (standard) arguments
 - symbolic computation
 - automatic memory management
 - fast and mature implementations, ...
Conclusion

- Performance tested so far seems to be OK, comparable to state-of-the-art reasoners of ≈ 2003 (but hasn’t been tested extensively, unlike RACERPRO)

- **MiDELoRA: 2002 - 2005**

- Focus on flexibility and genericity rather than utmost performance (research prototype)

 - Deliberately traded such aspects for some CPU cycles
 - Hope: enhanced software quality and maintainability through better comprehensibility

- High memory footprint, histories can become very long

- Not an “end user” framework

- Affinity with “Software Product Families”?
History: Lisp and DLs

- KL-ONE, Brachman/Schmolze, 1975-1985 (Interlisp)
- LOOM, Bates/Brill/MacGregor, 1987-?
- CLASSIC, Borgida/McGuinness/Patel-Schneider, 1989-1992
- original FACT, Horrocks, 1997-today (successors)
- RACER, Haarslev/Möller, 1999-2004
- RACERPRO, Haarslev/Möller/Wessel, 2004-today
- “standard” KRSS syntax, 1993:
 (and woman (some has-child person) (all has-child male))
- See chapter “Description Logic Systems” in DL Handbook by Möller and Haarslev ;-)

See chapter “Description Logic Systems” in DL Handbook by Möller and Haarslev ;-)

ELW 2008, 7.7.2008, Michael Wessel – p.32/33
Thanks!

Work supported by

λ