
Software Abstractions for Description Logic Systems

Michael Wessel and Ralf Möller

Hamburg University of Technology
Institute for Software, Technology, and Systems (STS)

Hamburg, Germany

Abstract. We explain the basics of description logics and tableau provers for reasoning with them.
The implementation of tableau provers is a complicated matter and demanding from a software engi-
neering point of view. We present and discuss their implementation in COMMON L ISP and motivate
and introduce some novel software abstractions for description logic system construction, which are
embodied in the MIDELORA toolkit / framework.

1 Introduction & Motivation

In this paper we present some novel problem-specific software abstractions (in COMMON L ISP) for the
construction of description logic (DL) systems [1, Chapter7 – 9]. These abstractions are embodied in the
M IDELORA toolkit for DL system construction. The MIDELORA framework was tailored to alleviate a
number of problems designers of description logic systems face. As such, one could argue that the target
audience for the framework is rather small. We believe, however, that the MIDELORA software abstrac-
tions can be valuable for the broader audience of developersof semantic information processing technology
in COMMON L ISP. State-of-the-art DL systems (such as RACERPRO) are very complex software artefacts,
and it became apparent that software engineering aspects deserve special attention. Let us start by intro-
ducing some background terminology; we assume basic knowledge in first-order predicate logic (FOPL)
and general COMMON L ISP familiarity only.

Description Logics & Semantic WebDescription logics [1, Chapter 2] are a family of logic-based decid-
able knowledge representation languages which provide theformal foundation for current W3C standards
for the Semantic Web, such as OWL DL. DLs can also be characterized asclass or concept-based repre-
sentation languages; i.e., the notion of aconcept or classis a central one. A concept is meant todenote
a set of individuals in some universe of discourse. There is also the notion of binary relationships, which
are calledroles. The set of individuals denoted by a concept is also called the extensionof the concept,
in contrast to the concept description, which is sometimes called theintensionof the concept. Concepts
aredescribedin a formal language. For example, the extension of the concept described by “female and
person” is given by the intersection of the set of female objects (the extension of the concept “female”),
and of the set of persons (the extension of the concept “person”). As such, the concept description “female
and person” can be understood as thedefinition of the concept woman. A concept definitionthus assigns
a concept nameto a concept description.Obviously, a concept name is a concept description as well. A
concept definition can be complete, or only “primitive”. In the former case, the definition providesneces-
sary and sufficient conditionsfor class membership, e.g. as for “woman”. In this case, the concept is called
a defined concept. Logically, this is a bi-implication or “if and only if”. This corresponds to the following
simpleaxiomin FOPL:∀x.(female(x) ∧ person(x) ↔ woman(x)). Knowing that “Betty” is “female”
and “person”, we conclude that she is a “woman”:{person(betty), female(betty)} |= {woman(betty)},
and vice versa. In the case of aprimitive concept definition,only necessary conditionsare provided by
the description. For example, “mother” implies “parent”, but not vice versa; in this case, “mother” is a
primitive concept:∀x.(mother(x) → parent(x)). It is obvious that “mother” could become a defined
concept as well if a more complete description for “mother” was provided, e.g. “woman with a child”:
∀x.(woman(x) ∧ ∃y.(has child(x, y) ∧ person(y)) ↔ mother(x)).

The nowadays practically relevant DLs can be seen as subsetsof FOPL in a variable-free syntax. The
given FOPL axioms take the following form in DL syntax:

woman≡̇person ⊓ female, mother⊑̇parent, or mother≡̇woman ⊓ ∃has child.person.
There is also a universal quantification which allows, for example, to define the concept

mother of only male children≡̇woman ⊓ ∃has child.person ⊓ ∀has child.male,



or in FOPL:
∀x.(mother of only male children(x) ↔ woman(x) ∧ ∃y.has child(x, y) ∧

∀y.(has child(x, y) → male(y))).
As mentioned above, there is no single DL, but a wholefamily of DLs. DLs are distinguished from

one another by their expressive power. The expressive powerof a DL is influenced by the set of concept
constructors it admits, and also by the kinds of axioms offered. For example, some DLs offer disjunction,
whereas other do not; some offer transitive roles, etc. A concrete example for a DL (ALC) is given below.
The set of concept descriptions aDL admits is just a formal language, here denoted asLDL. A “bigger”
DL DL′ simply admits more concept descriptions:LDL ⊆ LDL′ .

Since the advent of the Semantic Web, the importance of DLs and DL systems is ever increasing. The
idea of the Semantic Web is to assign machine-processable and -understandableexplicit semanticsto web
resources by publishing annotations about the URIs of theseweb resources. These annotations are written
in an XML-based description logic: OWL. OWL DL class (descriptions) can be translated into description
logic concepts; this also holds for the axioms. Due to their model theoretic semantics, these annotations
imply (“ |=”) a whole logical theory, representingimplicit information about the web resource(s). This
implicit information must be taken into account, for example, for query answering on the Semantic Web.
Logical inference or (deductive) reasoning is often coinedas the process that makes “implicit information
explicit”. This is the role of a reasoner, which implements an inference algorithm;an API is offered to
access the reasoning (or inference) services of that inference mechanism. The most basic reasoning service
is theconsistencyor satisfiability checking servicewhich checks whether a given concept description is
non-contradictory. Thus, a decision problem must be solvedby the reasoner. For example, given the axioms
discussed above, the concept descriptionwoman ⊓ ¬female is obviously unsatisfiable or contradictory.

Tableau Calculi, ABoxes, Query Answering, OptimizationsA popular and very successful class of infer-
ence algorithms for deciding the (concept) satisfiability problem for DLs (and thus, also for OWL DL)
is given be the class oftableau calculi[1, Chapter 9]. State-of-the-art DL systems and OWL reasoning
systems (such as RACERPRO, PELLET and FACT++) implement tableau calculi for a number of good
reasons – they are modular and flexible (they can cover a largeset of different DLs from the DL family),
they are well-understood, they are intuitive, they allow for optimizations, and so on. Tableau calculi can
not only decide the concept satisfiability problem for DLs, but also decide the consistency (satisfiability)
problem forextensional databases:a DL system not only manages and reasons about concept descriptions
and their definitions, but also manages extensional data. Anextensional database is also called anABox
(assertional box).For example, the ABox{woman(betty), (¬female)(betty)} is contradictory given the
axioms discussed above. A DL system can thus be seen as a “deductive database” which exploits rea-
soning to ensure data quality, and, more importantly, toderive its query answers.Given the extensional
data{person(betty), female(betty)} in combination with the background knowledge regardingwoman,
it is clear thatwoman(betty) is a logical consequence. Note that this fact isnot explicit in the exten-
sional data. Thus,betty is an answer to theinstance retrieval queryfor instances of conceptwoman. The
instance retrieval problem is an importantextensionalstandard inference problem. Unlike in standard (re-
lational) database systems, a DL system uses theopen world assumptionwhich means that the absence
of information is not interpreted as negative information.The extensional “data” in a DL system is thus
not considered to be “complete”. In contrast, the so-calledclosed world assumptionis used in standard
(relational) databases. Nowadays, scalability of query answering for DL / OWL reasoning systems is a
hot research topic [3]. Considering the large volume of dataavailable on the Web, this is not surprising.
However, scalability can only be achieved ifdedicated optimizations[1, Chapter 9] are incorporated into
a tableau reasoner. Unfortunately, these optimizations complicate tableau reasoners quite a bit, since cer-
tain optimization “tricks” can only be applied in certain situations for certain sublanguages which must be
detected automatically, etc.

Motivation forM IDELORA M IDELORA is motivated as follows (see also [5, 4]):
1. Flexibility: as mentioned, DLs provide a whole family of logics, and thus agreat deal of flexibility.

In principle, it is possible to chose the right DL for the problem at hand, provided the logic is decidable.
Different family members vary w.r.t. their expressivity and computational characteristics; it is well-known
that expressivity and computational complexity of a logic are co-variant properties. A toolkit for the con-
struction of DL systems should thus obviously not fix the constructible DLs. Instead, it should provide



the required components and building blocks (e.g., DL concept constructors, different kinds of axioms
etc.), from which specific DL systems can be constructed, preferably through adaptation, configuration and
composition - reuse is important here.

In principle, a DL system implementing a very expressiveDL can also supply the reasoning services
for a less expressive DLDL′ if LDL′ ⊆ LDL holds. However, reasoning inDL′ will in many cases be
much more efficient, either due to a smaller computational complexity, or due toapplicable optimization
techniqueswhich have been developed (and which may only be valid) forDL′. Consequently, this implies
that theDL-reasoner should recognize and handle input problems inDL′ in an optimized way. However,
having to recognize and interweave the applicable optimization techniques for sublanguages complicates
the implementation of the reasoner, adding yet another level of software complexity. This strongly moti-
vates the second point (see below).

Often, flexibility is not only required w.r.t. the family of supported DLs. Also theABox representa-
tion is subject to change.For example, certain applications may require persistent ABoxes, whereas oth-
ers need ABoxes in which the individuals have spatial characteristics,e.g., in order to represent polygons
in a map. Slightly simplified,an ABox can be seen as a node and edge-labeled graph.The same state-
ment also holds for similar semi-structured data models, such as RDF. From this perspective, the ABox
{woman(betty), has child(betty, charles)} is simply a graph with two nodesbetty andcharles, con-
nected via an edge. The nodebetty is labeled with the set of concept descriptions{woman}, and the edge
with the set of roles{has child}. Considering such a graph structure as a rather conceptual data model,
different logical and physical aspects of this model might be subject to change and thus require flexibility
in the software architecture.

M IDELORA introduces its own generic, graph-based data model. Asubstrateis an instance of a CLOS

classsubstrate, representing a graph. Different logical and physical (e.g., representational aspects) of
the data model can be addressed by introducingsubstrate (node, edge, . . . ) subclasses. For example,
an ABox is an instance of a specialized substrate classabox. A map is a specialized substrate whose
nodes are instances of spatial datatypes (e.g., polygons).We also use multiple inheritance; for example, the
substrate classmap-abox has bothabox as well asmap as superclasses. Consequently, its nodes are ABox
individuals which also have spatial characteristics. Since the physical representation and index structures
used for the different kinds of substrate graphs vary drastically, the whole access to and management of
the graph structure has to go through a generic “substrate protocol” which offers iterators etc., abstracting
from the details of the physical representation (data abstraction).

2. Comprehensibility, problem adequateness and conciseness (and thus maintainability) of the
reasoner implementations:Mathematical tableau calculi are very concise, but intellectually demand-
ing artefacts. The software abstractions used for their implementations should thus mirror the concep-
tual notions found in their mathematical definitions as close as possible. For example, there is the notion
of a tableau rulein a tableau calculus. MIDELORA thus provides an appropriate rule definition macro
defrule. Given a close correspondence between implementation and mathematical notions, software can
be seen as an “executable specification” and its comprehensibility and thus maintainability is greatly en-
hanced, if software abstractions are chosen in such a way that one does not get “lost in software complex-
ity”. A high-level perspective employing problem-specificsoftware abstractions thus has to be established
such that the underlying mathematical structures of tableau calculi are clearly mirrored in the source code.

In order to prevent tableau provers to grow into monsters of complexity, MIDELORA uses a unique
approach. Instead of offering one complex and highly optimized prover capable of handling one very
expressive DL (with different optimizations for various sublanguages), MIDELORA provides specialized,
much smaller and thus much more comprehensible dedicated provers for these sublanguages, which can
be maintained relatively independently from one another. Thus, instead of providing one big and complex
prover with complicated optimizations for sublanguages, MIDELORA provides many small provers. The
dedicated optimization techniques are moved into specialized dedicated provers for these sublanguages.
Obviously, the maintainability and comprehensibility of alarge number of small provers is only enhanced
if appropriate software abstractions are provided, and ifcommon componentsin these provers can be shared
and reused. This is, for example, the case for tableau rules,see below.

3. Enable reuse via inheritance, adaptability and configurability: As just illustrated, reuse by inheri-
tance is an important software organization / structuring principle in this specific domain as well. Appropri-
ate abstractions and reusable components such as tableau rules have to be identified. The implementation



of a highly optimized tableau rule can be very complex; thus,a rich set of standard tableau rules has to
be provided. Often, specialized provers require simple adaptations of standard tableau rules only. Conse-
quently, it should be possible to “inherit and adapt” the behavior of a tableau rule, exploiting the standard
“Open-Closed Principle”, or simply to adapt the rule by configuring it appropriately via parameters.

The rest of this paper is structured as follows. First we define the MIDELORA space in which the
reuse and inheritance for MIDELORA software abstractions is organized. Then, the DLALC and a tableau
calculus forALC are formally introduced. A simple COMMON L ISP implementation of that calculus is
presented and discussed. This MIDELORA version of an extended version of this calculus is then discussed.
Then comes the conclusion.

2 The M IDELORA Design Space
In order to organize the inheritance and reuse-space, the MIDELORA space is defined. Theprover is a
central notion in MIDELORA. M IDELORA allows for the definition of specialized provers for certain
tasks, working on specialized substrates.Proversare conceived to cover regions in the three-dimensional
M IDELORA space:

Definition 1 (M IDELORA Space).TheM IDELORA space is the Cartesian productS ×L×T , whereS
is the set ofsubstrate classes, L is the set of supported DLs, andT is a set ofprover tasks.

For example,T can contain the DLstandard inference problems[1, Chapter 2.2.4]:
T = {abox consistent?, concept instances, . . .}. Substrates and languages are modeled as CLOS classes.
The elements ofL are calledlanguage classesin the following. A MIDELORA prover is a ternary CLOS

(multi-) methodprover, with arguments(S, DL, T ) ∈ S × L × T .
If inheritance is exploited between the elements in the setsS, L, andT , a single MIDELORA prover

defined for a point(S, DL, T ) can in principle cover a whole region in the MIDELORA space. But this
raises the question how to order the elements in the setsS, L, T w.r.t. the subclass (inheritance) relation.

Let us consider theL axis. As explained, a prover forDL′ and taskT can in principle also solveT
for DL, if LDL ⊆ LDL′ holds. However, a dedicated prover forDL is sanctioned and reasonable ifDL
can be optimized much better, and thus its implementation becomes more specialized and tailored towards
DL. Then it becomes reasonable not to intermix its implementation with DL′. But in principle it is not
desirable of having to define one dedicated prover for each point in this space (since there would be no
reuse by means of inheritance).

Basically, there are two options to organize the inheritance: a) the subclass relation among theL axis can
be co-variant w.r.t.⊆, or b) contra-variant w.r.t.⊆. Assuming there is a “super DL” prover forDL′ which
is a very expressive DL, one prover would be sufficient for thewhole family. In case a dedicated prover for
DL is reasonable, this prover would automatically be selectedfor input problems inDL. However, even
if there is no such dedicated prover,DL′ could still be used and would be selected automatically by the
standard CLOS dispatch mechanism. We just have to define the language classDL as a subclass of the
language class forDL′ (co-variant w.r.t.⊆).

Unfortunately, this organization of the language classes has a drawback. The problem is caused by the
requirement thatcharacteristic propertiesof the DLs shall be represented asmixin classesin the language
classes. For example, the DLALCR+ has the property “needs blocking”, butALC doesn’t (it is not im-
portant for this discussion to understand what this property means).1 So, mixing in theneeds-blocking
superclass for theALCR+ language class and making theALC language class a subclass would falsely
inherit theneeds-blocking property toALC as well, or non-monotonic inheritance would be needed
(which is even more tricky). Inheritingnon-properties, e.g.doesnt-need-blocking, is not a good idea
either. Thus, we have modeled the DL classes in a contra-variant way. Unfortunately, this complicates reuse
then: Suppose there is a prover forALC only, but no prover forALCR+ . Now a problem inALCR+ shall
be solved. Standard CLOS dispatch would then falsely select theALC prover, which would be incomplete
or even fail onALCR+ input! Consequently, a prover forALC as well as forALCR+ is required, and
reuse isdisabledthen, since a dedicated prover for each language class wouldbe needed. Provers would

1 For DL experts: This is a slightly simplified example. Of course, due to general axioms in the TBox, alsoALC
eventually requires blocking. But then the language analysis component would have classified this knowledge base
asALCR+ , not asALC.



no longer be able to cover regions in the MIDELORA space. Standard CLOS dispatch thus cannot be used
w.r.t. theL-axis. We have therefore implemented an algorithm whichdowncaststhe language class instance
(describing the DL of the input) along the language class hierarchy until a prover is found which is defined
for this (downcasted) language class. Finally, the processreaches the maximal expressive “super DL”DL′

at the bottom of the class hierarchy. It would be interestingto implement this custom dispatch algorithm
directly within CLOS.

Regarding theS axis, it is obvious that standard CLOS dispatch can be used. For example, apersistent-

abox is a subclass ofabox. A prover must be written in such a way that it will work on specialized ABoxes,
i.e., subclasses ofabox. Consequently, all access to the physical graph representation must go through the
generic interface the substrate layer provides (the substrate protocol). Dynamic binding is thus also required
for iterator macros, e.g.,loop-over-nodes. For example, in case of a persistent ABox, this iterator has
to fetch and construct CLOS substrate nodes on the fly from information stored in a relational database.
In other cases, the macro can be expanded in a hash table iterator, and so on. Appropriate techniques for
achieving this kind of data abstraction from physical representation are well known.

Finally, regarding theT axis, we use simpleeql symbol dispatch, since it is not clear how to establish
reuse by inheritance between elements inT . However, often a prover task isreducibleto another prover
task. For example, in order to check whether the individualbetty from the ABoxA is an instance of
woman (this is theinstance checkingtask,T = individual instance?, which is also performed during
instance retrieval), the prover for the taskT = abox consistent? on the ABoxA∪{betty : ¬woman} can
be called. The former prover then just returnst if the latter one returnednil, and vice versa. Thus, reuse
can be organized by means of delegation, but not via inheritance.

3 Tableau Calculi from the Mathematical Perspective
Let us first define syntax and semantics of the basic DLALC more formally. Unfortunately, the semantics
of ALC and the central notion ofsatisfiabilityhas to be defined formally first, since otherwise it is left
unclear what a tableau calculus is all about, i.e., the problem to be decided would be left unspecified.

The syntax of concept descriptions (concepts for short) is defined inductively as follows. LetNC be
a set of concept names (“atomic concepts”); there are 2 special concept names, called top and bottom:
{⊤,⊥} ⊆ NC . Let NR be a set of binary relation names, the set of so-called roles.EachCN ∈ NC is a
concept. Moreover, ifC andD are concepts, andR ∈ NR is a role, then the following expressions are
concepts as well:¬C (full negation),C ⊓ D (conjunction),C ⊔ D (disjunction),∃R.C (existential role
restriction), and∀R.C (universal role restriction). ATBoxis a set of axioms of the formC⊑̇D andC≡̇D.
Let NI be a set of individual names (individuals for short); leti, j ∈ NI . An ABox is a set of axioms
(so-called ABox assertions) of the formi : C (concept assertion) and(i, j) : R (role assertion).

Thesemanticsof a concept is given in terms of an interpretation. Aninterpretationis a pair(∆I , ·I),
where∆I is a non-empty set (the interpretation domain), and·I is an interpretation function which maps
concept names to subsets of∆I , roles to subsets of∆I×∆I , and individuals to elements of∆I . Moreover,
⊤I = ∆I and⊥I = ∅ is required. The interpretation function can then be extended inductively to arbitrary
concepts as follows:

• (¬C)I =def ∆I \ CI ,
• (C ⊓ D)I =def CI ∩ DI ,
• (C ⊔ D)I =def CI ∪ DI ,
• (∃R.D)I =def { i ∈ ∆I | ∃j ∈ ∆I .(i, j) ∈ RI ∧ j ∈ DI } , and
• (∀R.D)I =def { i ∈ ∆I | ∀j ∈ ∆I .(i, j) ∈ RI → j ∈ DI }.

Please note thatCI is the extension ofC. A conceptC is satisfiable iff there exists an interpretation
(∆I , ·I) such thatCI 6= ∅; C is satisfiedin (∆I , ·I) then. A TBox is satisfiable iff there is a(∆I , ·I)
which satisfies all TBox axioms. A TBox axiomC⊑̇D is satisfied by(∆I , ·I) iff CI ⊆ DI . A TBox
axiomC≡̇D is satisfied by(∆I , ·I) iff CI = DI . An ABox is satisfiable iff there is an(∆I , ·I) which
satisfies all ABox assertions. An ABox assertioni : C is satisfied by(∆I , ·I) iff iI ∈ CI , and(i, j) : R

is satisfied by(∆I , ·I) iff (iI , jI) ∈ RI . To decide the consistency problem forC then means to decide
whether there exists an interpretation which satisfiesC, and analog forT , A. Often, one wants to decide
the satisfiability problem for a wholeknowledge basewhich is a pair(T ,A). Tableau calculi can do this.

From a mathematical perspective, a tableau prover is non-deterministic calculus which applies a set of
inference rules to an initial input ABox. TheALC tableau rules are shown in Fig. 1. Basically, there is



⊓-rule:
if 1. i : C1 ⊓ C2 ∈ A

2. {i : C1, i : C2} 6⊆ A

then A := A ∪ {i : C1, i : C2}

⊔-rule:
if 1. i : C1 ⊔ C2 ∈ A

2. {i : C1, i : C2} ∩ A = ∅

then A := A ∪ {i : D}
for someD ∈ {C1, C2}

∀-rule:
if 1. i : ∀R.D ∈ A

2. (i, j) : R ∈ A
3. j : D /∈ A

then A := A∪ {j : D}

∃-rule:
if 1. i : ∃R.D ∈ A

2. {(i, j) : R, j : D} ∩ A = ∅ for all j ∈ NI

then A := A∪ {(i, j) : R, j : D} (for a newj)

Fig. 1. TheALC Tableau Expansion Rules

one tableau rule for each concept constructor. The input ABox becomes the working data structure of the
calculus, the so-called tableau. The calculus attempts to construct a (finite representation) of a model of the
input, witnessing satisfiability if successful. A tableau is simply an ABox which has been augmented by
rule consequences. At runtime, each tableau rule checks itsapplicability on the current state of the tableau.
In case no more rules can be applied, the tableau is said to becomplete. The non-determinism works as
follows: If the tableau rules can be appliedin such a waythat a complete and contradiction-free tableau
can be derived, then the input ABox is satisfiable, and unsatisfiable otherwise. Please also note the non-
determinism in the⊔-rule. A contradictory tableauA contains some subset{i : C, i : ¬C} ⊆ A, for some
i andC, a so-calledclash.

For example, on the input ABox{betty : woman ⊓ ∃has child.person} the completion{betty :
woman ⊓ ∃has child.person, (betty, j) : has child, j : person} will be constructed by the calculus.
It has constructed a new individualj, representing the child ofbetty. Note that this tableau represents a
model of the input ABox. The calculus can decide concept satisfiability, sinceC is satisfiable iff{i : C} is.

4 Tableau Calculi from a Software Perspective
A non-deterministic calculus cannot be implemented directly on a deterministic computer. Thus,search
is required to eliminate the non-determinism. From this perspective, each node in the search space cor-
responds to one possible tableau state which has been generated by the application of a tableau rule.
Moreover, the tableau rules must be applied according to a certain strategythen in order to ensure for-
mal properties of the calculus (like termination).

A very simpleconcept satisfiability checkerwhich doesn’t take the TBox into account in plain COM-
MON L ISP (without MIDELORA) looks as follows. The prover neither uses optimizations, nor anexplicit
tableau representation. There is no graph-like data structure. Instead, the tableau is represented implicitly
by the stack frames. The prover works on input concepts whichare in negation normal form (NNF) only.
This means that negation appears only in front of conceptnames; however, each concept can be brought
into NNF. Concepts are in standard Lisp syntax, e.g.,woman ⊓ ∃has child.person ⊓ ∀has child.male

is(and woman (some has-child person) (all has-child male)), also called KRSS syntax. A
simple functionalALC prover looks as follows:
(defun alc-sat (concept)

(labels ((alc-sat1 (expanded unexpanded)
(labels ((get-negated-concept (concept)

(nnf ‘(not ,concept)))
(select-concept-if-present (type)

(find-if #’(lambda (concept)
(and (consp concept)

(eq (first concept) type)))
unexpanded))

(select-atom-if-present ()
(find-if #’(lambda (concept)

(or (symbolp concept)
(and (consp concept)

(eq (first concept) ’not)
(symbolp (second concept)))))

unexpanded))
(clash (concept)

(let ((negated-concept (get-negated-concept concept)))
(find negated-concept expanded :test #’equal)))

(register-as-expanded (concept)
(unless (clash concept)

(alc-sat1 (cons concept expanded)
(remove concept unexpanded :test #’equal)))))



(let ((atom (select-atom-if-present)))
(if atom

(register-as-expanded atom)
;; else
(let ((and-concept (select-concept-if-present ’and)))
(if and-concept

(progn
(dolist (conjunct (rest and-concept))

(when (clash conjunct)
(return-from alc-sat1 nil))

(push conjunct unexpanded))
(register-as-expanded and-concept))

;; else
(let ((or-concept (select-concept-if-present ’or)))

(if or-concept
(let ((unexpanded-old unexpanded))

(some #’(lambda (arg)
(unless (clash arg)
(setf unexpanded

(cons arg unexpanded-old))
(register-as-expanded or-concept)))

(rest or-concept)))
;; else
(let ((some-concept (select-concept-if-present ’some)))

(if some-concept
(let* ((qualification (third some-concept))

(role (second some-concept))
(initial-label
(cons
qualification
(mapcar #’third

(remove-if-not
#’(lambda (concept)

(and (consp concept)
(eq (first concept) ’all)
(eq (second concept) role)))

unexpanded)))))
(and (alc-sat1 nil initial-label)

(register-as-expanded some-concept)))
;; else
t)))))))))))

(alc-sat1 nil (list (nnf concept)))))

Some explanations are required. Basically, each incarnation of alc-sat1 on the stack represents a state
in the search space and thus also a tableau state. A rule can beseen as a generator which generates one
or more successor search states. The latter is the case for the non-deterministic⊔-rule(if or-concept

...). Each search state has a list ofexpanded andunexpanded concepts. So, an assertioni : C ∈ A is
reflected byC being a member of either the expanded or unexpanded list in the corresponding incarnation
of alc-sat1. A rule application moves one or more concepts from unexpanded to expanded, and adds
some other concepts to expanded. Expanded concepts are no longer considered by subsequent rule appli-
cations, until backtracking occurs, during which expandedconcepts may become unexpanded again. This
eliminates the need for checking the preconditions of the rules over and over again. The rule application
strategy can easily be recognized in the code. Rules are applied in this order:⊓,⊔, ∃. The∀-rule is inte-
grated in the∃-rule. Whenever a newR-successorj of i is created due toi : ∃R.C ∈ A, the rule also takes
care to collect all applicableD concepts, originating fromi : ∀R.D ∈ A assertions, and then addsC and
D to the unexpanded list ofj.

This prover is very simple and cannot survive any complex input. Nevertheless, one can easily imagine
that its source will become quite complex if state-of-the-art optimizations were included, such as depen-
dency directed backtracking, semantic branching, and model merging. Moreover, anexplicit ABox repre-
sentationis required in order to implement an ABox consistency checker. In case this ABox representation
is a boxed graph data structure (like in MIDELORA), also the problem ofbacktrackingbecomes apparent,
since the tableau data structure will then be modified destructively during the tableau expansion, and the
question ofhow to revert the tableau data structure to a previous state during backtrackingarises. Obvi-
ously, one cannot simply work with tableau copies. MIDELORA uses undo operations for this purpose.
It thus maintain a history of command objects [2, Command Pattern], recording the elementary tableau
changes. A “roll back” is performed by traversing this history in reverse order, compensating the effects
of the command objects one by one, until a desired goal state is reached (similar to the SAGAS known in
transaction processing). An alternative approach is to usean explicitand-or-graph representation.We still
need to evaluate whether an and-or-graph representation gives an acceptable performance.



Fig. 2. 5-Port-Model of a MIDELORA Tableau Rule

5 A Tableau Prover in M IDELORA

Considering the rules as generators of successor states in the search space, the following Prolog-inspired
5-port model can be used to understand their behavior in the backtracking depth-first search algorithm. Ac-
cording to this 5-port model, each rule has the following ports, see Fig. 2. Remember that a rule incarnation
on the stack correspond to a search state and thus to a tableaustate also:

• if the search state is freshly created, the rule incarnationis created and entered using themain entry.
The rule then checks its applicability on that tableau state.

• if the rule is not applicable, thenegative exitis taken, and the calculation proceeds according to the
global strategy which describes how the rules are wired / connected to one another (see below).

• if the rule is applicable, it modifies or creates a clash-free(new) successor state, and thepositive exitis
taken. The computation proceeds as described in the global strategy. If such a successor tableau cannot be
created, backtracking occurs. Some other assertions in thetableau must be revised then; however, this can
only be done by the corresponding rule incarnation which hasadded these assertions. With a dependency
analysis, the corresponding state in the search space to backtrack to can be identified - thebacktracking
destination. Thebacktrack exitis taken, and control is passed to the parent incarnation in the search space.
Moreover, information for identifying the backtracking destination is passed upwards via areturn.

• If during backtracking a rule incarnation got back the control together with the information about the
backtracking destination, then there are two possibilities. In case the rule incarnation is not the backtrack-
ing destination, thebacktrack exitis taken, and backtracking continues. But if the rule incarnation is the
backtracking destination, then it is partially responsible for the backtracking caused by the clash, and the
re-enter entryis taken. The rule incarnation is thus asked to “revise its decision” and to create a different
successor tableau, if possible. This request can only be fulfilled by non-deterministic rules. However, be-
fore an alternative tableau can be created, the state of the tableau must be reverted into its original state
(this requires to roll back the command history in case a boxed tableau data structure is used). After that,
the rule creates the next successor tableau, if possible. Otherwise, the rule has no more alternatives, so
backtracking continues. Some other rule whoalsocontributed to the contradiction has to revise its decision
then (dependency information is exploited here again, but we cannot go into detail). Thebacktrack exitis
taken, and the (revised) backtracking destination is passed upwards (returned).

The ports of the different rules can then be wired / connectedtogether to createrule chains,imple-
menting certainglobal strategies.Since the individual rules are highly optimized, the provers crafted in
such a way exhibit a good performance. A simpleALC prover is shown in Fig. 3. The rule chain cor-
responds closely to the prover from Section 4. Wires which run completely inside theALC-SAT box are
within the same incarnation ofALC-SAT (this prover creates less stack frames than the prover in Section
4, since only non-deterministic rules have to spawn new incarnations to enable the backtracking). The
deterministic-expansion includes the⊓-rule, but does some more things, e.g., takes care of a TBox
and certain optimizations. However, in order to turn this prover into an ABox satisfiability checker, another
“ABox preprocessor” prover has to be applied first, in the so-calledinit phase. This prover runs a different
strategy – itexhaustivelyapplies the rules (Fig. 1) with the exception of the∃-rule (thus, no new individu-
als are created in this phase). Consequently, the init phasefinishes when neither unexpanded conjunctions,
open disjunctions nor non-applied universal role restrictions remain in the input ABox. Next, themain
phaseof the ABox satisfiability prover takes care to expand the remaining∃R.C assertions; this prover is
basically identical to the prover from Section 4. Finally, if a completion has been found, the success can be
signaled in thesuccess phase.

Thedefprover macro is used to define a prover in the MIDELORA space:
(defprover ((<T> <DL> <S>) ...) (:init ...) (:main ...) (:success ...))



Fig. 3. M IDELORA Model of theALC Prover

which defines a prover(<T>, <DL>, <S>) ∈ T × L × S in the MIDELORA space. A prover has three op-
erational phases. In the:init phase, for example, the “ABox preprocessor” can be run. The:main phase
does the main work. Finally, there is the:success phase. The macro sets up three ternary CLOS methods
prover-init, prover-main, prover-success, which dispatch on<T>, <DL>, <S>. However, as
explained, dispatch for the<DL> argument works in a non-standard way.

A completeALC ABox consistency checker then looks as follows. Note that this prover is defined for
substrates of typeabox for the languagealc, and it solves theabox-sat task:
(defprover ((abox-sat alc abox))

(:init
(perform (initial-abox-saturation)
(:body
(start-main))))

(:main
(perform (deterministic-expansion)

(:body
(if clashes

(handle-clashes)
(perform (or-expansion)
(:positive
(if clashes

(handle-clashes)
(restart-main)))

(:negative
(perform (some-expansion)

(:positive
(if clashes

(handle-clashes)
(restart-main)))

(:negative
(success)))))))))

(:success
(completion-found)))

We claim that this is a very comprehensible description of anALC ABox consistency checker. Of course,
the main code is in the definitions of the rules, which are highly optimized. As long as no additional pa-
rameters for adaptation or configuration of the rules are required, all parameters are passed and handled
implicitly within these macros (“macro variable capture”). The rule bodies must then obey certain con-
ventions. We believe that abstracting from irrelevant details such as parameter names and method / macro
signatures can help the developer to focus on the more important and intellectually more demanding details
during implementation. Thedefine-rule macro defines a rule for a pair(<DL>, <S>) ∈ L × S in the
M IDELORA space. The following∃-rule is defined for all “DLs with somes” (a mixin class):
(defrule some-expansion (dl-with-somes abox)

(multiple-value-bind (some-concept node)
(select-some-concept abox *strategy* language)

(cond ((not node)
+insert-negative-code+ )

(t
(let ((role (role some-concept))

(new-node nil))
(register-as-expanded some-concept :node node)



(setf new-node
(create-anonymous-node abox
:depends-on (list (list node some-concept))))

(relate node new-node role
:old-p nil
:depends-on (list (list node some-concept)))

(perform (compute-new-some-successor-label
:new-node new-node
:node node :role role :concept some-concept))

+insert-positive-code+ )))))

The markers+insert-positive-code+ and+insert-negative-code+ are replaced by the appro-
priate:positive and:negative S-expressions specified in the rule strategy. The compiler can either
replace the markers literally with the:positive, :negative S-expression (macro expansion), or code
a function call here. Please note thatcompute-new-some-successor-labelworks as described in Sec-
tion 4. The access to the substrate data structure via dedicated methods is shown. All changes to the tableau
are automatically recorded in the history in order to enablethe roll back during backtracking.

Sometimes, a rule written for a DLDL′ can in principle inherit the implementation of a rule de-
fined for another DL,DL. In case the language class forDL′ is not a subclass of the language class for
DL, the explicit reuse via:inherit-from can be enforced:(defrule or-expansion (alc abox)

:inherit-from (alchi abox) ...) Rules, in principle, are not limited to tableau rules. Ruleswhich
manage the memory, or implement dedicated optimizations techniques (such as model caching and model
merging) can be defined and interwoven easily into a prover / rule chain. In fact, a highly optimizedALC
prover contains some more rule applications in its strategy, such as cache-and-delete,
model-merging, etc. But this is not exemplified here. Even with these optimizations in the chain, the
prover is still very comprehensible and concise.

6 Conclusion
We have introduced the basics of description logics and the dominant family of reasoning calculi for these
logics - tableau algorithms. Although tableau algorithms are very concise, their naive implementation can
result in monsters of software complexity. To alleviate these problems and to offer a flexible platform for
DL system implementation, the MIDELORA framework and its software abstractions were introduced.
We have exemplified their benefit. COMMON L ISP provides an ideal platform for our endeavor. Features
sometimes considered as “esoteric” or too complicated by users of simpler programming languages turned
out to be very valuable or even indispensable here, e.g., macros, multi-methods, multiple inheritance, and
custom method combinations (e.g., to realize contra-variant dispatch for certain method arguments).

One could argue that our software architecture has a very high memory footprint, and thus will also
not perform very well. The former is, in principle, true. Since “everything is an object” (substrates, nodes,
edges, . . . ), and dynamic multi-dispatch is used at many places, one might be skeptical whether provers
defined in that way will actually be able to perform very well (with or without optimizations). Moreover,
the use of an object-oriented boxed data structures impliesthat a command history documenting the tableau
changes must be maintained, in order to be able to roll back the tableau into a previous state during back-
tracking. These histories can become very long as well. However, benchmarks have shown that the resulting
provers can still run reasonably fast [4], but do not yet perform as well, as, say, RACERPRO. But techniques
to reduce the memory footprint and thus also to save garbage collection time are well known (pooled data
structures, flyweight and/or proxy objects [2]). Mature COMMON L ISP implementations also offer ways to
tune and configure the garbage collector. We admit that some more work is required here. Finally, we like
to observe that there seems to be a close affinity with work carried out insoftware product families.We
would also like to thank the anonymous reviewers for valuable comments and suggestions.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.The Description Logic Hand-
book – Theory, Implemenation and Applications. Cambridge University Press, 2003.

2. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns. Addison-Wesley, 1995.
3. R. Möller, V. Haarslev, and M. Wessel. On the Scalabilityof Description Logic Instance Retrieval. In29. Deutsche

Jahrestagung für Künstliche Intelligenz (KI ’06), Lecture Notes in Artificial Intelligence. Springer-Verlag, 2006.
4. M. Wessel. Flexible und konfigurierbare Softwarearchitekturen für ontologiebasierte Informationssysteme. PhD

thesis, Hamburg University of Technology, 2007.
5. M. Wessel and R. Möller. Flexible Software Architectures for Ontology-Based Information Systems.Journal of

Applied Logic – Special Issue on Emperically Sucessful Systems, 2007.


