Software Abstractions for Description Logic Systems

Michael Wessel and Ralf Moller

Hamburg University of Technology
Institute for Software, Technology, and Systems (STS)
Hamburg, Germany

Abstract. We explain the basics of description logics and tableaugofor reasoning with them.
The implementation of tableau provers is a complicatedenattd demanding from a software engi-
neering point of view. We present and discuss their impleateam in COMMON Lisp and motivate
and introduce some novel software abstractions for ddgmmijogic system construction, which are
embodied in the MDEL ORA toolkit / framework.

1 Introduction & Motivation

In this paper we present some novel problem-specific sofhahstractions (in GMMON LisP) for the
construction of description logic (DL) systems [1, Chapter 9]. These abstractions are embodied in the
MIDEL oRA toolkit for DL system construction. The NDEL ORA framework was tailored to alleviate a
number of problems designers of description logic systeans.fAs such, one could argue that the target
audience for the framework is rather small. We believe, henahat the MDEL ORA software abstrac-
tions can be valuable for the broader audience of devel@sesnantic information processing technology
in COMMON L 1IsP. State-of-the-art DL systems (such asd&RPRO) are very complex software artefacts,
and it became apparent that software engineering aspesgsvdespecial attention. Let us start by intro-
ducing some background terminology; we assume basic kiolgelen first-order predicate logic (FOPL)
and general GMMON Lispfamiliarity only.

Description Logics & Semantic Webescription logics [1, Chapter 2] are a family of logic-bdskecid-
able knowledge representation languages which providftheal foundation for current W3C standards
for the Semantic Web, such as OWL DL. DLs can also be chaiaetbasclass or concept-based repre-
sentation languages.e., the notion of aoncept or classs a central one. A concept is meantdenote
a set of individuals in some universe of discourse. Therésis the notion of binary relationships, which
are calledroles The set of individuals denoted by a concept is also callecestensiornof the concept,
in contrast to the concept description, which is sometinaded theintensionof the concept. Concepts
aredescribedin a formal language. For example, the extension of the quraescribed by “female and
person” is given by the intersection of the set of female ciisjéthe extension of the concept “female”),
and of the set of persons (the extension of the concept “p&rss such, the concept description “female
and person” can be understood as diedinition of the concept womaA concept definitiorthus assigns
a concept naméo aconcept descriptionObviously, a concept name is a concept description as well. A
concept definition can be complete, or only “primitive”. hetformer case, the definition providesces-
sary and sufficient conditiorfer class membership, e.g. as for “woman”. In this case, timeept is called
adefined concept.ogically, this is a bi-implication or “if and only if”. Tt corresponds to the following
simpleaxiomin FOPL:Vz.(female(x) A person(xz) < woman(x)). Knowing that “Betty” is “female”
and “person”, we conclude that she is a “womajperson(betty), female(betty)} = {woman(betty)},
and vice versa. In the case ofpaimitive concept definitionpnly necessary conditionare provided by
the description. For example, “mother” implies “parentlt mot vice versa,; in this case, “mother” is a
primitive conceptvx.(mother(x) — parent(z)). It is obvious that “mother” could become a defined
concept as well if a more complete description for “mothedswprovided, e.g. “woman with a child”:
V.(woman(x) A Jy.(has_child(z,y) A person(y)) < mother(x)).

The nowadays practically relevant DLs can be seen as sulifSEGPL in a variable-free syntax. The
given FOPL axioms take the following form in DL syntax:

woman=person M female, motherCparent, or mother=woman M 3has_child.person.
There is also a universal quantification which allows, forample, to define the concept
mother_of _only-male_children=woman M Jhas_child.person M Yhas_child.male,

orin FOPL:
Vx.(mother_of only_male_children(z) < woman(z) A Jy.has_child(z,y) A
Vy.(has_child(x,y) — male(y))).

As mentioned above, there is no single DL, but a wifalmily of DLs. DLs are distinguished from
one another by their expressive power. The expressive pofneDL is influenced by the set of concept
constructors it admits, and also by the kinds of axioms effeFor example, some DLs offer disjunction,
whereas other do not; some offer transitive roles, etc. Arte example for a DLALC) is given below.
The set of concept descriptiongC admits is just a formal language, here denotedag. A “bigger”

DL DL’ simply admits more concept descriptioffss, C Lps.

Since the advent of the Semantic Web, the importance of DUAnsystems is ever increasing. The
idea of the Semantic Web is to assign machine-processathleiaderstandablexplicit semanticso web
resources by publishing annotations about the URIs of thekeresources. These annotations are written
in an XML-based description logic: OWL. OWL DL class (degtions) can be translated into description
logic concepts; this also holds for the axioms. Due to theadel theoretic semantics, these annotations
imply (“E") a whole logical theory, representiriplicit information about the web resource(s). This
implicit information must be taken into account, for examgbr query answering on the Semantic Web.
Logical inference or (deductive) reasoning is often coiasthe process that makes “implicit information
explicit”. This is the role of a reasoner, which implementsiaference algorithman API is offered to
access the reasoning (or inference) services of that imfermechanism. The most basic reasoning service
is the consistencyor satisfiability checking servicerhich checks whether a given concept description is
non-contradictory. Thus, a decision problem must be sdbygtie reasoner. For example, given the axioms
discussed above, the concept descriptisman M — female is obviously unsatisfiable or contradictory.

Tableau Calculi, ABoxes, Query Answering, Optimizatighpopular and very successful class of infer-
ence algorithms for deciding the (concept) satisfiabilitplppem for DLs (and thus, also for OWL DL)
is given be the class débleau calculi[1, Chapter 9]. State-of-the-art DL systems and OWL reaspni
systems (such asARERPRO, PELLET and RCT++) implement tableau calculi for a number of good
reasons — they are modular and flexible (they can cover a smigef different DLs from the DL family),
they are well-understood, they are intuitive, they allow dptimizations, and so on. Tableau calculi can
not only decide the concept satisfiability problem for DLst &lso decide the consistency (satisfiability)
problem forextensional databasea:DL system not only manages and reasons about concepttestsi
and their definitions, but also manages extensional dateextensional database is also calledABox
(assertional box)For example, the ABoxwoman(betty), (—female)(betty)} is contradictory given the
axioms discussed above. A DL system can thus be seen as actideddatabase” which exploits rea-
soning to ensure data quality, and, more importanthgdadve its query answersiven the extensional
data{person(betty), female(betty)} in combination with the background knowledge regardingnan,

it is clear thatwoman(betty) is a logical consequence. Note that this fachat explicitin the exten-
sional data. Thugetty is an answer to thmstance retrieval querfor instances of conceptoman. The
instance retrieval problem is an importaxtensionastandard inference problem. Unlike in standard (re-
lational) database systems, a DL system use®pfe® world assumptiowhich means that the absence
of information is not interpreted as negative informatidhe extensional “data” in a DL system is thus
not considered to be “complete”. In contrast, the so-catleded world assumptiois used in standard
(relational) databases. Nowadays, scalability of quenemning for DL / OWL reasoning systems is a
hot research topic [3]. Considering the large volume of @atlable on the Web, this is not surprising.
However, scalability can only be achievedigdicated optimizationd,, Chapter 9] are incorporated into
a tableau reasoner. Unfortunately, these optimizationgptioate tableau reasoners quite a bit, since cer-
tain optimization “tricks” can only be applied in certaitugtions for certain sublanguages which must be
detected automatically, etc.

Motivation forMIDELORA MIDELORA is motivated as follows (see also [5, 4]):

1. Flexibility: as mentioned, DLs provide a whole family of logics, and thgsemt deal of flexibility.
In principle, it is possible to chose the right DL for the plain at hand, provided the logic is decidable.
Different family members vary w.r.t. their expressivitydatomputational characteristics; it is well-known
that expressivity and computational complexity of a logie eo-variant properties. A toolkit for the con-
struction of DL systems should thus obviously not fix the ¢ardible DLs. Instead, it should provide

the required components and building blocks (e.g., DL cphcenstructors, different kinds of axioms
etc.), from which specific DL systems can be constructedepably through adaptation, configuration and
composition - reuse is important here.

In principle, a DL system implementing a very expresgi¥é can also supply the reasoning services
for a less expressive DDL' if Lp.r C Lp, holds. However, reasoning iRL’ will in many cases be
much more efficient, either due to a smaller computationaiflexity, or due toapplicable optimization
techniguesvhich have been developed (and which may only be validPigt. Consequently, this implies
that theDL-reasoner should recognize and handle input problerighin an optimized way. However,
having to recognize and interweave the applicable optitisimaechniques for sublanguages complicates
the implementation of the reasoner, adding yet anothet t\&ftware complexity. This strongly moti-
vates the second point (see below).

Often, flexibility is not only required w.r.t. the family ofupported DLs. Also théBox representa-
tion is subject to changé:or example, certain applications may require persist@uxes, whereas oth-
ers need ABoxes in which the individuals have spatial chargstics,e.g., in order to represent polygons
in a map. Slightly simplifiedan ABox can be seen as a node and edge-labeled giiphsame state-
ment also holds for similar semi-structured data modelsh &8 RDF. From this perspective, the ABox
{woman(betty), has_child(betty, charles)} is simply a graph with two nodds:tty andcharles, con-
nected via an edge. The noblgty is labeled with the set of concept descriptigas»man}, and the edge
with the set of roleq has_child}. Considering such a graph structure as a rather conceptahubdel,
different logical and physical aspects of this model mighshbbject to change and thus require flexibility
in the software architecture.

MIDELORA introduces its own generic, graph-based data modsul#stratés an instance of a KOs
classsubst r at e, representing a graph. Different logical and physical.(egpresentational aspects) of
the data model can be addressed by introdusirgst r at e (node, edge, ...) subclasses. For example,
an ABox is an instance of a specialized substrate cdéss. A map is a specialized substrate whose
nodes are instances of spatial datatypes (e.g., polydtlesjlso use multiple inheritance; for example, the
substrate classap- abox has bothabox as well asrap as superclasses. Consequently, its nodes are ABox
individuals which also have spatial characteristics. Sithee physical representation and index structures
used for the different kinds of substrate graphs vary drallyi the whole access to and management of
the graph structure has to go through a generic “substratequl” which offers iterators etc., abstracting
from the details of the physical representation (data abstm).

2. Comprehensibility, problem adequateness and concisese (and thus maintainability) of the
reasoner implementations: Mathematical tableau calculi are very concise, but int#lially demand-
ing artefacts. The software abstractions used for theilempntations should thus mirror the concep-
tual notions found in their mathematical definitions as elas possible. For example, there is the notion
of atableau rulein a tableau calculus. NDELORA thus provides an appropriate rule definition macro
def rul e. Given a close correspondence between implementation atitematical notions, software can
be seen as an “executable specification” and its comprdtiktysind thus maintainability is greatly en-
hanced, if software abstractions are chosen in such a wagitieadoes not get “lost in software complex-
ity”. A high-level perspective employing problem-spec#aftware abstractions thus has to be established
such that the underlying mathematical structures of tabdadculi are clearly mirrored in the source code.

In order to prevent tableau provers to grow into monstersoafiexity, MIDELORA uses a unique
approach. Instead of offering one complex and highly omédiprover capable of handling one very
expressive DL (with different optimizations for variouss$anguages), MDEL ORA provides specialized,
much smaller and thus much more comprehensible dedicatensrfor these sublanguages, which can
be maintained relatively independently from one anothleusT instead of providing one big and complex
prover with complicated optimizations for sublanguagesDEL ORA provides many small provers. The
dedicated optimization techniques are moved into speeidldedicated provers for these sublanguages.
Obviously, the maintainability and comprehensibility daege number of small provers is only enhanced
if appropriate software abstractions are provided, andiiimon componenitsthese provers can be shared
and reused. This is, for example, the case for tableau rsgeshelow.

3. Enable reuse via inheritance, adaptability and configurdility: As justillustrated, reuse by inheri-
tance is an important software organization / structurimggiple in this specific domain as well. Appropri-
ate abstractions and reusable components such as tableathawve to be identified. The implementation

of a highly optimized tableau rule can be very complex; tlaudch set of standard tableau rules has to
be provided. Often, specialized provers require simplgtdiens of standard tableau rules only. Conse-
guently, it should be possible to “inherit and adapt” thedwédr of a tableau rule, exploiting the standard
“Open-Closed Principle”, or simply to adapt the rule by cgufing it appropriately via parameters.

The rest of this paper is structured as follows. First we defire MDELORA space in which the
reuse and inheritance for B EL ORA software abstractions is organized. Then, theDLC and a tableau
calculus forALC are formally introduced. A simple @1MON Lisp implementation of that calculus is
presented and discussed. ThisD¥L ORA version of an extended version of this calculus is then dised.
Then comes the conclusion.

2 The MIDELORA Design Space

In order to organize the inheritance and reuse-space, tiEEMORA space is defined. Thgroveris a
central notion in MDELORA. MIDELORA allows for the definition of specialized provers for certain
tasks, working on specialized substratesversare conceived to cover regions in the three-dimensional
MIDELORA space

Definition 1 (MIDELORA Space).TheMIDELORA space is the Cartesian produ§tx £ x 7, whereS
is the set ofsubstrate classgs is the set of supported DLs, afddis a set ofprover tasks.

For example7 can contain the Distandard inference problenis, Chapter 2.2.4]:

T = {abox_consistent?, concept_instances, . . .}. Substrates and languages are modeledLassClasses.
The elements of are calledanguage classeis the following. A MIDELORA proveris a ternary Cos
(multi-) methodpr over , with argument$S, DL, T) € S x L x 7.

If inheritance is exploited between the elements in the Seis, and7, a single MDELORA prover
defined for a point.S, DL, T") can in principle cover a whole region in thelDMELORA space. But this
raises the question how to order the elements in theSefs 7 w.r.t. the subclass (inheritance) relation.

Let us consider th& axis. As explained, a prover f@PL’ and taskl" can in principle also solv&
for DL, if Lps C Lp, holds. However, a dedicated prover fBiC is sanctioned and reasonableliiC
can be optimized much better, and thus its implementationiines more specialized and tailored towards
DL. Then it becomes reasonable not to intermix its implemamtatith DL’. But in principle it is not
desirable of having to define one dedicated prover for eadft pothis space (since there would be no
reuse by means of inheritance).

Basically, there are two options to organize the inhergaagthe subclass relation among thaxis can
be co-variant w.r.tC, or b) contra-variant w.r.tC. Assuming there is a “super DL prover f@£’ which
is a very expressive DL, one prover would be sufficient fontiele family. In case a dedicated prover for
DL is reasonable, this prover would automatically be selefiiedput problems inDL£. However, even
if there is no such dedicated provér,’ could still be used and would be selected automatically ky th
standard Cos dispatch mechanism. We just have to define the language Pldsss a subclass of the
language class faP L’ (co-variant w.r.tC).

Unfortunately, this organization of the language classesehdrawback. The problem is caused by the
requirement thatharacteristic propertiesf the DLs shall be representeda&in classesn the language
classes. For example, the DALCr+ has the property “needs blocking”, hdtCC doesn't (it is not im-
portant for this discussion to understand what this prgpaeans): So, mixing in theneeds- bl ocki ng
superclass for thel£LCr+ language class and making tHeCC language class a subclass would falsely
inherit theneeds- bl ocki ng property to.ALC as well, or non-monotonic inheritance would be needed
(which is even more tricky). Inheritingon-propertiese.g.doesnt - need- bl ocki ng, is not a good idea
either. Thus, we have modeled the DL classes in a contrantariay. Unfortunately, this complicates reuse
then: Suppose there is a prover $4£C only, but no prover fotALCr+. Now a problem in4dLCx+ shall
be solved. Standardu©s dispatch would then falsely select tHeCC prover, which would be incomplete
or even fail onALCx+ input! Consequently, a prover fo4£C as well as forALCr+ is required and
reuse igdisabledthen, since a dedicated prover for each language class weute¢eded. Provers would

! For DL experts: This is a slightly simplified example. Of ceeir due to general axioms in the TBox, ald4&C
eventually requires blocking. But then the language amat@mponent would have classified this knowledge base
asALCr+, notasALC.

no longer be able to cover regions in theEL ORA space. Standardl©s dispatch thus cannot be used
w.r.t. theL-axis. We have therefore implemented an algorithm whimlvncastshe language class instance
(describing the DL of the input) along the language classanédy until a prover is found which is defined
for this (downcasted) language class. Finally, the proezsshes the maximal expressive “super L’

at the bottom of the class hierarchy. It would be interestmmgnplement this custom dispatch algorithm
directly within CLOS.

Regarding thé& axis, itis obvious that standard Gs dispatch can be used. For examplpeasi st ent -
abox is a subclass afbox. A prover must be written in such a way that it will work on sjadized ABoxes,
i.e., subclasses abox. Consequently, all access to the physical graph repreagamtaust go through the
generic interface the substrate layer provides (the salegtrotocol). Dynamic binding is thus also required
for iterator macros, e.gl,oop- over - nodes. For example, in case of a persistent ABox, this iterator has
to fetch and construct K®s substrate nodes on the fly from information stored in a ratati database.
In other cases, the macro can be expanded in a hash tabteritenad so on. Appropriate techniques for
achieving this kind of data abstraction from physical repre¢ation are well known.

Finally, regarding th€ axis, we use simplegl symbol dispatch, since it is not clear how to establish
reuse by inheritance between element§irHowever, often a prover task ieducibleto another prover
task. For example, in order to check whether the individuaty from the ABox A is an instance of
woman (this is theinstance checkingask,T = individual_instance?, which is also performed during
instance retrievg| the prover for the task = abox_consistent? on the ABox AU {betty : —~woman} can
be called. The former prover then just retutni§ the latter one returnedi | , and vice versa. Thus, reuse
can be organized by means of delegation, but not via inmegta

3 Tableau Calculi from the Mathematical Perspective

Let us first define syntax and semantics of the basicA1C more formally. Unfortunately, the semantics
of ALC and the central notion dfatisfiabilityhas to be defined formally first, since otherwise it is left
unclear what a tableau calculus is all about, i.e., the pralib be decided would be left unspecified.

The syntax of concept descriptions (concepts for shortefindd inductively as follows. Let/; be
a set of concept names (“atomic concepts”); there are 2 alpesncept names, called top and bottom:
{T, L} C M. Let Nz be a set of binary relation names, the set of so-called rel@ashCN € A is a
concept. Moreover, it and D are concepts, anft € Nx is a role, then the following expressions are
concepts as welk-C' (full negation),C' M D (conjunction),C' U D (disjunction),3R.C' (existential role
restriction), and/R.C (universal role restriction). ABoxis a set of axioms of the for@C_D andC'=D.
Let N7 be a set of individual names (individuals for short);4ef € Nz. An ABoxis a set of axioms
(so-called ABox assertions) of the forim C (concept assertion) ar{d, j) : R (role assertion).

The semanticof a concept is given in terms of an interpretation. iAterpretationis a pair(AZ,),
whereAZ is a non-empty set (the interpretation domain), &ni$ an interpretation function which maps
concept names to subsets4f, roles to subsets al? x AZ, and individuals to elements af”. Moreover,
TZ = AT andL? = () is required. The interpretation function can then be extendductively to arbitrary
concepts as follows:

) =qey AT\ C7,
cn D)I =def cTn DI,
cu D)I =def cTy DI,
JR.D)* =g4ep {i € AT|Fj e AL (i,j) e REAje DT}, and

o (YR.D)F =45 {i € AT |Vj e A%.(i,j) € R — j e D' }.
Please note that'Z is the extension of>. A conceptC is satisfiable iff there exists an interpretation
(AZ,.T) such thatC? #); C is satisfiedin (AZ,-T) then. A TBox is satisfiable iff there is @Z,)
which satisfies all TBox axioms. A TBox axiofiCD is satisfied by(AZ,.7) iff ¢ C D*. A TBox
axiomC=D is satisfied by A%, .7) iff CZ = D%. An ABox is satisfiable iff there is apAZ, -Z) which
satisfies all ABox assertions. An ABox assertionC is satisfied by(AZ, -7) iff iZ € CZ, and(i,j) : R
is satisfied by(AZ, -Z) iff (iZ,j7) € RZ. To decide the consistency problem fdrthen means to decide
whether there exists an interpretation which satisfiesand analog fof, A. Often, one wants to decide
the satisfiability problem for a wholenowledge bashich is a pai7, .4). Tableau calculi can do this.

From a mathematical perspective, a tableau prover is nterrdmistic calculus which applies a set of
inference rules to an initial input ABox. Th&.LC tableau rules are shown in Fig. 1. Basically, there is

M-rule: V-rule:

if L.i:Ci1MCe A if 1.i:VRDe A

2.{i:C1,1:Cr} Z A 2.(i,j): Re A
then A:= A U{i:Ch,i:Cs} 3.j:D¢ A

then A:= AU {j: D}

U-rule:
if l.i:CL1uCe A F-rule:

2.{i201,i202}ﬂ./4:® if 1.::3dR.Dec A
then A:= Au{i: D} 2.{(i,5) : R,j: D}n A= 0forallj € N7

for someD € {C1,C-} then A:= AU{(i,5) : R,j : D} (for a newy)

Fig. 1. The ALC Tableau Expansion Rules

one tableau rule for each concept constructor. The inputdiromes the working data structure of the
calculus, the so-called tableau. The calculus attemptsristouct a (finite representation) of a model of the
input, witnessing satisfiability if successful. A tableawsimply an ABox which has been augmented by
rule consequences. At runtime, each tableau rule checapjigcability on the current state of the tableau.
In case no more rules can be applied, the tableau is said ¢torbplete The non-determinism works as
follows: If the tableau rules can be appliedsuch a waythat a complete and contradiction-free tableau
can be derived, then the input ABox is satisfiable, and usfiaitie otherwise. Please also note the non-
determinism in theJ-rule. A contradictory tableaud contains some subsét: C,i : =C'} C A, for some
1 andC, a so-callectlash

For example, on the input ABogbetty : woman M Jhas_child.person} the completion{betty :
woman M Jhas_child.person, (betty, j) : has_child, j : person} will be constructed by the calculus.
It has constructed a new individugl representing the child dfetty. Note that this tableau represents a
model of the input ABox. The calculus can decide concepsfalility, sinceC' is satisfiable iff{i : C'} is.

4 Tableau Calculi from a Software Perspective

A non-deterministic calculus cannot be implemented diyemh a deterministic computer. Thusgarch

is required to eliminate the non-determinism. From thisspective, each node in the search space cor-
responds to one possible tableau state which has been tghésathe application of a tableau rule.
Moreover, the tableau rules must be applied according tatainestrategythen in order to ensure for-
mal properties of the calculus (like termination).

A very simpleconcept satisfiability checkevhich doesn’t take the TBox into account in plaio&-
MON L1isp (without MIDEL ORA) looks as follows. The prover neither uses optimizatios,anexplicit
tableau representatiorThere is no graph-like data structure. Instead, the takikeeepresented implicitly
by the stack frames. The prover works on input concepts wériehin negation normal form (NNF) only.
This means that negation appears only in front of connaptes however, each concept can be brought
into NNF. Concepts are in standard Lisp syntax, ewgman M 3has_child.person M Yhas_child.male
is(and woman (sone has-child person) (all has-child nale)),alsocalled KRSS syntax. A
simple functional4LC prover looks as follows:

(defun al c-sat (concept)
(labels ((alc-satl (expanded unexpanded)
(1 abel s ((get-negated-concept (concept)
(nnf ‘(not ,concept)))
(sel ect-concept-if-present (type)
(find-if # (lanbda (concept)
(and (consp concept)
(eq (first concept) type)))
unexpanded))
(select-atomif-present ()
(find-if # (lanbda (concept)
(or (synbol p concept)
(and (consp concept)
(eq (first concept) 'not)
(synbol p (second concept)))))
unexpanded))
(clash (concept)
(let ((negated-concept (get-negated-concept concept)))
(find negated-concept expanded :test # equal)))
(register-as-expanded (concept)
(unl ess (clash concept)
(alc-satl (cons concept expanded)
(remove concept unexpanded :test # equal)))))

(let ((atom (select-atomif-present)))
(if atom
(regi ster-as-expanded atom
;; el se
(let ((and-concept (select-concept-if-present 'and)))
(i f and-concept
(progn
(dolist (conjunct (rest and-concept))
(when (clash conjunct)
(return-fromalc-satl nil))
(push conjunct unexpanded))
(register-as-expanded and-concept))
i, else
(let ((or-concept (select-concept-if-present 'or)))
(i f or-concept
(let ((unexpanded-ol d unexpanded))
(some # (1 anbda (arg)
(unless (clash arg)
(setf unexpanded
(cons arg unexpanded- ol d))
(register-as-expanded or-concept)))
(rest or-concept)))
;; el se
(let ((some-concept (select-concept-if-present 'sone)))
(i f some-concept
(letx ((qualification (third some-concept))
(role (second sone-concept))
(initial-Iabe
(cons
qualification
(mapcar # third
(renmove-if-not
(1 anbda (concept)
(and (consp concept)
(eq (first concept) "all)
(eq (second concept) role)))
unexpanded)))))
(and (alc-satl nil initial-Iabel)
(register-as-expanded sonme-concept)))
;o else
t)))))))))))
(alc-satl nil (list (nnf concept)))))
Some explanations are required. Basically, each incamatial c- sat 1 on the stack represents a state
in the search space and thus also a tableau state. A rule cgeeheas a generator which generates one
or more successor search states. The latter is the casefoothdeterministicl-rule (i f or - concept
...). Each search state has a listeafpanded andunexpanded concepts. So, an assertibnC € A is
reflected byC' being a member of either the expanded or unexpanded liseiodiresponding incarnation
of al c-sat 1. A rule application moves one or more concepts from unexedrd expanded, and adds
some other concepts to expanded. Expanded concepts aregey tonsidered by subsequent rule appli-
cations, until backtracking occurs, during which expancdeacepts may become unexpanded again. This
eliminates the need for checking the preconditions of tiesraver and over again. The rule application
strategy can easily be recognized in the code. Rules aréedgplthis orderr1, L, 3. TheV-rule is inte-
grated in thed-rule. Whenever a neR-successof of i is created due to: IR.C € A, the rule also takes
care to collect all applicabl® concepts, originating from: VR.D € A assertions, and then ad@'sand
D to the unexpanded list gt
This prover is very simple and cannot survive any complexinNevertheless, one can easily imagine
that its source will become quite complex if state-of-tmeegtimizations were included, such as depen-
dency directed backtracking, semantic branching, and fmodeging. Moreover, aexplicit ABox repre-
sentationis required in order to implement an ABox consistency chedkease this ABox representation
is a boxed graph data structure (like in[¥ELORA), also the problem dbacktrackingoecomes apparent,
since the tableau data structure will then be modified det$trly during the tableau expansion, and the
guestion ofhow to revert the tableau data structure to a previous statend) backtrackingarises. Obvi-
ously, one cannot simply work with tableau copies.IML ORA uses undo operations for this purpose.
It thus maintain a history of command objects [2, CommandeRat recording the elementary tableau
changes. A “roll back” is performed by traversing this higtin reverse order, compensating the effects
of the command objects one by one, until a desired goal statsached (similar to the SAGAS known in
transaction processing). An alternative approach is tamnsxplicitand-or-graph representatioiVe still
need to evaluate whether an and-or-graph representaties gn acceptable performance.

OR-Expansion

® POSITIVE EXIT
MAIN ENTRY ~

BACKTRACK RE-ENTER
EXIT ENTRY

Fig. 2. 5-Port-Model of a MDEL ORA Tableau Rule

5 A Tableau Prover in MIDELORA

Considering the rules as generators of successor states gearch space, the following Prolog-inspired
5-port model can be used to understand their behavior inabktlacking depth-first search algorithm. Ac-
cording to this 5-port model, each rule has the followingpmee Fig. 2. Remember that a rule incarnation
on the stack correspond to a search state and thus to a talde@also:

¢ if the search state is freshly created, the rule incarnagicreated and entered using thain entry.
The rule then checks its applicability on that tableau state

o if the rule is not applicable, theegative exiis taken, and the calculation proceeds according to the
global strategy which describes how the rules are wired heoted to one another (see below).

e if the rule is applicable, it modifies or creates a clash-fresv) successor state, and ffesitive exits
taken. The computation proceeds as described in the gloh#gy. If such a successor tableau cannot be
created, backtracking occurs. Some other assertions talieau must be revised then; however, this can
only be done by the corresponding rule incarnation whichauaked these assertions. With a dependency
analysis, the corresponding state in the search space kiéréeicto can be identified - thieacktracking
destination Thebacktrack exiis taken, and control is passed to the parent incarnatidreise¢arch space.
Moreover, information for identifying the backtrackingsi@ation is passed upwards viaet ur n.

e If during backtracking a rule incarnation got back the cohivgether with the information about the
backtracking destination, then there are two possililitie case the rule incarnation is not the backtrack-
ing destination, théacktrack exitis taken, and backtracking continues. But if the rule inatiom is the
backtracking destination, then it is partially resporssitdr the backtracking caused by the clash, and the
re-enter entnyis taken. The rule incarnation is thus asked to “revise itdsiien” and to create a different
successor tableau, if possible. This request can only fi#€fdlby non-deterministic rules. However, be-
fore an alternative tableau can be created, the state ofbieatu must be reverted into its original state
(this requires to roll back the command history in case a dableau data structure is used). After that,
the rule creates the next successor tableau, if possibler@ise, the rule has no more alternatives, so
backtracking continues. Some other rule velt&n contributed to the contradiction has to revise its decision
then (dependency information is exploited here again, lutannot go into detail). Theacktrack exits
taken, and the (revised) backtracking destination is phspe/ards (et ur ned).

The ports of the different rules can then be wired / connetdgdther to createule chains,imple-
menting certairglobal strategiesSince the individual rules are highly optimized, the preverafted in
such a way exhibit a good performance. A simpléC prover is shown in Fig. 3. The rule chain cor-
responds closely to the prover from Section 4. Wires whighaompletely inside th@LC- SAT box are
within the same incarnation @f_C- SAT (this prover creates less stack frames than the prover itiocBec
4, since only non-deterministic rules have to spawn newrimat#ons to enable the backtracking). The
det er mi ni sti c- expansi on includes thel-rule, but does some more things, e.g., takes care of a TBox
and certain optimizations. However, in order to turn thisver into an ABox satisfiability checker, another
“ABox preprocessor” prover has to be applied first, in thecatiedinit phase This prover runs a different
strategy — itexhaustivelyapplies the rules (Fig. 1) with the exception of theule (thus, no new individu-
als are created in this phase). Consequently, the init gfiraskes when neither unexpanded conjunctions,
open disjunctions nor non-applied universal role restnict remain in the input ABox. Next, thmain
phaseof the ABox satisfiability prover takes care to expand theaiging 3R.C assertions; this prover is
basically identical to the prover from Section 4. Finaliyaicompletion has been found, the success can be
signaled in thesuccess phase

Thedef prover macro is used to define a prover in theD£L ORA space:

(defprover ((<T> <DL> <S>) ...) (:init ...) (:main ...) (:success ...))

® NEGATIVE EXIT

ALC-SAT ("PROVER-MAIN")

|
|
|
|
|
|
| Deterministic-Expansion Or-Expansion
|
I
|
I

) e o o
!
SR i e N S S m Y S Mg B R G0
| I
| |
| |
|
|
|
1
|
|
|

Fig. 3. MIDEL ORA Model of the ALC Prover

which defines a provekT>,<DL>,<S>) € 7 x L x S in the MIDELORA space. A prover has three op-
erational phases. In the ni t phase, for example, the “ABox preprocessor” can be run.:ieé¢ n phase
does the main work. Finally, there is theuccess phase. The macro sets up three ternarg €methods
prover-init, prover-main, prover-success,whichdispatchorT>, <DL>, <S>.However, as
explained, dispatch for theDL> argument works in a non-standard way.

A completeALC ABox consistency checker then looks as follows. Note thiatghover is defined for
substrates of typabox for the languagal c, and it solves thabox- sat task:

(def prover ((abox-sat alc abox))

(:init
(perform (initial-abox-saturation)
(: body
(start-main))))
(:main
(perform (determninistic-expansion)
(: body
(if clashes
(handl e- cl ashes)
(perform (or-expansion)
(:positive
(if clashes
(handl e-cl ashes)
(restart-main)))
(:negative
(perform (sone-expansi on)
(:positive
(if clashes
(handl e- cl ashes)
(restart-main)))
(:negative
((success)))))))))
:success

(conpl etion-found)))

We claim that this is a very comprehensible description ofl#l€ ABox consistency checker. Of course,
the main code is in the definitions of the rules, which are lyigiptimized. As long as no additional pa-
rameters for adaptation or configuration of the rules areired, all parameters are passed and handled
implicitly within these macros (“macro variable captureThe rule bodies must then obey certain con-
ventions. We believe that abstracting from irrelevant ilietaich as parameter names and method / macro
signatures can help the developer to focus on the more ianpahd intellectually more demanding details
during implementation. Theef i ne- r ul e macro defines a rule for a paixDL>,<S>) € £ x S in the
MIDELORA space. The following-rule is defined for all “DLs with somes” (a mixin class):

(defrul e sone-expansi on (dl -wi th-sones abox)
(mul tipl e-val ue-bi nd (some-concept node)
(sel ect-sonme-concept abox *strategy* |anguage)
(cond ((not node)
+insert-negative-code+)
(t
(let ((role (role some-concept))
(new node nil))
(register-as-expanded sone-concept :node node)

(setf new node
(creat e-anonynous- node abox

:depends-on (list (list node sonme-concept))))
(rel ate node new node role
;old-p nil
:depends-on (list (list node sonme-concept)))

(perform (conput e- new sonme- successor - | abe

: new node new node

:node node :role role :concept some-concept))
+i nsert-positive-code+)))))

The markersri nsert - posi ti ve-code+ and+i nsert-negati ve- code+ are replaced by the appro-
priate: posi ti ve and: negat i ve S-expressions specified in the rule strategy. The compélereither
replace the markers literally with theposi ti ve, :negative S-expression (macro expansion), or code
a function call here. Please note thatmput e- new some- successor - | abel works as described in Sec-
tion 4. The access to the substrate data structure via dediggethods is shown. All changes to the tableau
are automatically recorded in the history in order to enéideroll back during backtracking.

Sometimes, a rule written for a DIDL’ can in principle inherit the implementation of a rule de-
fined for another DLDL. In case the language class B’ is not a subclass of the language class for
DL, the explicit reuse viai nherit - fromcan be enforced:def rul e or - expansi on (al ¢ abox)
cinherit-from (al chi abox) ...) Rules,in principle, are not limited to tableau rules. Rulksch
manage the memory, or implement dedicated optimizatiaisigues (such as model caching and model
merging) can be defined and interwoven easily into a prouwgle/ahain. In fact, a highly optimized £C
prover contains some more rule applications in its strategych ascache- and-del ete,
nodel - mer gi ng, etc. But this is not exemplified here. Even with these ogtations in the chain, the
prover is still very comprehensible and concise.

6 Conclusion

We have introduced the basics of description logics and dineiant family of reasoning calculi for these
logics - tableau algorithms. Although tableau algorithmes\aery concise, their naive implementation can
result in monsters of software complexity. To alleviatesth@roblems and to offer a flexible platform for
DL system implementation, the NDEL ORA framework and its software abstractions were introduced.
We have exemplified their benefito®MON LiSP provides an ideal platform for our endeavor. Features
sometimes considered as “esoteric” or too complicated bysusf simpler programming languages turned
out to be very valuable or even indispensable here, e.grasanulti-methods, multiple inheritance, and
custom method combinations (e.g., to realize contra-madspatch for certain method arguments).

One could argue that our software architecture has a vety migmory footprint, and thus will also
not perform very well. The former is, in principle, true. 8&“everything is an object” (substrates, nodes,
edges, ...), and dynamic multi-dispatch is used at manyeplaane might be skeptical whether provers
defined in that way will actually be able to perform very wellith or without optimizations). Moreover,
the use of an object-oriented boxed data structures imghlégsa command history documenting the tableau
changes must be maintained, in order to be able to roll baekathleau into a previous state during back-
tracking. These histories can become very long as well. Herwybenchmarks have shown that the resulting
provers can still run reasonably fast [4], but do not yet@enfas well, as, say, &RLERPRO. But techniques
to reduce the memory footprint and thus also to save garbatgeton time are well known (pooled data
structures, flyweight and/or proxy objects [2]). Maturex@doN Lispimplementations also offer ways to
tune and configure the garbage collector. We admit that soare mork is required here. Finally, we like
to observe that there seems to be a close affinity with workezhout insoftware product familiesiVe
would also like to thank the anonymous reviewers for vale@ioimments and suggestions.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, andtBl-Bahneider, editorsThe Description Logic Hand-
book — Theory, Implemenation and Applicatio@ambridge University Press, 2003.

2. E. Gamma, R. Helm, R. Johnson, and J. Vlissidsign PatternsAddison-Wesley, 1995.

3. R. Mbdller, V. Haarslev, and M. Wessel. On the Scalabditypescription Logic Instance Retrieval. 29. Deutsche
Jahrestagung fiur Kiinstliche Intelligenz (KI 'Q&)ecture Notes in Artificial Intelligence. Springer-Veyla2006.

4. M. Wessel. Flexible und konfigurierbare Softwareardtiteen fir ontologiebasierte Informationssysteme. PhD
thesis, Hamburg University of Technology, 2007.

5. M. Wessel and R. Moller. Flexible Software Architecwifer Ontology-Based Information System#ournal of
Applied Logic — Special Issue on Emperically Sucessfuegys007.

