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Abstract. We consider the problem of identifying inherited contenkirowl-
edge representation structures calbedicept graphs (CGraphsi CGraph is a
visual representation of a concept; in the following, C@sapnd concepts are
used synonymously. A CGraph is a node- and edge-labelectelitrgraph. La-
beled (binary) edges represent relations between nodésh ate considered in-
stances of the concepts in their node labels. CGraphs amegad in a taxonomy
(is-a hierarchy). The taxonomy is a directed acyclic gragghmultiple inheri-
tance is allowed. A taxonomy and set of CGraphs is called phgss&ructured
knowledge base (GSKB).

A CGraph can inherit content from other CGraphs — intuitivél C' and D are
CGraphs, ther may contain content inherited froi, i.e. labeled nodes and
edges “fromD” can appear irC, if D is a direct or indirect superconcept ©f
or if C' contains a node being labeled with eitH@ror some subclass dp. In
both cases(' is said to refer taD.

This paper contains three contributions. First, we desaiidl formalize the prob-
lem from a logical point of view and give a first-order semesitior CGraphs.
We show that the identification of inherited content in CGrsagepends on some
form of hypothetical reasoning and is thus not a purely dédeiinference task,
as it requires unsound reasoning. Hence, this inferendéeseht from the stan-
dard subsumption checking problem, as known from desoripihgics (DLS)
[1]. We show that thgrovenance problenffrom where does a logical atom in
a CGraph get inherited?) strongly depends on the solutidchdé@o-reference
problem(which existentials in the first-order axiomatization ohcepts as for-
mulas denote identical domain individuals?) We demorestizt the desired in-
ferences can be obtained from a so-calltengthened GSKRBvhich is an aug-
mented variant of the input GSKB. We present an algorithnctvaugments and
strengthens an input GSKB, using model-theoretic notiSesondly, we are ad-
dressing the problem from a graph-theoretic point of viesthés perspective is
closer to the actual implementation. We show that we cartifgenherited con-
tent by computing so-calledoncept coveringswhich induce inherited content
from superconcepts by meansgraph morphismsWe argue that the algorithm
solves a challenging (NP-hard) problem. Thirdly, we apply &lgorithm to the
large-scale biological knowledge base from the AURA proj2l; and present a
preliminary evaluation of its performance.



1 Introduction

Graph-structured knowledge bas@SSKBs) occur naturally in many application do-
mains, for example, if biological knowledge is modeled dniaplly by means oton-
cept graphs (CGraphss in the AURA project [2], see Fig. 1:

[® chromosome =] [® Ribosome —|] [® EukaryoticChromosome =] [ EukaryoticRibosome = |

Fig. 1. (Simplified) Concept Graphs fafell and FukaryoticCell in AURA.

In the AURA project, such CGraphs were modeled by subjedtanaxperts (SMES)
from the pages of a biology college textbook [3], followindetailed “text to CGraph”
encoding process [4]:

S1 Every Cell has part aRibosome and aChromosome.

S2 Every FEukaryoticCell is a Cell.

S3 Every EukaryoticCell has part &ukaryotic Ribosome, a EukaryoticChromosome,
a Nucleus, such that th&/ukaryotic Chromosome is inside theNucleus.

S4 Every FukaryoticRibosome iS a Ribosome.

S5 Every EukaryoticChromosome is a Chromosome.

The CGraphs in Fig. 1 naturally represefit and S3. However, the taxonomic infor-
mation expressed h§2, 54 and.S5, is visualized in a separate taxonomy view (hence,
the superconcepts are not explicit in the CGraphs in Fig. 1).

Intuitively, a CGraphC' can inherit contenfrom a CGraphD if D is either a direct
or indirect superconcept @f, or if C contains a node with eithép or some subconcept
of D in its label.

In this paper, we are addressing the following quest®iven a GSKB with a
fixed taxonomy, which content in the CGraphs is inherited, ad from where?
For example, if we assume th&ukaryoticCell has Cell as a superconcept, as ex-
pressed by2, then it also seems plausible to assume thafitsaryotic Chromosome
part was inherited fronCell as a Chromosome which then gotspecialized Under
this assumption it seems reasonable to assume that thednalivepresented by the
EukaroticChromosome node in EukaryoticCell is hence identical to the individual
represented by th€hromosome node inCell — we are saying that those nodes should
be co-referential However, this co-reference is not explicit in the CGraphis. might
consider the graphs amderspecifieds it is neither possible to prove nor to disprove
equality of those nodes resp. individuals representeddam in the logical models.

Similar questions of co-referentiality related to inhedittontent do arise if we use
natural language as our primary means of knowledge repsan e.g. consider the
sentences'l andS3. Is the FukaryoticChromosome thatS3 is talking about actually



thesameChromosome that is mentioned ir¥'1? These kinds of question are studied to
some extent in the field of computational linguistics under termanaphora resolu-
tion [5], [6]. We will use the ternco-reference resolutiom the following. Obviously,
natural language is also underspecified in that sense.

From alogical point of view,the sentence$'1 to S5 (and their corresponding
CGraphs) naturally correspond to FOPL formulas of the falhg kind (in the fol-
lowing, we will be using the comma in consequents to denatguetions); thegraph-
structured knowledge base (GSKd)S1 to S5 (and the corresponding CGraphs) then
looks as follows:

S1 Vx : Cell(x) = 3x1, 22 :
hasPart(x,x1), Ribosome(z1),
hasPart(x, x2), Chromosome (z2)

S2 Vx : EukaryoticCell(x) = Cell(z)

S3 Va : EukaryoticCell(x) = Jxs, x4, x5 :
hasPart(z, x3), Euk.Ribosome(zs),
hasPart(x, x4), Buk.Chromosome(x4),
hasPart(x, x5), Nucleus(xs), inside(x4, x5)

S4 Yz : Fuk.Ribosome(x) = Ribosome(x)

S5 Vz : Euk.Chromosome(x) = Chromosome(x)

Unary predicates represeobnceptsand binary predicates predicatetations The
conceptD is called asuperconcepof C, with C # D, if Vo : C(x) = D(x),...
holds. Vice versa}' is called asubconcepof D then.

Following our example, we would like to prove thatFukaryoticCell has a
Chromosome part which gets inherited fror@'ell, and indeed, the following entail-
ment holds:

{S51,52,54, 55} E
Vx : EukaryoticCell(xz) = Ty : hasPart(z,y), Chromosome(y),

with S3 being removed here, as the entailment would hold true tiyiatherwise,
of course. This testifies that “having a Chromosome parthigerited fromCell to
EukaryoticCell.

However, a closer look reveals that our question was a bitgereral, and that
we really ought to be able to prove ththe Chromosome part inside the Nucleus of a
EukaryoticCellshould bethe Chromosome inherited fror@ell; intuitively, the atoms
hasPart(zx,z4), Chromosome(x4) in S3 should be “inherited” front'1 (their prove-
nanceshould beCell), and hence, be logically redundant in a sense. In orderdokch
if those atoms fromS3 are indeed inherited from some other concept in the GSKB
to FukaryoticCell and hence redundant, we can tentatively remove the atores und
guestion fromS3, yielding S3~, and then check if the origind3 axiom is entailed.
Following this procedure§3— reads

S3~ Va : EukaryoticCell(x) = Jx3, 24,5 :
hasPart(x, x3), Buk. Ribosome(xs),
Euk.Chromosome(x4),
hasPart(x, x5), Nucleus(xs), inside(x4, x5)



Note that of the two atoms to be removed froft8, namely hasPart(x,x4),
Chromosome(z4), only the former is actually present 3 — obviously, we do not
want to removeésuk.Chromosome(z4) from S3 for this test. Usingg3~ in the GSKB
instead ofS'3 unfortunatelyyields:

{51,52,537,54,55} I~ S3
since already

{51,52,537,54,55} ~
Vx : EukaryoticCell(x) = Jy1,ya :
hasPart(x,y1), Chromosome(y1), inside(y1, y2)-

The reason that the desired consequettass notold is obviously that there iso way

to prove the co-referentiality / equalibetween theChromosome inherited fromCell,
denoted byrs in S1, and theEukaryoticChromosome denoted byr, in S3~ inside
the Nucleusrs, and hence, the corresponding model individuals cannotsled €or
satisfaction / interpretation af;, y» in the above entailment query. If we could prove
thatzs from S1 must be equal ta, in S3~ in the context ofEukaryoticCell, then the
entailment would hold. But all we can say is that there is s¢pagentially different)
Chromosome part inherited fromCell to FukaryoticCell, which is not necessarily
inside its Nucleus. So, we do not get the desired inferengdesswe strengtherthe
axiomatic content of our GSKB somehow such that those etipghiold.

One way ofstrengtheninghis GSKB in order toget the desired inferencés to
skolemizehe existentials, and establish co-references by virtiexjoklity atoms be-
tween (“local and inherited”) Skolem function terms, aswhdelow. We hence call
the following GSKB astrengthened versioof the original GSKB:

S1' Vz : Cell(z) =
hasPart(z, f1(x)), Ribosome(f1(x)),
hasPart(x, fa(x)), Chromosome(f2(x))

S3' Vx: Eukaryotchell(:c) =
hasPart(z, f3(x)), Euk.Ribosome(f3(x)),
hasPart(x, f4(x)), Euk.Chromosome(f4(z)),
hasPart(x, f5(:v)) Nucleus(f5(x)),
inside(fa(x), f5(x))),

fs(@) = f1(@), fa(z) = fa()

Note that we are now getting the desired inference as foll&ivst we again remove
the atoms under investigation frofi3’ to getS3'~:

S3'~ Vz : EBukaryoticCell(z) =
hasPart(z, f3(x)), Euk.Ribosome(f3(x)),
Euk.Chromosome( f4(x)),
hasPart(x, f5(x)), Nucleus(f5(x)),
inside(f4(x), f5(x))),
f3(x) = f1(@), fa(x) = fa(x)



and then we observe that the following entailment holds:
{81",82,53'—,54,55} = S3’

because for anc satisfying EukaryoticCell, we can inherithasPart(x, f2(x)),
Chromosome( f2(x)) from Cell, and due to the equality atofa(z) = f2(z), we can
establish co-referentiality / equality of the inherite@hromosome with the
Euk.Chromosome in EukaryoticCell and hence, the restrictions modeledsisi ~ for
fa(x) apply to the inherited'z(z), hence satisfying all of the necessary conditions in
S3’. This shows that theasPart(x, f4(x)), Chromosome(f4(z)) is redundantirb3’,
or inherited from somewherdlore specifically, we can also verifyjom wherethese
atoms are inherited, by removing axioms tentatively froe &SKB one by one, and
re-checking the entailment after each removal — for exanifiee entailment stops to
hold as soon as we remoa’ from the KB, then we know tha§1 plays a crucial role
in entailing these atoms, and that those atoms are, in thaeséinherited” fromCell.
Thus,Cell should be their provenance then. This gives us a procedusafoputing
the provenance of atoms; see below for more details.

We have just demonstrated that inherited content can fretyuenly be recognized
correctly in CGraphs if the GSKB was strengthened, i.e.aétybetween existentials /
Skolem function terms can be proven. Shouldn'tit thewblkgatorythat the equalities
required for establishing the desired inferencesapdicitly specified in the first place?
We believe that the answer canhe. Certainly, the required equalities could be added
by hand as in the examples above, but this is often tedioas, €there is some tool
support (e.g. a graphical CGraph editor). However, as dstrated, the input may also
be consideredaturally underspecifieth the sense thato-references are not explicit.
We therefore propose amutomatic co-reference resolution algorithmhich hypoth-
esizes and adds these equality atoms automatically. Tdsitdm necessarily has to
rely onsome sort of guessingnd is hence in the realm bf/pothetical / logically un-
sound inference procedureBhe presented algorithm produces a strengthened GSKB
in which these co-references are explicit.

Another benefit of a GSKB is that it ofteeduces modeling efforEor example,
suppose we updatgdel! by saying that itsRibosome is inside Cytosol:

S1b Vz : Cell(z) = Jx1, 22,6 :
hasPart(z, x1), Ribosome(z1),
hasPart(x, x2), Chromosome(z2),
inside(z1,x6), Cytosol(ze)

We would like to derive that this also holds for thak. Ribosome(z3) in EukaryoticCell
in S3 — analog to the case of théhromosome and EukraryoticChromosome it is
reasonable to assume thRibosome and FukaryoticRibosome are co-referential as
well, and indeed, we are getting this inference automdyigéth

S1b’ Vz : Cell(z) =
hasPart(x, f1(x)), Ribosome(f1(x)),
hasPart(x, fa(x)), Chromosome( fa(x)),
inside(f1(x), fo(x)), Cytosol(fo(x))



as follows:

{81V, 52,53',54,55} =
Va : BukaryoticCell(z) =
Jy1,y2 : hasPart(x, y1), Euk.Ribosome(y1), inside(y1,yz2), Cytosol (yz)

Note again that this entailment doest hold for {S1b, 52, 53, 54, S4}. the utility of
the strengthened GSKBS1V/, 52,53/, 54,54} is hence that we do not need to re-
model the fact that th&ukaryoticRibosome of a EukaryoticCell is inside Cytosol —
we can simply inherit it fromCell, and it would bdogically redundanto add these
atoms toS3'.

In this paper, we first present thagical perspectiven this problem. We present a
so-called GSKB strengthening algorithm, which, given apuinGSKB such as
{S1b,52,53,54,55}, produces a strengthened GSKB similar to
{S1¥', 52,53, 54, S5}, by using Skolemization and equality atoms between Skolem
terms. From the strengthened GSKB we can computerbsenance of atomandco-
referenceshence answering the questifsom where did content get inherited%e will
use a model-theoretic notion pfeferred modelsn order to characterize the desired
inferences that we wish to obtain from the underspecified BSi§ illustrated by the
examples above. The information in the preferred moded(d#)eén used to produce the
strengthened GSKB. Obviously, deciding entailment of atoamd hence the prove-
nance problem, are in general undecidable in FOPL(=), htitldble in the considered
fragment of FOPL(=).

A further contribution of this paper is a description of thetual implementation,
which is best understood and described from a graph-thaqretspectivelt is obvious
that we can define CGraphs as node- and edge labeled graphell\&gue that the
problem of identifying inherited content (the provenanaeyem) and the co-reference
problem can also be understood as solving a variant of thiekmelvn maximum com-
mon subgraph isomorphism (MCS) problenhis problem, which is NP-hard, can be
stated as follows:

Input: Two graphs G1 and G2.
Output: The largest subgraph of G1 isomorphic to a subgraph of G2.

We are considering morphisms instead of isomorphisms,easdtde mappings do not
have to be injective in our cadeVloreover, we also need to be more flexible regarding
the node- and edge-label matching conditions, as inhdetsals can be specialized in
subconcepts. The resulting morphism-based graph algoriticalled theGSKB cover-
ing algorithmin the following.

We have implemented this novel GSKB covering in a scalablg amad have suc-
cessfully applied it to the AURA GSKB [2], [4]. The AURA GSKB ithe basis of the
intelligent question answering textbook Inquire, seé,[@hd currently contains around

! There is a possibility that two inherited nodes get equateerfjed into one node, which means
that those two (or more) nodes will be mapped to one node bgntrphism — the mapping is
obviously no longer injective then.

2 This video won the AAAI 2012 video award.



6430 concept graphs, with a total of 93,254 edges and 53,8@8sn) hence on aver-
age 14.5 edges and 8.2 nodes per concept. The biggest gmpgbhaodes and 1,308
edges. A third contribution of this paper is hence a prelanjrevaluation and critical
review of the performance of this algorithm on the AURA GSKB.

The paper is structured as follows: We first address the pnoliom a logical point
of view. We formally define CGraphs and the GSKB frameworkyal as the required
notions of strengthened GSKBs, and the semantic notionefémed models. We then
present the GSKB-strengthening algorithm and show thatemgthened GSKB has
models which are preferred models of the original GSKB, lkagiting us the desired
additional conclusions required to solve the co-referearu@ provenance problems.
We then introduce the graph-based framework underlyingtteal implementation.
We formally define CGraph morphisms, as well as so-calledap&patchworks and
GSKB coverings, which describe how content is inheritedfaiher CGraphs via mor-
phisms throughout the whole GSKB. We present an algorithntéonputing such a
GSKB covering, and illustrate that the computed CGraph tmisrps can be used to
decide provenance and co-referentiality. Next we applyGB&B covering algorithm
to the AURA GSKB and evaluate its performance. We then discelated work, and
conclude with a summary and an outline for future work.

2 Graph Structured Knowledge Bases — The Logical Perspecty

As outlined in the Introduction, in this Section we formalthe notion of GSKBs from
a first-order logic perspective, and show how provenanceofisiand co-referentiality
of variables can be formalized and computed from a stremgih& SKB. We present
the so-called GSKB strengthening algorithm.

2.1 Definitions

In the following, we denote an atom or a conjunction of atonith iree variables
{z,x1,...,2,} @sp(z,x), withae = (x1,...,x,). Graph-structured knowledge bases
(GSKBs) are formulated in first order-logic with equalityQPL(=). We assume that
there is a functiomerms which returns the terms in a formula, etgems(R(t1,t2)) =

{tl,tg}:

Definition 1. Basic Definitions. Lef (R) be a countably infinite set of unary (binary)
predicate names, an& = {f1, f2,...} be a countably infinite set of unary function
names — hencélC U R, F) is the signature. Elements & (R) are called concepts
(relations). Moreover, lefY = {z, 21,22, ...} be a countably infinite set of variables.
A GSKB termis a termt such thatt € X, ort = fi(x), or t = fi(f;(x)), with
{fi, f;} C F.Lett, t1,ts be GSKB terms:

GSKB atoms: Let {C,D} C C, R € R, {v,w} C X. Then,C(v) and C(fi(z))
are concept atoms, anf(v, w), R(z, f;(x)) are relation atoms. Moreover, there
are equality and inequality atoms of the following forfa(z) = f;(z), fi(z) =
fi(fr(@)), fi(fu(z)) = fi(x), and fi(z) # f;(z), with ¢, 7, k pairwise unequal.



GSKB rule: For a conceplC, a formulape = Vz : C(z) = 3l : o(z,x) is called
a GSKB rule, whereo(z, ) = A\,; _,, ci is finite conjunction of GSKB atoms.
This is shorthand fovz : C(z) = Jz : pairwise_unequal(z,x) A o(x,x),

x = (21,...,2,), With the macropairwise_unequal (z, z) = Nicicj<n®i #
i A N\icicn Ti #

For a conceptC' with pc = Vo : C(z) = Jx : p(z,x), denotep(x, ) =
Nic1..m @i @S asebyrc = {ay,...,am}, andterms(C) = Uaere terms(a).
We require that the terms iterms(pc) are connected te: for all ¢ € terms(C),
connected(x,t) holds, where connected is defined as followsinected(t1,t2)
holds if { R(t1,t2), R(t2,t1)} N 7c # B, or there is some s.t. connected(t1,t)
andconnected(t, t2) holds.

GSKB: A finite set of GSKB rule¥’ in which there is at most one rule per concept.

Input GSKB: A GSKB which is function-free and without equality atoms.

Auxiliary notions: Given a GSKBY, we refer to the set of concepts usedinas
concepts(X), andre 5 to refer to the consequent p§ € X'. We extend the other
definitions to accept & argument as well, e.gterms(C, X), etc.

For example, {S1b,52,53,54,55} is an (underspecified) input GSKB, and
{S1¥', 52,53, 54, S5} is astrengthenedoutput) GSKB; however, we need to replace
the 3 quantifier with3!. The formal definition ostrengthenedsSKB is given below.
Note that sometimes the strengthening algorithm will nat anything, and hence out-
put will equal input, e.g. fof 54, S5}.

We require that an input GSKB must beherent

Definition 2. Coherent GSKB and coherent model. A GSKBs coherent if there is
standard first-order modél = (A7, 1), T |= X, in which every concegt mentioned
in X is interpreted in a non-empty way:Z # (). Such a model is called eoherent
model

Moreover, we define standard notions suck@serconcepts as follows:

Definition 3. Auxiliary Definitions. LetC' be a concepty be a GSKB. We then define
the following functions and predicates w.Bt:

— asserted_types(C, X) = {D | D(t) € 7¢.5}
— has_asserted_type s, (C, D)

iff D € asserted_types(C, X)
— asserted_superconcepts(C, X) = {D | D(z) € 7¢,5}
— has_asserted_superconcept s;(C, D)

iff D € asserted_superconcepts(C, X)
— superconcepts(D, X)

= {F | has_asserted_superconcept (D, E) }
— has_superconcept 5,(C, D)

iff D € superconcepts(C, X))
— all_types 5 (C)

= {E| D € asserted_types(C, X)),

E € superconcepts(D, X))}
U superconcepts(C, X))



— has_typex,(C, D) iff D € all_types(C, X)
whereR™T denotes the transitive closure of relatidh

We require that the relationsas_superconcept; and has_typeys, are irreflexive and
define:

Definition 4. Admissible GSKB. An input GSKB is called admissible if is co-
herent,has_superconcept 5, and has_type 5, are irreflexive, and if there are no implied
concept atoms in the rules: for all' € concepts(X), if D(t) € 7¢,5, then for all
E € superconcepts(D, X): E(t) € 1¢,5.

The following is straightforward:
Proposition 1. Every admissible GSKB' has a coherent, finite model.

Proof. Given that we do not support negation of concepts or relafiand given that
inequality atoms are only introduced by thequantor, inconsistencies suchast «
cannot occur. Moreover, since GSKBs_superconcept s, andhas_type 5, are irreflex-
ive, the GSKB is acyclic, and the consequent of every rulebegfunfolded”, analog to
the unfolding of an acyclic TBox in description logics [1hi§ produces a finite conse-
quent for every rule. Next, for evepy> € ¥, C can be instantiated sitz € CZ holds,
and we can easily satisfy the existentials in the consedueteating one instance
per variable. The process terminates and produces a modeWdfich is coherent and
finite.

We need a notion of connectedness on models:

Definition 5. Predicateconnected on models. LeT = (Az,-T) be a model of. For
i,j € Az, we defineonnectedz (i, j) if, for someR € R, {(4,5), (j,i)} N R # 0, or
there is somé € Az s.t. connectedz(i, k) and connectedz(k, 7).

In the following we are considering admissible GSKBs oniyl ave are interested in
their preferred modelsThe intuition behind the notion of a preferred model is thie f
lowing: for every concept’, there should be prototypical modebf C which is not
also a model of some non-superconcepthfin the form of a connected graph that
“mirrors” the atoms inr¢, 5 — due to thepairwise_unequal macro there will be at least
one individual per variable ip¢c in this model. Moreover, the prototypical model for
C also contains inherited “graphs” from conceptsiliLtypes 5. (C). Hence, the graph
satisfying the atoms¢ x is only a subgraph of the full model far. Most impor-
tantly, the notion of a preferred model captures the irdgnithat inherited content can
be specialized, and hence should give rise to co-referemcése prototypical model
for FukaryoticCell, the Chromosome inherited from its superclassell will be repre-
sented by the same individual as its own loEak. Chromosome. Note that this mini-
mizes the extension afhromosome. The same argument applies to arbitrary conjunc-
tions: we will not identify the inheritedChromosome with the local Euk. Ribosome,

as this would result in a model in whidlhromosome A Euk.Ribosome is interpreted
non-empty, and there are models in which this conjunctionterpreted by the empty
set. These intuitions are formalized as follows:



Definition 6. Preferred model of admissible GSKR Let 3’ be an admissible GSKB,
andZ E X be a coherent finite model. Theh,is called preferredif the following
holds:

1. for every concept’ € concepts(X), there is (at least) onec CZ s.t. for all D, if
has_superconcept(D, C), theni ¢ DT — hence, there is at least one element which
is “unique” to C, and denoted byc.

2. forC € concepts(%), defineparticipants(C) = {j | connectedz(ic,§)}. Then,
forall C, D € concepts(X), withC' # D, the following holdsparticipants;(C)N
participants7(D) = ().

3. for every non-empty subsgf C concepts(X'), there is no preferred modé&l #
I',with Az € Az st.Neees CF C Neees CF-

Consider the preferred models £$1, 52,53, 54, 55}. We are forced to have at least
one “unique” Cell which is not aFukaryoticCell, due to 1. Otherwise, evergell
would acquire the properties dukaryoticCells, which is not desirable. Moreover,
none of the individuals connected to that unidqui€ll are shared by another concept,
due to 2. Hence, the concept models have the forms of “norlapgEng graphs”, and
inherited content is “mapped in”. We are forced to minimike extension of every
concept, as well as of every conjunction of concepts. Thesgmts models in which,
for example Ribosome® N Euk.Chromosome® # () holds, as there are smaller mod-
els in which they are interpreted disjointlRibosome” N Buk.Chromosome® = 0.
Note that the inequality atoms i only prevent “merging” of variables within the
same formula, but the individual fafhromosome(z2) inherited fromCell could in
principle be made co-referential with the lodadk. Ribosome(x3) in EukaryoticCell.
This is prevented in a preferred modalso, looking at the model offukaryoticCell,
the co-reference between the fratill inherited Chromosome(x2) and its own local
Euk.Chromosome(x4) is made explicit, since this will result in the smallest @t
sion of) Chromosome®. A model in which aBukaryoticCell would have two different
Chromosomes would be larger and in violation to 3. So, we only make those- ¢
junction true in a preferred model that aave to make true for example,Cell* N
EukaryoticCell* # 0, due t0S2, and there is no model in which this conjunction is
interpreted by a smaller set.

Note that a preferred model is not a “minimal” model in thesslaal sense. Con-
sidervz : C(z) = Jl21 : R(z,21), D(z1), V& : SubC(x) = Iz2 : C(z), R(x, 22),
E(«2). In the classical minimal modél, we would have# Az = 2, and it would sat-
isfy D A E. Also, CT = SubC?Z. But this is not what we want. It violates 1, 2, as well
as 3. The preferred model will need at least 5 nodes.

In principle, there can be more than one preferred model anddy more than one
strengthened version of the GSKB. For example, consideGBiEB

C(z) = Nz : R(x,x1), B(x1)

SubC(x) = Jag, x5 : C(z),

R(z,z2), E(x2), F(x2),
R(z,xz3), E(z3), G(x3).
Here,z; in C can be co-referential with eithep in SubC, or with z5.

In the next section, we will show the following constructiyeby specifying an
algorithm which constructs a preferred model for a given iadible GSKBX:



Proposition 2. Every admissible GSKB has a preferred model.

We can now state the purpose of the GSKB strengthening igorore clearly. Given
an admissible GSKB (note that this is an input GSKB), we are interested in finding
a strengthened version af:

Definition 7. Strengthened version &f. Given an admissible (input) GSKB, we are
calling X" a strengthened versiarf X if the following holds:

1. for every rulepc € X, there is a rulep,, € X’ that uses only the variable:
terms(pp) N X = {z}.

2. if 7' E X' is a standard first-order model df’ which is coherent, thef’ = X,
andZ’ is a preferred model fo¥’. Hence Y’ | X.

From a strengthened GSKB, we can decide provenance andazesree as follows:

Definition 8. Provenance and co-reference determination.(Cdte a conceptl’ be a
strengthened GSKB, arfd C 7¢ . With 3 = A . o, we then say that (and hence
all the atoms irP) are

— local (or asserted) irC if

2\ {pct U{ve : C(2) = Naerg pip @
KV Clx) = B,

— and inherited otherwise. More specificalB{andP) is inherited fromD, iff D(t) €
1c,z, andf’ = A cp a With P’ = {af, )= f.(2)) | @ € P} is localin D, and
there is no more genereupD with has_superconcept 5., (D, SupD) such thats
(andP) is inherited fromSupD.

Moreover, given concepts, D, two GSKB terms; € terms(C), ta € terms(D) are
said to be co-referential il iff eithert, = ¢t = z, t1 = fi(z), t2 = f;(fx(z)), or
to = fi(x), t1 = f;(fu(x)), andX’ = (Vz : C(z) = fi(z) = fij(z) V (Vz : D(z) =
filz) = [ ().

Note that a conjunctiop is local as soon asomeatom is already local. Hence, if a
complex conjunctiors (resp.P) is local, this doesiot mean thatll its atoms have to
be local — some atoms may be inherited.

Proposition 3. Provenance and co-reference are decidable in a strength&@KB
2.

The proofis given in the next Section.

2.2 Constructing a Strengthened GSKB
The algorithm works by performing the following steps:

1. Produce the skolemized version%f X's, by bringing every rule i into Skolem
normal form. The skolemized axioms contain no nested fandérms, only terms
of the form f;(z) andz. Let© = {oc | C' € concepts(X)} be a set of constants,
and also addC(oc) | C € concepts(X)} to Xs.



2. Construct theminimal Herbrand modef;, = (Ay,-7*) of ¥s. The minimal
Herbrand model is unique and finite, given thdtis admissible (and does not
contain disjunctions in the consequents). Note that themaihHerbrand model
will automatically satisfy the inequality atoms, and it Mallso satisfy points 1
and 2 from Definition 6, due to the set of constaéavhich are instantiated as
{C(oc) | C € concepts(X)} C Xg, and with the exception af, there are no
shared terms in the rules d&fg, as Skolemization creates fresh function symbols
for every variable. Thus;c represents the root individual of the unique model for
conceptC, with o5 = ic, ic € CT*.

3. TransforniZy, into a preferred model oF, Z4 = (A4, -14). A4 is the quotient
set of Ay, under the= equivalence relation) 4 = A\ =. Hence, the elements
of A 4 represent the equivalence classes of equated Skolem gteumsl from the

Herbrand universel. This step is non-deterministic, as there may be more than

one preferred model faX'.

4. UseZ, to construct a strengthened GSKB from X's which is satisfied by that
model. Use the equivalent clustersdny to generate equality atoms.

5. FromX" it is possible to decide the provenance and the co-refeigmtdem, on a
syntactic basis.

Since steps 1 and 2 are standard and well-know [8], let useltfanalgorithm for step
3. We need two more utility notions before we can proceed:

Definition 9. Relations€ andi/, and equivalence classes. 1B} = (A, -Z*) be the
minimal unique Herbrand model after step 25§ above. Letf be a binary relation
over terms from the Herbrand univergk,, and define

CZOSU’I’E( ) UCGconcepts(
{(f1(K), f2(k ))|( 1(00), f2(0c)) € 9} U

{(A (f2(R). Ja(k)) | (Fi(Faloc)), f3(0c)) € E2} U

{(f1(f2(R)), fs(fa(k))) | (f1(f2(0c)), f3(fa(oc))) € €%}

keA

where -® denotes thaeflexive, symmetric, and transitive closuné a relation. Let
[ = {j | (i,5) € closure(E)}. Moreover, letd = {[i]€ # [j1€ | i1 € [i|f,j1 €
[1]¢,C € concepts(X), (i1 # j1) € 7o, } be the set of inequality atoms.

Intuitively, (4,7) € € represents = j, and[i]¢ represents the equivalence class.of
The relationg (and hence the equivalence classes) will grow as pairs aitedundi-
viduals / terms are added by the algorithm given below. tiviely, the closure operator
makes sure that whenever two terms starting from the sami@ookeo- are equated in
the unique model of’, that then this equality will also hold for all it§ instantiations
in other parts of the model. Note that algowill grow, representing inferences such as
i£jk#ElLj=k=1i#l

The algorithm can now be stated as follows:

Algorithm 1 Construction of a preferred model far. LetZ;;, = (Ay, -Z*) be the
minimal unique Herbrand model df s after step 2 above.



1. definghasRoot (i) = o iff connectedz,, (oc, i) holds, for every” € concepts(X).
2. then, non-deterministically apply the followingerging ruleon the model as long
as itis applicable:
if there are individuals, j € Ay, i # j, with hasRoot(i) = hasRoot(j) =
oc andind_types(i) C ind-types(j), i &€ [j]°, [i]* # [§]° € U, then
£2£U{(i,5)}
Assume the rule application stops with a global maximum edjirality atoms s.t.
#U is maximized. Since this is a non-deterministic algoritsoch a run exists,
and we can assume that the non-deterministic algorithmpxdltiuce it.
3. definel4 = (A4, %) as follows:
Aq = {[iJf | i € Ay}, andforallC € concepts(X) : CT2 = {[i]¢ | i € CTn},
forall R € R : RT4 = {([i]¢, [j]®) | (i, ) € RT*}.

The algorithm terminates, sinc®, is finite, so there is a finite humber of merging
possibilities in the rule. The solution which maximiz#s/ can obviously be found by
search in a deterministic version.

Lemmal. T4 = (A4, Z4) is a preferred model foE.

Proof. Obviously,Z 4 is finite and coherent, as it was constructed by the algorithm
based on the unique finite Herbrand model. AssumeZhais not a preferred model
for X. By construction 4 is a model of¥s, as the merging rule preserves the model
character off3,. SinceZ4 is a model of the skolemized version, it is also a modelof
sinceXs = X for the skolemized GSKB [8]. Henc&, is a model of¥’, also.

It remains to show that it is preferred. Assume that it is &tce points 1 and 2
from Definition 6 are already satisfied by construction, adlgan be violated. Then,
there must be some other mod@éand som&S C concepts(¥) suchthaf, o5 CF C

Noeces CF, witnessed byil¢ € e CF With [i]E & Npees CF -

1 fNeees CT' = {), then this violates the assumption tia# was a minimal Her-
brand model (which does not make things true without neeei (.. C* =
¢ as well, which contradictg]® € o5 CF.

2. AssumeCS = {D} is a single concept name. A5, was a minimal model, the
existence ofi, with i € [i]¢, is somehow enforced b{s, hence there is some
termt; € terms(C, Xs) with D € ind_types(t;). Moreover, for the same reason,
DT’ +£ (), as otherwise it wouldn’t be a model, bug DZ’. Consequently, there is
somej € DT’ with i # 5. Then, there must also be somec terms(C, Xs) with
D € ind_types(t;), with ¢; # t;.

There are a couple of cases:
(a) Assumend_type(t;) C ind_types(t;)

i. if ¢’ = C and hencéwasRoot(i) = hasRoot(j) = C, then(t; # t;) &
Tc.55 and[i]® # [j]¢ ¢ U, as otherwis€ would not be a model. But then,
the merging rule would have been applied and merigad j, such that
[i]¢ = [4]¢ = {i,;}. Rule application could not have been blocked by the
preconditioni)® # [j]¢ ¢ U, becaus& 4 was produced by a run in which
#U was maximized. This means that the rule will be applicabteexjuate
1 andj, contradicting the assumption that the algorithm has teateid.



ii. otherwise,C' # C’, then we don't have to worry: as stated in Definition 6,
participantsz , (C) N participantsz , (C") = 0.

(b) Assumeind_type(t;) C ind_types(t;): analog to the previous case.

(c) Assume ind_type(t;) g ind_types(t;). Then there is some
E € ind_type(t;), E ¢ ind_types(t;). AsZ o was a minimal Herbrand model,
and there is no way fdi]® to “vanish” from EZ4, there must béi]¢ ¢ EZ4
and hencéi]® € Ngces CF - Contradiction.

3. IfCS ={Dy,...,D,}, thenthere must already be so@¥ = {D,,, D,,},CS’ C
CS for which we have such an If has_superconcept(D,,, Dy) or vice versa,
then there is already son®S’ = {D,,}, and this is handled by 2. Otherwise,
D,,, D, are not in a sub/superconcept relationship, and correspgistances
are not getting merged by the merging rule. But similar tq #d¥ will lead us to
conclude thati]® € N5 C*, contradicting the assumption.

Hence,Z 4 is a preferred model. Note that this proves Proposition 2.

For what remains to be shown is how we can compute a strergl@8KB fromX'g
andZ 4.

Definition 10. Construction of strengthened GSKB. Let X's be the skolemized ver-
sion of the admissible GSKB, afig, be a preferred model of'. We then rewrite the
rules in X5 as follows; note thatvy,, —.,,) means “inca, substitute all occurrences of
with ¢
X' = {rewrite(pc, terms(C, Xs)) | po € Yg}, with
rewrite(pc, terms) = C(z) =
Naero,sg &N
/\teterms,tgéoc haSROOt(tv'r)[oc—m] A
t1,toEterms,t #to t # t2[oo%z] A
t1E€terms,ta€ty] t1 = t2]0o—a]

In addition, we need the following axioms:

1. X' 2 X' U{C(o¢c) | C € concepts(%)}
2. X' = 5" U{oc # op | C,D € concepts(X),C # D}
3. X 2 X U{Ve,y,z:
hasRoot(x,y), hasRoot(y, z) = hasRoot(z, z) }
4, 5" = 5 U {V¥x,y:
hasRoot(x, oc), hasRoot(y,op) = x # y },
forall C, D € concepts(X),C # D.

Lemma 2. If Z | X7, thenZ is a preferred model fo¥.

Proof. As X’ has been constructed frois by adding equality atoms to explicitly
represent the co-references with inherited Skolem funai@cessors, which have been
identified by the merging rule from a preferred modelafit is clear that any model
of X’ will force the same co-references, and hence, satisfy [®int Definition 6.



Moreover, point 1 in Definition 10 makes sure that we have empty concept models
for every concept by requiring an instance, hence satigfgondition 1 in Definition
6. Point 2 in Definition 10 enforces distinctness betweersehconstants, and point
3 declareshasRoot as a transitively closed relation. In combination with theled
hasRoot atoms inX’, and with the axioms in point 4 of Definition 10, this ensultest t
condition 2 in Definition 6 is satisfied, requiring that theque concept models do not
overlap (no sharing of participants).

Let us return to our example. Far = {S1b, 52, 53,54, 55} we will get X's as fol-
lows:

Cell(z) =
hasPart(x, f1(z)), Ribosome(f1(x)),
hasPart(x, f2(x)), Chromosome( fa(x)),
inside(f1(x), fo(x)), Cytosol(fo(x)),

pairwise_unequal({z, fo(x), f1(x), f2(2)})
EukaryoticCell(x) = Cell(x)

hasPart(x, f3(x)), Euk.Ribosome(f3(x)),

hasPart(x, f4(x)), Euk.Chromosome( fs(x)),

hasPart(x, f5(x)), Nucleus(f5(x)),

inside(f4(z), f5(2)

pairwise_unequal({x, f3(x), fa(x), f5(x)})

Cell(ocen), Euk.Cell(oguk. ceir), Ribosome(0Riposome) - - -

If we look at the minimal Herbrand model &fs, we find that the following atoms are
satisfied foo gy cer:

hasPart(0puk. ceir, f1(0Buk. ceil))
hasPart(0guk. ceit, f2(0Buk. cell)),
inside(f1(0guk.ceil), fo(Omuk.Cell))s
Ribosome( f1(0Buk.celt))s
Chromosome( f2(0muk. ceil)),
Cytosol(fo(opuk.ceil)),
hasPart(oguk. ceils f3(0Buk. cell)),
hasPart(0 guk. ceits f1(0Buk. Cell))s
hasPart(0guk. ceil, f5(0Buk. Cell)),
inside(f4(0guk.cell), [5(0Buk. Cell))s
Euk.Ribosome(f3(0puk.ceil)),
Euk.Chromosome(f4(0puk. ceit)),

Nucleus(f5(0Buk. ceit))s

Moreover, there are pairwise inequality atoms between. ceu, f3(0Euk. Cell)s
J1(0Buk.cet), f5(0Ruk.cen) and between oguk. ceir, fo(0Buk.cett), f1(0Buk. Celt),
fQ(OEuk.Cell)-

If we next look atZ 4, we will find that [fs(opuk.cen]) = [f1(0Buk.cetr)] =

{f3(0Buk. cetr), f1(0Euk.cen) } holds, and likewis¢fs(0guk. ceut]) = [f2(0Buk. cenr)] =
{f2(0Buk.cer), fa(oruk.cenr) }- HeNce, the desired co-references have been established,



e.g., the from Cell inherited Ribosome(f1(oruk.cen)) is identified as being
co-referential with the “local’Euk. Ribosome( f3(0guk. cell))-
The abridged strengthened GSKB then looks as follows:

Cell(x) =
hasPart(x, f1(z)), Ribosome(f1(x)),
hasPart(x, f2(x)), Chromosome( fa(x)),
hasRoot(f1(x), z), hasRoot(fg( ), x),
pairwise_unequal ({x, f1(x), f2(x)}
EukaryoticCell(xz) = Cell(x),
hasPart(x, f3(x)), Euk.Ribosome(f3(x)),
hasPart(x, f4(:v)) Euk.Chromosome( f4(x)),
hasPart(x, (a:)),Nucleus(f5( ),
inside(f2(2), f5()), f5(x) = Fr(2), fo(x) = fal),
hasRoot(f5(x), x), hasRoot(f4(x), x),
hasRoot(f5(x), z),
pairwise_unequal({z, f3(z), fa(x), f5(2)})
Ribosome(0Rivosome ), Chromosome (0 chromosome)
.. 0Cell - OBuk.Cell - - - (Axiom sets 2—4 from Def. 10)

We claim that we can decide the provenance problem for tleagtihened GSKB.’
syntactically as follows; also recall that in an admissiKi, the consequents do not
contain redundant concept atoms:

Definition 11. Syntactic provenance of atoms M. In a strengthened GSKB, for
C' € concepts(X), leta € 7¢ x be an atom:

—a = C(f(x)) is inherited fromD if D(fs(z)) € 7¢,s with D € {C}U
all _superclasses(C, X') and f'(fs(x)) = f(x) € 1o 5 with C(f'(x)) € Tp 57,
and there is no more general clas&pD with has_superconcept(D, SupD) for
which this is also the case.

— a = R(f1, f2) is inherited fromD if D(fs(z)) € 7¢,s with D € {C}U
all _superclasses(C, X') and { f{(fs(x)) = fi(z), f5(fs(x)) = f2(x)} C 10,5
with R(f{,f3) € 7p.=, and there is no more general classupD with
has_superconcept(D, SupD) for which this is also the case.

If a is not inherited from some concept, it is calledalto C.

Looking at the example GSKB’, we see that the atonis.sPart(z, f3(x)) are inher-
ited from Cell, due tof5(x) = fi(x), andhasPart(z, f4(x)), due tofy(x) = fa(z).
ConsequentlyhasPart(x, f5(x)), Nucleus(fs(x)), inside(f4(x), f5(x)) are local to
EukaryoticCell. Hence, for the original GSKB’, hasPart(z, x3) andhasPart(z, x4)
were inherited fromCell, andhasPart(z, x5), Nucleus(xs), inside(z4, x5) are local
to EukaryoticCell.

We claim that we can decide the co-reference problem fortteagthened GSKB
X’ syntactically as follows:



Definition 12. Syntactic co-reference of termsii. Two terms with; € terms(C, X'),
to € terms(D, X') are co-referential, ift; = to = z, or ty(x) = t2(t) € 70,5/, OF
to(x) = t1(t) € Tp,x (note thatt = z, ort = fs(x)).

Looking at the example GSKB.’, we see thaf;(x) = fi(x) are co-referential and
hence theRibosome in Cell is the same as thBuk. Ribosome in EukaryoticCell, and
likewise for theChromosome due tof,(z) = fo(z).

Lemma 3. Syntactic provenance according to Def. 11 is sound and cetefibr decid-
ing semantic provenance according to Def. 8. Syntacticaference according to Def.
12 is sound and complete for deciding semantic co-referancerding to Def. 8.

Proof. Soundness isimmediate. Completeness is a straightfota@rds Skolem func-
tions are not shared by different consequent&'inand’ was admissible. Moreover,
for two different Skolem functiong;, f;, with i # j, fi(¢t) = f;(¢) will hold for a cer-
tain termt in all models ofY if and only if this was explicitly enforced by an equality
atom. Note that this also proves Proposition 3.

We can generalize these results to the original GSK#&s follows. To check the prove-
nance ofrc » we need to keep track during Skolemization which ateme 7¢ 5
corresponds tey, and check the provenance af in 2. Likewise, to check to co-
referentiality of two variables, let; andt, be its corresponding (Skolem function)
terms in the skolemized versions. Naw, andx, are co-referential irk iff ¢t; and¢s
are co-referential irt’. Looking at the example GSKB, we see that; from S1 is
co-referential withcs in S3 sincefs(z) = fi(x) in X7, andz, from S1 is co-referential
with z4 in S3 due tofs(z) = fa(x) in X7,

However, given that a GSKB may have more than one strengthesrsion, “to
decide” should be understood inceedulousway here. Only in case a provenance in-
formation or co-reference holds ail strengthened GSKBSs, this would beskeptical
conclusion; it is clear that all strengthened GSKBs can ingiple be constructed, due
to finiteness ofZ4;,. We can hence present the main result of this paper as follows

Corollary 1. Given a strengthened GSKB', we can decide the provenance and co-
reference problem on a syntactic basis. For an admissibiput) GSKBX', we can
decide thecredulous provenance and credulous co-reference prdiyeconstructing

a strengthened GSKB first, and check there. Thekeptical provenance and skepti-
cal co-reference problengan be decided by constructiad strengthened GSKBs, and
checking if a positive answer holds in all of them.

3 Graph Structured Knowledge Bases — The Graph-Based
Perspective

As outlined in the Introduction, in this Section we addrdss provenance and co-
reference problems from a graph-theoretic perspectivkBx81d CGraphs are defined
as graph-based notions, and the so-called GSKB coveringitim is presented as an
algorithm which establishes graph morphisms between QGraphose morphisms de-
scribe how content is inherited from other CGraphs, througthe GSKB. The actual



implementation of the algorithm is also discussed, togettith implementation tricks
which make it scalable.

A major drawback of the previously given logic-based frarngwwas the disal-
lowance ofcyclical conceptsij.e. of concepts in which the transitive closure of the
refers to(or use$ relation is not irreflexive. In the AURA GSKB many concepts a
actually cyclical in that sense, for example, the concepinalCell refers toAnimal,
and vice versa. We disallowed cyclical concepts in the kigised formalization in or-
der to ensure the existence fifite Herbrand models. In the followingraph-based
formalizationwe allow cyclical concepts and describe a strategy for dealing it
In addition, we will also show how to handle a relation hielgr (something which
could have been done in the logical formalization, too, bas wmitted for the sake of
brevity — the same applies to disjointness axioms and otheighkt-forward represen-
tation means).

Intuitively, in case of a refers-to cycle, the algorithmlilake a non-deterministic
choice, as illustrated by the following example. Consides istated inAnimal that
Animals have AnimalCells as parts, and conversely withiAnimalCell, that
AnimalCells arepartOf Animals. In this case the algorithm will tell us that the fact
“ Animals haveAnimalCell parts” is either inherited frominimal to AnimalCell,
or vice versa, but not both. Hence, a fact (atom, triple)uwsasgk owned or local to one
concept.

3.1 Definitions

Definition 13. Graph-Structured Knowledge Base. A graph-structured kedge base
(GSKB) is a tupl€C, R, O¢, Or,Ir,G), WhereC is a set of conceptsy is a set of
binary relations,O: C C x C is the concept taxonomy, arfdz C R x R is the
relation hierachy. Both are strict partial orders. For a eglon R, (R, S) € Zg means
that S is the inverse relation oR, and vice versaZyr = Zx ', soZx is closed under
the symmetric closure. We denote the invers® @fith R—! — note that for eveny,
either (R, S) € Zg, for someR # S, or (R, R~') € Zr. Moreover,g is the set of
CGraphdor C, one per concept. Wit~ we denote the CGraph of concept

Intuitively, (C, D) € O™ means thaD is a superconcept or a more general con-
cept thanC, and that it is possible that the CGraph@fcontains inherited content
from the CGraph ofD. But note thatC' may also contain inherited content from non-
superconcepts, which are instantiatedinCGraphs are defined as follows:

Definition 14. CGraph of a concep. A CGraph of a concep’, G¢, is a node-
and edge-labeled graptN¢, Ec, LY, LE), with nodesV¢ and edgestc. There is a
special node-ootc € N¢, theroot nodeTwo edgegni, ne) and (ng, ny) are called
adjoinedif they share a node{ni,na} N {n3,ns} # 0. We require that every node
is connected to theootnoderootc: (rootc,n) € EE, andES denotes the symmetric
and transitive closure of/¢.

The labeling function£Y : N — 2¢ and LE : Ec — 2R are total functions;
labeling with{ is permitted.

Theaugmented CGraptf G is AG ¢, which is a CGraph that satisfies the follow-

ing:



— Ec = Eal, soE¢ is closed under symmetric closure.

— forall (n1,ns) € Ec, if R € LE(n1,n2), thenR=1 € LE(na,n4).

— L¥(n) = L, thenL is closed under implied superconceptsdife £, and(D, E) €
Oc7, thenE € L.

- Lg(nl,ng) = {S |R S Lg(nl,ng), andS = Ror (R, S) S ORJr}

As a shorthand, we say thdt(n) is a concept atomn C if n € No and F €
LY (n). Analogously, we are saying th&(n, n») is arelation atorin C'if (ny,n2) €
Ec andR € LE((n1,n2)). Two relation atoms?(ny, n2) and S(nsz, ny) are adjoined
if {7’L177’LQ} n {7’L377’L4} #* 0.

We refer to the set of concept (relation) atomsdi€ic asC A¢ (RA¢).

Note that a CGraph af' can be trivial, i.e. ifC' has no further structure, thé¥ =
{rootc}, LY = {(rootc,{C})}, Ec = 0, LE = (). We also use the atom notation to
denote graphs, e.g>; = {C(rootc)}.

3.2 Concept Graph Morphisms and Inherited Atoms

Definition 15. CGraph Morphism fromC' into D. Let G¢, Gp be theaugmented
CGraphs forC, D, with C # D. A CGraph morphism (morphism for short) from
C into D, or G¢ into Gp, is a partial functionuc..p : No — Np (denoted ag: in
caseC, D are clear from the context or irrelevant) such that

1. u(roote) = nis defined - will also be called aC' expansion start node

2. forallt € Ne s.t.u(t) is defined: ifLY (t) = £, thenL® (u(t)) = £ with £ C L',

3. if u(mg) = n, my # rootc, k > 1, then there is a sequence of adjoining relation
atoms(Ry(mg, m1), ..., Rg(mr—1,mg)) in Cwithmgy = rootc such thatthere is
a corresponding sequence of adjoining relations atoms in D:
(R1(p(mo), p(ma)), ..., Ri(u(mi), n)) in D.

More specifically, the morphism withc... p (rootc) = n is denoted agic.. pjn-
Note thatn is a node inD for whichC' € L% (n) holds, or equivalenthy('(n) € CAp,
and thatuc.. pjn (rootc) = n. If nis irrelevant, we only writgic... p.

C is called the domain (or source) concept, aRdthe range (or target) concept;
we also use domain (or source) and range (or target) CGraph.

A morphismuc.. p is more generahan pg, o p iff (SubC, C) € OcT.

Hence, the labels of the nodes in the source CGraph have thbets of the labels
of the corresponding nodes in the target CGraph which amgeéjanore specific (or
identical). Note that the analog doest hold for the edges. Rather, a morphisrduces
inherited edges in the target CGraph, to be defined below.

We say that a morphisinduces atoms

Definition 16. Induced/ Inherited and Local Atoms. L&t... p|,, be amorphism. Then,
the morphism induces the following atoms:

— FE(m) € CAp isinduced if there ig«(m’) = m with E(m/) € CAc.
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Fig. 2. lllustration of closure and inconsistency.

— R(m1,m2) € RAp is induced if there isu(m}) = mq,u(my) = meo with
R(mf,m}) € RAc.

Induced atoms are also calleédherited atomsMore specifically, we say that an
atom isinduced by C into Dor inherited from C to D The set of induced atoms is
denoted by)c .. p|,- An atom inD which is not induced is called l|cal atom, more
specifically:local to D.

3.3 Concept Patchworks and Coverings

Obviously, a complex CGraph may have more than one conoept, @aind content may
be inherited from any of those. Thusultiple morphismsre required to describe all
inherited content. For example, I» containsC(n,) and C(n2) with ny # ns, we
already require two morphismgic...pjn, , hoDjn, (1 is @ function). A morphisms
is hence already associated with #gansion start nodderen; andn,. A CGraph
patchworkdescribes howdifferent parts of the concept are “patched” together

Definition 17. CGraph patchwork intaD, induced atoms, unified nodes.@Graph
patchwork (patchwork for shorifito D for a subset of its concept atorisC CAp \
{D(rootp)} is a set of morphisms int®, PWp = {tgwppn | E(n) € T}

The set ofinduced or inherited atonis (PWp) = U ,cpyy ¥p-

LetZ, = {u|a € ¥, n € PWp} be the set of morphism that induces the atam
We say thatvis inheritedby . p € Z,, if pop is a (or the)most general morphism
in Z,,. GivenPWp, we hence say that is inherited from C

If {pp,~D, B~} € PWp With i, ..p(n1) = pip,~~p(n2) = n, then we say
thatn; andns have beemnified (merged, equated) intg andn; andn, are said to
be co-referentialNote that possiblys; = Es.

Theclosure of a set of morphisnsdefined as some kind of transitive closure over
the different morphisms. Consider the conce@tsSubC, and D, with (SubC, C) €
OCJr, and the mOfphismﬁCwSubC; HSubC~~D with NCwSubC(TOOtC) = 700t SubC



NeNCELUC - SubCroot e (NOtE thatC (root supc ) is a concept atom isubC, because
of (SubC,C) € O™, and pgubc—p (100t suvc) = Nsubcs NENCOUSLLC~ Djns e -
Moreover, assume that: . susC|root supe (1) = 12. Then, if alsQugupcws Ding o (112)

= n3 holds, we have to ensure that .. pjn.,, (n1) = n3 holds (note thaC'(ns.usc)

is a concept atom iD). Suppose to the contrary that alge... pjn,, (71) = N4,
with ng # n4. This describes a situation whetg was inherited directly and indirectly
from C' into D, and gets duplicated as;, n4. The situation is depicted in Fig. 2. We
hence require that the composition of the morphisms doesialatte functionality of
the morphisms.

Definition 18. Closure ofPW. Theclosureof a set of morphisn®W, denotedPWW ™,
is defined as follows:

- COH(PW) 2 {/’LC“"’D|nSubC U {(n17n3)} | (Ca SUbC) € OC+a
{MCWSubCVootSubca MSuwaD|nSubc} g PW’
I SubClroot supe (M1) = N2y hSubesDingupe (M2) = N3}
A i
- PWt = Uict...0 con*(PW)

(Note that(D, SubC) € O™ is possible, also.) The relations W™ are now
no longer necessarily functions, since we extended theméans10fuc. pjn g, U
{(n1,n3)},i.e., we adde@c.. pjng,, (n1) = n3). However, the notion afonsistency
of a set of morphism®quires exactly this:

Definition 19. Consistency aPWW. A set of morphism®BW is calledconsistenitff, for
all C, D, n, every morphism iPW™ satisfies the following:

1. functionality: if i pjn(n1) = n2 € PWT and pc..pjn(ni) = ng € PWY,
thenng = ns.

2. no self mapping: for alC’, n, n1 # n2, powcpn(n1) = na ¢ PW*.

3. no self inheritance: there is no sequence of morphigms. . , i, € PWT, m >
1 suchthat(y; o - - o uy)(n) = n (whereo denotes composition).

The functionality criterion has already been explainede Fkcond criterion pre-
vents that a CGrapf' inherits content to itself, which is a reasonable assumgtithe
third criterion simply prevents that a node is inheritedrribself, directly or indirectly.

Our goal is to identify the inherited content in a GSKB by meafipatchworks, for
all its concepts. Often, there is more than one possiblenpadk for a given concept
C, and different patchworks may result in different sets tieirited / induced atoms.
We are interested in those patchworks tlabally maximize (for the whole GSKie
set of inherited atomg, and among those ttsnallestsuch patchworks, i.e., those that
require as few morphisms as possible. In case an atom cahéntéd via two different
morphisms such that one is more general than the otherrprefe should be given to
the more general morphism. This captures the intuitionahattom should be inherited
from the most general concept that has it. These ideas amafiaed in the notion of a
GSKB coverings follows:

3 Even if C was cyclical in the sense that(n) is a concept atom ift!, for n # rootc.



Definition 20. GSKB Covering. Aoveringof a GSKBK is a union of CGraph patch-
works for a (not necessarily true) subset of its concépts C: PWx = Uceer PWe.
We extend the definitions of induced / implied atoms to whatevledge bases as fol-
lows: Y(PWk) = Upweepwi(Cia) | a € vc(PWc)}. We then require that
PWy aminimal set (w.r.t. set inclusiorthat satisfies the following thrg@inciples:

1. consistencyPWpg is consistent.

2. 1p-maximality: there is no GSKB coveriff)V’ i of the same or smaller cardinality
asPWgk with p(PWg) C (PW'k).

3. pu-generality: ifa € Yop € PWg for someC, D, and there exists a more
general morphismsc:..p with a € ¢cr..p with (C,C’) € O¢ ", such that its
addition toPWy would retain consistency # Wy, thenyer.p € PWk.

In general, there can be more than one covering for a givenBs8iK example is
given by the cyclical GSKB with concepts D, such thaC' = {C(root¢), R(rootc,ni),
D(n1)}, andD = {D(rootp), R~ (rootp,ns2),C(nz2)}. Here, we can either have a
morphisms i, _. p,,, (rootc) = ma,put_.p,,(n1) = rootp, or a morphisms
N%wcml(TOOtc) = n27u%wcjnl(n2) = rootg, but not both. Hence, a covering
forces that one of the two relation atomginD is local, and the other one is inherited.
If both were inherited, then point point 3 in Def. 19 would helated. If both were
local, then the principle of-maximality would be violated. It is left unspecified which
of those two coverings is constructed by the algorithm glvelow. Suppose we chose
té, p for PWi. Note that we cannot even agd, . = {(rootp,n1) to PWg, as
this would resultinug . pop?, .o )(n1) = ny and(p?,_ cous. p)(rootp) = rootp,
henceD(rootp) in D andD(ny) in C would become self-inherited, hence violating
consistency again.

The principle ofu-generality is explained as follows. Consider the CGraghs’,
C”,suchthaf (C’, C), (C",C")} C Oc¢,withC = {C(root¢c), R(rootc,n1), D(ni)},
c’ = {C’(rootcr, R(rootcr,na), D(ng), R(ne, ng), E(ns)} and
C" = {C"(rootc, R(rootci,ng), D(ng), R(na,ns), E(ns), R(ns, ne), F'(ne)}.
Looking atC”, the atomsR(rootcr,na), D(n4), R(n4,ns), E(ns) can all be induced
by C’ into C" via the obvious morphisthHowever,R(rootcr, n4), D(n4) can already
be induced by into C’, and this is the more general morphi8we hence require that
this morphism is also present:..c» € PWg, since those atoms are induced by both
morphisms. Also, we needc:...c» € PWgk as otherwise, we would not be able to
inherit R(n4,ns), E(ns) from C’ to C”, hence violating/-maximality. The desired
covering will hence consider the following atoms as loc#llatoms inC, the atoms
R(n2,n3), E(n3) in C’, and the atom®&(ns, ng), F(ne).

3.4 Computation of a Covering

Our goal is to compute a GSKB covering, and it is clear thatitha hard problem:

4 Be means Oﬁclwc// (TOOtC/) = TOOtc/quclwc//(ng) = N4, uc/wc//(ng) = ns.
5 By means OhCWC” (TOOtC) = 7"00150//7 Howcr (nl) = N4.



Proposition 4. Computing a Covering is NP-Hard and in PSPACE. It is cleartt tha
can compute a covering éf in a simple non-deterministic “guess and validate” style —
we guess the morphisms, and check whether they satisfyrid#ions Def. 19 and Def.
20. However, storing the morphisms may require polynonpacs. It is also clear that
the problem is NP-hard, by reduction from the clique problhG be the input graph
to the clique problem, and the CGraph®fipG be ak-clique, and(G, SupG) € O¢ ™.
AssumeLg,,c(n) = 0 for all n € Ngype, n # 100tsupc, and Lgypa(n) = 0 for
all n € Ng for n # rootg, and Lg(roote) = {G, SupG}, Lsupc(rootsupa) =
{SupG}, withC = {SupG, G}. ThenG contains a clique of sizkiff, for its covering
PWk: va(PWgk) = CAg U RAg \ {SupG(roots)} (i.e., all relation and concept
atoms with the exception of the root concept atom are inbéyjtand all morphisms are
injective.

The deterministic version of the sketched nondetermuédtjorithm requires search.
The basic ideas for a deterministic version of the algorittimoutlined as follows.

Since the GSKB can contain cyclical references, we musteortethe construc-
tion of morphisms which induce cycles in order to satisfybguirements of Def. 19,
namely points 2 and 3. In principle, we could compute the patcks for the con-
cepts in any order of sequence. When the patchwork for carigeg constructed, we
are establishing maximal morphisms to all concepts meatianm concept atoms i,
and we make sure that we do not violate consistency, ensuyrimgximality. More-
over, for every concept atoifi(n) in D, if (C, SupC) € Oc™, then alsaSupC(n) in
D, and hence, we will not only establigh-.. p, but alsous,,c--p, hence satisfying
p-generality.

Unfortunately, checking the conditions in Def. 19 to enstoasistency in Def. 20
can be costly, and we hence propose a slightly optimizedorerghich works intwo
phasedy exploiting ideas akin to topological sorting w.r.treers_to™ relation:

Definition 21. Cycles, Refers-To Relation, Refers-To Violation. A con€egefers to
concept D, iff D(n) € CAc: refers_to(C,D). A conceptC is cyclical iff
refers_tot (C,C). A GSKBK is cyclical if it contains a cyclical concept. Given two
concept;, C; with 1 < i < j < m in a sequence of concept€y,...,Cy,), we
speak of a refers-to violation ifefers_to(C;, C;) holds. The number of refers-to viola-
tions for the sequence i&f vio((C1, ..., C)) = Si<icm |dom(refers_to™ (C;)) N
{Ci+1,...,Cn}|. An optimal concept processing sequerisea sequenceeq =
(Ch,...,Cp), C = {C4,...,Cx}, which minimizes the number offers_to viola-
tions: & = argmin(ref _vio(seq),seq € w(C)); = denotes all possible sequences /
permutations of.

In case¢ = 0, we can simply topologically sort the GSKB w.r.t. thefers_to™
relation and process in that order of sequence. For such G&K8nly need to check
point 1 in Def. 19. And, even witlj > 0, we can skip the checks for point 2 and 3 in
Def. 19 if we organize the computation of the coveringwo phasesin phase one,
after having computed an optimal sequence, to constructchyark for conceptC},
we consider only morphisms from conceptsinto C. with i < k w.r.t. that ordering,
hence(; was processed before. We make sure that patchworks do tetieomint 1 in
Def. 19. The result of phase 1 is a covering in c@se0. In case > 0, y-maximality



Input :AGSKBK = (C,R,Oc¢,Or,Ir,G)
Output: PWg: a covering ofK

PWgk «+0;

(C1,...,Crn) + argmin(ref _vio(seq), seq € 7(C)) ;
S « 0 % concepts to reconsider in Phase 2 ;

P + 0 % already processed concepts ;

% Phase 1 ;

for i < 1tondo

if dom(refers_to™(C;)) N {Cit1,...,Cn} # 0 then
| S« Su{a};
end
PWk  PWgk U compute_patchwork(Cs, PWgk,P,1);
P« PU{Ci};
end
% Phase 2 ;
for C' € Sdo
PWk < PWgk \ {tip—~c | pip~c € PWk}
PWk  PWgk U compute_patchwork(C, PWk,P,2);

end

return PWgk
Algorithm 1: cover(k) — The GSKB Covering Algorithm

is not yet satisfied. There is (at least) a coneégptwith re fers_to™ (Cy., C;) andl > k.
Hence,C), may contain inherited content frody;, but yc,..c, was not established.
Those concept€’;, are identified and collected in phase 1, and simply re-pssgks
again inphase 2 by re-computing their patchworks, leadingue,..c, . During mor-
phisms construction, we now have to checks all points in D&fwhich is more costly.
However, the number of concepts to re-consider in phasegually much smaller than
|C|. This is Algorithm 1, which uses Algorithm 2 for patchworkraputation.

The functionmost_speci fic.atom(C A) is non-deterministic and chooses a con-
cept atomD(n) € CA for which there is no concept ato$ubD(n) € CA with
(SubD, D) € O¢ ™. Within compute_patchwork(C, PW, Pk, phase), we make sure
to process the concept atoms@i ¢ in most specific firsbrder. This has the advan-
tage that the closures can be more easily computed: at teewimen;.s.,,c-susc iS
computed, the morphisms;,,c.c anduc-.suc are already available.

The functionmax _consistent_morphism(C, D(n), PWx UPW¢, phase) finds
the maximal consistent morphism frominto C. In casephase = 1, it only checks
point 1 in Def. 19 in the consistency check, otherwise alngoin Def. 19. It tries
to compute a maximal consistent morphism which induces ag/ragbms as possible
into C'. In case no consistent mapping can be found, the empty ssuisied. In order
to check consistencypaz_consistent_morphism has to compute the closure of the
given morphisn®PWy U PWec. If a maximally consistent morphisp,._...c|,, can be
found, it is returned together with the additional morphésmsulting from the closure
computationziosure(PW g UPWcoU{pcin}) \PWk. This function is not further
detailed here, but its implementation described below.



Input : A concept, a set of morphisms, a set of processed conceptg,sa € {1, 2}:
(C, PW, Pk ,phase
Output: A C-patchworkPW¢e
S+ {D(n)|DeP,D(n)ec CAc};
PWe +0;
while § do
D(n) < most_speci fic_atom(S) ;
S+ S\{D(n)};
(kD-cin, PT) ¢ maz_consist._.morphism(C, D(n), PWk U PWc¢, phase) ;
PWe +— PWe U {,LLDWC‘n} uUpt;
end

return PWe
Algorithm 2: compute_patchwork(C, PW, Pk, phase) — Helper Function

3.5 The Implementation

The so-far presented algorithm is an idealized version®#ftttual implemented algo-
rithm. During our implementation efforts, we learned threg idealized algorithm is not
able to compute a covering for the AURA KB in a reasonable amho@itime. Scala-
bility is of concern here. In the AURA KB, we have 695 concepith more than 20
nodes, on average 50.1 nodes and 104.5 edges. The averagermficoncept atoms in
those concepts is 104.7. That means we have to considettipdi{en04.7 x 695 graph
morphisms. If runtime is exponential in the number of notlgis,results irg.78 x 10?
node mappings to consider if a naive approach is followddpfalvhich have to be
checked for consistency, etc. A lot of effort has been pud imiplementing a more
scalable version afompute_patchwork.

In the following we describe the maimplementation techniques that enabled scal-
ability; we think that it might be insightful to document and preseiivose techniques
for researchers working on similar problems.

First, there is no computation of an optimal sequence —ratieoptimal sequence
is constructed iteratively / incrementally during phase 1.

More importantly, instead of finding a maximal morphism fackD(n) € C A¢ at
a time, the algorithm constructs and patches morphismgitegm a piecewise fashion.
It is agenda-driven — the agenda consists of the currentlyinduced edges af'. Such
an edge is calledpen.In a loop, an open edgR(n,n2) is selected from the agenda,
and it is then searched for a morphism which induces it. W@ node mapping is
established, we are checking the consistency conditiorexjasred, and prevent cycles,
etc. When the agenda is empty, i.e., there are either no np@e edges or no more
additional morphisms can be found, then a solution was folihd quality of the com-
puted solution / patchwork is determined by the number ahdsiced atoms the score
of the solution.

The implemented algorithm produces perfect coveringsviémgiindefinite time.
Otherwise, the quality of the approximation increase theentione it is given (there
is a timeout switch, see below). After a solution has beendpthe algorithm can con-
tinue the search for additional solutions with higher sso@nly the best solutions are



kept. During this search for better solutions, the scorehefliest so-far found solu-
tion is used to reduce the search space — sometimes work atia palution can be
stopped if it can be determined that the full solution based oannot outperform the
best so-far found solutions.

We can parameterize the algorithm such that the searehnipute_patchwork
terminates as soon as a total numbemngfsolutions has been found, or if we were able
to improve the best-so-far solution, times, or if a timeout aftet seconds has been
reached. In case the timeout occurred before a (suboptpatdhwork was found, we
can either continue the search until at least one patchveoakailable, or accept the
incomplete partial patchwork (hence, all remaining noddited atoms as local).

We have threstrategies a), b), and cfor finding a morphism folR(n, ns):

Strategy a) We can often find a morphism starting from= n; or n = na, for
some concept aton(n). In case there is more than one sublin), we are trying
the most specific concept atoms firgte inspect the CGraph dp and try to inherit a
path of edges, starting from theotp, hence producing a morphispy,...c,. Each
inherited path and hence morphigiris associated with acorewhich is the product
|dom ()| x (penalty + 1). Thepenalty is the number of node and edge label spe-
cializations required oveD. Ideally, we are looking for a perfect match with pendlty
and maximal size. However, since this “path harvestinggadly requires graph search
in D in order to find the inherited path, the max. path length isst@mned to a small
number, say 3. The inherited edges are now no longer open.

Note that an edge can be induced by more than one morphisreyangD (1) will
eventually be considered if it has to. E.g., consi@er= {C(rootc), R(rootc,nq),
S(n1,n2)}, C" = {C'(rootc), R(rootcs, ng), T'(ng,n4) }, andC” = {C" (rootcn),
R(rootci,ng), S(ns,ne), T(ns,n7)}, with {(C',C),(C",C")} C Oc. Here,
{C" (rootcn ), C'(rooter), Crooten )} € CAcr. To induceS(ns,ng) we require
HCsCr|root s @ND 10 induceT (ns,n7) We require pic.crjroot, - NOte that
R(rootcr, ns) is induced by both morphisms.

Strategy b) Here it is checked whethd®(n1, n2) can be induced bgxtendingan
existing morphism; this is useful because Strategy a) hesgth cut-off, as described.
If we find that for R(n1, ne) there is an edgé'(ny, n3) which is already induced by
a morphismup...c», We then restart the search ferin C' by looking atD again. In
case there is more than one such morphism, we select the morplith the highest
score. We skip forward to the nodé with yip_.c|n(n}) = n1 and try to extend the
morphism. This way, we can inherit arbitrary graph struestfromD, or simply extend
the path to become longer, by patching together and extgnmdirtial morphisms for
one inherited path at a tim®estarting has the advantage that Strategy a) does not inves
a lot of time constructing longer and longer paths in a ddjpgitfashion with increasing
penalties, hence the max. length is constrained to a smak\vBy restarting with the
partial morphism which have the highest score, we achieveadf best-first search
effect (similar to beam search), because the control isxgaek quickly to the agenda,
so search can re-focus quickly on the most promising partiaphisms to extend.

For example, considet’ = {C(rootc), R(rootc,ny), S(rootc,ns), T (n1,n2)}
and isomorphicC’ = {C’(rootc:), R(rootc:,ns), S(rootc:, ng), T(ng,na)} with



(C',C) € O¢. We can first finduc..c which induces{C’(rootc'), R(rootc:,ns),
S(rootcr,ng)}, andthenrestart and extend such #¥8¢n, n2) } is induced byic.c-.

Strategy c)If Strategies a) and b) fail for an edge ed@é;, n2), then, for it to be
induced, it must be induced by a morphism which already majg®ine node: with
E(n) € CAc such thatn is connected tay;, ns, butn has not been considered yet
as an expansion start node. To find such a morphism, we coradidaorphisms that
induceFE (n) such that is connected ta;, n» , and start the search ii atroot g such
thatyg..cj, (rootg) = n holds.

For example, considet = {C(rootc), R(rootc,ny), S(rootc,n2), T (ni,na)},
C’" = {C’(rootcr), R(rootcr,n3), S(rootc:,ng), T(ns, ng), U(ng, ns), D(ng)}, and
D = {D(rootp),T(rootp,ns),U(ne,n7)} with (C’,C) € Oc. The edgdJ (n4,ns)
in C” can obviously not be induced by the morphig..c/|ro0t.., - Rather, we need to
establishup..crn, = {(rootp,n3), (ne,n4), (n7,ns)}. Note that the edg&(n3, n4)
is induced byuc.c/jroot,., @S Well as byup..cr|n, - It is interesting to note that this
edge is henciherited from bothC' and D, as both are incomparable w.2¢ .

4 Evaluation

We have applied the GSKB covering algorithm to the AURA GSIéBd an approx-
imate covering with sufficient quality was computed in 18 t®oWe used a timeout
of 3 minutes, and after the timeout the algorithm was allotzedroduce at least one
solution (hence = 300, andm, = 50, andms = 3). Only 1431 concepts (22 % of the
concepts) had to be re-processed in phase 2, and 20 conosgdsaut — three concept
required 34, 19, and 15 minutes, resp. It should be notedhbatigorithm can compute
approximate coverings of lower quality in much less than d8rh, e.g. in about 2 to 3
hours.

The following table shows the stats of the covering produmnethe 18 hours run,
for concepts which have at leat, 20, 50, 100, 200} nodes [N¢| >), and the number
and size of their morphisms, as well as the percentages efitetl concept and relation
atoms. It can be seen that the algorithm has performed arivial-task. For|N¢| >
50, 5690 morphism have been computed, with an average sizé&of(n)| = 7.36
nodes. If we look at the biggest concept with 461 nodes, wetfiatithe algorithm has
created a patchwork with 126 morphisms, with an avg. size4f§ fiodes. Altogether,
the algorithm has establishéd, 146 morphisms of average sizet7, and identified 57
% of the concept atoms and 69 % of the relation atoms as ieklekife are also able to
tell from wherean atom is inherited from, see Def. 17. This information carcélled
theprovenancef atoms and is of great importance to the modelers of the B [4

[[Nc| [>0 [>20 [>50 [>100]>200]
concepts (#) 6430 |695 (224 57 3
avg.|N¢| (# nodes) 8.2 |50.1 (88.46 |139.52342
avg.|Ec| (# edges) 14.5 |104.5|198.22 |328.29866.33
avg.|CAc| (# atoms) 26.9 |104.68158.125238.23546

% inherited| RA¢ | 69 |756 |77.4 |77 |71.6
% inherited| C Ac | 57 (711 |74 74.6 |74.9
[PWk| (# morphisms)  ||141469900 (5690 (2264 (287
avg.|dom(u)| (# nodes) ||5.47 |6.71 |7.36 |7.73 [8.25
avg.|PWc¢| (# morphisms))2.2  |14.24 |25.4  |39.71 |95.67




5 Related Work

As stated in the introduction, the co-reference problembess studied to some extent
in the natural language processing literature under thtetheanaphora resolution; for
example, [5, 6] use default rules to hypothesize equaldgg@i®ns between referents in
order to guess and establish co-references.

The reasoning systemnowledge Machine (KM)9], uses a so-called unification
mechanism, Umap, to strengthen the GSKB by establishingefemences. Unfortu-
nately, the lack of a formal semantics makes it very diffitalunderstand. A major
problem in KM is that unifications are not reversible, sinlseyt are not represented
explicitly as (equality or Umap) atoms in the KM GSKB. Ingieanifications are per-
formed by destructive substitutions of constants in the 8 Retraction and compre-
hension of Umap unifications can be very difficult and timestoning, as unification
is heuristic in nature and frequently goes wrong.

KM provides a functiorget - suppor t s for computing provenance of every triple
in a GSKB. The function returns the concept from where th@dngets inherited. This
function relies on KM'’s so-calledxplanation databasevhich became corrupted dur-
ing the AURA project, due to software errors and a changimgesgics, hence forcing
us to recompute the provenance information. This was tha mativation for the work
described in this paper. It turned out that the recomputedegrance information was
quite accurate, as confirmed by the experts in our knowleaictery [4].

The work of [10] uses answer set programming (ASP) to formeakM’s Umap
operator. The GSKB is specified as an ASP program, togethleamiaxiomatic system
of ASP inference rules. These rules capture the semantagect-oriented knowledge
bases, including inheritance, and formalize the UMap dper@ihe semantics is given
by the semantics of the ASP rules, whereas our approach sfi#tita notion of desirable
models and is hence more model-theoretic in nature. Moreowestants are distinct by
definition in ASP programs, so equality (UMap) needs to beetemtion the meta-level.
Moreover, the approach has not yet been applied successiithe full-scale AURA
GSKB, so scalability of the approach is still open.

Considering our graph-based approach, we note that grapphism-based ap-
proaches were employed since the early days of KL-ONE [bldgecide subsumption
between concepts in description logics. Those approaaieesadledstructural sub-
sumption algorithmsowadays [1]. Note that we do not decide subsumption between
concepts, as the taxonomy is considered given and fixed hestead, we determine
for a (possibly singleton) set of atoms from a concept fronemgtthey got inherited,
or if they are local to that concept, and hence non-redun@smtérmining from where
an atom is inherited was called provenance computationeftfesless, we suspect that
our algorithm could be turned into a structural subsumptioecker for certain descrip-
tion logics, similar as in [12] fo€ L. So-calledsimulationsare employed in [13] to
decide concept subsumption§it ™ *, which are similar to morphisms. But note that,
unlike £L, we are supporting graph-based descriptions, and thisdy egquirementin
AURA.

Morphisms are also considered in [14] for simple concepguaphs for deciding
“projection” (a form of subsumption). However, no implentetion is described there,



and we are using different morphisms, as we do not requitatheelation atoms irC
have to be projected int® by a morphismuc..p.

The graph-based algorithm was very successful in the AURYept. We were not
able to achieve similar results with any other form of formesoning, i.e., description
logic reasoners. As argued, in order to compute provendratems / triples, one needs
a form of hypothetical, unsound reasoning which requirezsgimg of co-references /
equalities. Considering the size of the AURA GSKB and the plexity of the problem,
we consider our algorithm a success story.

It is well-known that the modeling of graph structures isltgaging in description
logic (DL), as derivations from the tree-model property aluresult in decidability
problems [15] which can often only be regained by imposingeeartificial modeling
restrictions. Although some progress has been made on mgdghph structures with
DLs [16], those extensions are still too restricted to befuldgere. Our experience is
that graph structures are central to biology, and appraitpahem by trees results
in coarse models. Our framework allows us to express thehgsapctures truthfully,
but comes with other restrictions, too. To the best of ounvidadge, there is no body
of work in the DL community that provides answers to the peofd addressed in this
paper, and we are not aware of any abduction or hypothesizakjorithm which has
ever successfully been applied to a GSKB of this size.

We also claim that the algorithm and its implementation téghes can be ap-
plied in related areas, for example, for ontology alignmtasks in graph-structured
lightweight ontologies, for applications in computatibb&chemistry (identification
of chemical substructures), in text understanding, anténsemantic web (e.g., iden-
tification of substructures in RDFS triple stores). Thisds surprising, since the MSC
problem is a very general one, which shows up in many disguiismany application
contexts.

6 Conclusions and Outlook

We showed how to identify inherited content in graph-suoet knowledge bases, and
did this from two perspectives. From a logical perspectwe,argued that accurate
provenance of atoms requires identification of / the propkirt®n of the co-reference
problem. We demonstrated that inheritance structures eacaptured by means of
Skolem function and equality atoms. We described a soget#l®-strengthening al-
gorithm which guesses / hypothesizes co-references bet8ledem function terms in
order to maximize the inherited content in concept graphs.

For the actual implementation, we employed graph-basedmsand demonstrated
how inherited content can be described by virtue of graptpimisems. The implemented
algorithm was successfully applied to the large-scale AUGBA

The AURA system and the actual implementation of the algoritovers additional
expressive means that we have not formally reconstructed ge transitive and func-
tional relations, number restrictions, and disjointnegsras. The logical formalization
of these expressive means is future work, but we are optintsit it can be done. Es-
pecially in the case of cyclical GSKBs, it is not clear yet htmaapply a similar line
of argumentation, as the Herbrand models are no longer sedgdinite. However, it



is in principle clear how to handle disjointness, functiityaetc. from a graph-based
point of view.

From the morphisms computed by the graph-based algorithmamecompute a
strengthened GSKB. The established equality axioms betwlee Skolem function
terms describe the correct inheritance structures, anduhbty of the mappings got
testified by the subject matter experts in our knowledgefgct

The strengthened GSKB in first-order logic is also the basisifcouple of AURA
knowledge base exports in SILK [17], answer-set prograngreimtax [18], and TPTP
FOF syntax [19]. We also have a set of OWL2 [20, 21] export$, [22 the OWL2 KBs
are underspecified in the sense that we cannot use Skoletioiumbere and hence, no
equality atoms can be used to establish co-referencesyse KBs are approximations.
This suite of exported KBs is called tli#o_KB_101 suite, and is made available to the
public under e&Creative Commons Licensand can be found here for download [23],
together with a detailed description of the various vasaftthe exports.

In future work, we need to establish a closer correspondbateeen the logical
and the graph-based formalizations. It should be relatstehight forward to show that
the graph-based algorithm is sound and complete w.r.t.ittea dpgical semantics.
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