
The Description Logic ALCNHR+

Extended with Concrete Domains:
A Practically Motivated Approach

Volker Haarslev, Ralf Möller and Michael Wessel

University of Hamburg, Computer Science Department
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

Abstract. In this paper the description logic ALCNHR+(D)− is in-
troduced. Prominent language features beyond conjunction, full nega-
tion, and quantifiers are number restrictions, role hierarchies, transitively
closed roles, generalized concept inclusions, and concrete domains. As in
other languages based on concrete domains (e.g. ALC(D)) a so-called ex-
istential predicate restriction is provided. However, compared to ALC(D)
only features and no feature chains are allowed in this operator. This re-
sults in a limited expressivity w.r.t. concrete domains but is required to
ensure the decidability of the language. We show that the results can be
exploited for building practical description logic systems for solving e.g.
configuration problems.

1 Introduction

In the field of knowledge representation, description logics (DLs) have been
proven to be a sound basis for solving application problems. An application
domain where DLs have been successfully applied is configuration (see [9] for an
early publication). The main notions for domain modeling are concepts (unary
predicates) and roles (binary predicates). Furthermore, a set of axioms (also
called TBox) is used for modeling the terminology of an application. Knowledge
about specific individuals and their interrelationships is modeled with a set of
additional axioms (so-called ABox).

Experiences with description logics in applications indicate that negation,
existential and universal restrictions, transitive roles, role hierarchies, and num-
ber restrictions are required to solve practical modeling problems without re-
sorting to ad hoc extensions. A description logic which provides these language
constructs is, for instance, ALCNHR+ [5]. The optimized DL knowledge rep-
resentation system RACE [4] provides an optimized implementation for ABox
reasoning in ALCNHR+ . With the optimized implementation of RACE, practi-
cal systems based on description logics can be built. However, it is well-known
that, in addition to the language constructs mentioned above, reasoning about
objects from other domains (so-called concrete domains, e.g. for the reals) is very
important for practical applications as well. In [1] the description logicALC(D) is
investigated and it is shown that, provided a decision procedure for the concrete

domain D exists, the logic ALC(D) is decidable. In this paper, an extension of
the ALCNHR+ knowledge representation system RACE with concrete domains
is investigated.

Unfortunately, adding concrete domains (as proposed in the original ap-
proach) to expressive description logics might lead to undecidable inference prob-
lems. For instance, in [2] it is proven that the logic ALC(D) plus an operator for
the transitive closure of roles can be undecidable if expressive concrete domains
are considered. ALCNHR+ offers transitive roles but no operator for the tran-
sitive closure of roles. In [8] it is shown that ALC(D) with generalized inclusion
axioms (GCIs) can be undecidable. Even if GCIs were not allowed inALCNHR+ ,
ALCNHR+ with concrete domains would be undecidable (in general) because
ALCNHR+ offers role hierarchies and transitive roles, which provide the same
expressivity as GCIs. With role hierarchies it is possible to (implicitly) declare
a universal role, which can be used in combination with a value restriction to
achieve the same effect as with GCIs. Decidability results can only be obtained
for “trivial” concrete domains, which are hardly useful in practical applications.
Thus, if termination and soundness of, for instance, a concept consistency algo-
rithm are to be retained, there is no way extending an ALCNHR+ DL system
such as RACE with concrete domains as in ALC(D) without losing completeness.

Thus, ALCNHR+ can only be extended with concrete domain operators
with limited expressivity. In order to support practical modeling requirements
at least to some extent, we pursue a pragmatic approach by supporting only
features (and no feature chains as in ALC(D), for details see [1] and below). The
resulting language is called ALCNHR+(D)−. By proving soundness and com-
pleteness (and termination) of a tableaux calculus, the decidability of inference
problems w.r.t. the language ALCNHR+(D)− is proved. As shown in this pa-
per, ALCNHR+(D)− can be used, for instance, as a basis for building practical
application systems for solving configuration problems.

2 The Description Logic ALCNHR+(D)−

The description logic ALCNHR+(D)− provides conjunction, full negation, quan-
tifiers, number restrictions, role hierarchies, transitively closed roles and concrete
domains. In addition to the operators known from ALCNHR+ , a restricted ex-
istential predicate restriction operator for concrete domains is supported. Fur-
thermore, we assume that the unique name assumption holds for the individuals
explicitly mentioned in an ABox.

We briefly introduce the syntax and semantics of the DL ALCNHR+(D)−.
We assume five disjoint sets: a set of concept names C , a set of role names R, a set
of feature names F , a set of individual names O and a set of names for (concrete)
objects OC . The mutually disjoint subsets P and T of R denote non-transitive
and transitive roles, respectively (R = P ∪ T). The language ALCNHR+ is in-
troduced in Figure 1 using a standard Tarski-style semantics with an interpre-
tation ID = (∆I , ∆D, ·I) where ∆I ∩∆D = ∅ holds. A variable assignment α
maps concrete objects to values in ∆D.

Syntax Semantics

Concepts (R ∈ R, S ∈ S , f ∈ F)

A AI ⊆ ∆I
¬C ∆I \ CI

C � D CI ∩ DI

C D CI ∪ DI

∃R . C {a ∈ ∆I | ∃ b ∈ ∆I : (a, b) ∈ RI , b ∈ CI}
∀R . C {a ∈ ∆I | ∀ b ∈ ∆I : (a, b) ∈ RI ⇒ b ∈ CI}
∃≥n S {a ∈ ∆I | ‖{b ∈ ∆I | (a, b) ∈ SI}‖ ≥ n}
∃≤m S {a ∈ ∆I | ‖{b ∈ ∆I | (a, b) ∈ SI}‖ ≤ m}
∃ f1, . . . , fn . P {a ∈ ∆I | ∃x1, . . . , xn ∈ ∆D : (a, x1) ∈ f1

I , . . . , (a, xn) ∈ fn
I ,

(x1, . . . , xn) ∈ PI}
∀ f .⊥D {a ∈ ∆I | ¬∃x1 ∈ ∆D : (a, x1) ∈ fI}
Roles and Features

R RI ⊆ ∆I × ∆I
f fI : ∆I → ∆D (features are partial functions)

A is a concept name and ‖·‖ denotes the cardinality of a set (n, m ∈ N, n > 0).

Axioms

Syntax Satisfied if

R ∈ T RI = (RI)
+

R � S RI ⊆ SI

C � D CI ⊆ DI

Assertions (a, b ∈ OO , x, xi ∈ OC)

Syntax Satisfied if

a :C aI ∈ CI

(a, b) :R (aI , bI) ∈ RI

(a, x) : f (aI , α(x)) ∈ fI

(x1, . . . , xn) :P (α(x1), . . . , α(xn)) ∈ PI

Fig. 1. Syntax and Semantics of ALCNHR+(D)−.

If R,S ∈ R are role names, then R S is called a role inclusion axiom. A
role hierarchy R is a finite set of role inclusion axioms. Then, we define ∗

as the reflexive transitive closure of over such a role hierarchy R. Given
∗, the set of roles R↓ = {S ∈ R |S ∗ R} defines the sub-roles of a role R and
R↑ = {S ∈ R |R ∗ S} defines the super-roles of a role. We also define the set
S := {R ∈ P |R↓ ∩ T = ∅} of simple roles that are neither transitive nor have a
transitive role as a sub-role.

The concept language of ALCNHR+ is syntactically restricted with respect
to the combination of number restrictions and transitive roles. Number restric-
tions are only allowed for simple roles. This restriction is motivated by a known
undecidability result in case of an unrestricted syntax [7]. The set of individuals
is divided into two subsets, the set of so-called “old” individuals OO and set
the of “new” individuals ON . Every individual name from O is mapped to a
single element of ∆I in a way such that for a, b ∈ OO , aI �= bI if a �= b (unique
name assumption). Only old individuals may be mentioned in an ABox (new
individual are generated by the completion rules introduced below).

In accordance with [1] we also define the notion of a concrete domain. A
concrete domain D is a pair (∆D, ΦD), where ∆D is a set called the domain, and
ΦD is a set of predicate names. The interpretation function maps each predicate
name P from ΦD with arity n to a subset PI of ∆n

D. Concrete objects from OC

are mapped to an element of ∆D. We assume that ⊥D is the negation of the
predicate �D.

A concrete domain D is called admissible iff the set of predicate names ΦD is
closed under negation and ΦD contains a name �D for ∆D, and the satisfiabil-
ity problem Pn1

1 (x11, . . . , x1n1) ∧ . . . ∧ Pnm
m (xm1, . . . , xmnm) is decidable (m is finite,

Pni

i ∈ ΦD, ni is the arity of P, and xjk is a concrete object).
If C and D are concept terms, then C D (generalized concept inclusion or

GCI) is a terminological axiom. A finite set of terminological axioms TR is called
a terminology or TBox w.r.t. a given role hierarchy R. For brevity, the reference
to R is omitted in the following. An ABox A is a finite set of assertional axioms
as defined in Figure 1.

An interpretation I is a model of a concept C (or satisfies a concept C) iff
CI �= ∅. An interpretation is a model of a TBox T iff it satisfies all axioms in
T . See Figure 1 for the satisfiability conditions. An interpretation is a model of
an ABox A w.r.t. a TBox iff it is a model of T and satisfies all assertions in
A. Different individuals are mapped to different domain objects (unique name
assumption). Note that features are interpreted differently from features in [1].

A concept C is called consistent (w.r.t. a TBox T) iff there exists a model
of C (that is also a model of T). An ABox A is consistent (w.r.t. a TBox T) iff
A has model I (which is also a model of T). A knowledge base (T ,A) is called
consistent iff there exists a model.

3 Solving an Application Problem with ALCNHR+(D)−

According to [3] configuration problem solving processes can be formalized as
synthesis inference tasks. Following this approach, a solution of a configuration
task is defined to be a (logical) model of the given knowledge base consisting
of both the conceptual domain model (TBox) as well as the task specification
(ABox). The TBox and the role hierarchy describe the configuration space.

For instance, in a technical domain, the concept of a cylinder might be defined
as follows. A Cylinder is required to be a Motorpart, to be part of a Motor, to
have a displacement of 1 to 1000ccm, and to have a set of 4 to 6 parts (role
has part) which are all instances of Cylinderpart and it consists of exactly 1 Piston,
exactly 1 Piston Rod, and 2 to 4 Valves. This expression can be transformed to a
terminological inclusion axiom of a description logic providing concrete domains.
Let the concrete domain � be defined as in [1]: � = (R, Φ�) where Φ� is a set of
predicates which are based on polynomial equations or inequations. The concrete
domain � is admissible (see also [1]). A TBox T is defined as follows:

has cylinder part has part, has piston part has part

has piston rod part has part, has valve part has part

� ∀ has cylinder part .Cylinder, � ∀ has piston part .Piston

� ∀ has piston rod part .Piston Rod, � ∀ has valve part .Valve

In the first block, relationships between roles are declared. Then, in the sec-
ond block, range restrictions for certain roles are imposed. Below, in the third
block for Cylinderpart a so-called cover axiom is given. Moreover, additional ax-
ioms ensure the disjointness of more specific subconcepts of Cylinderpart (D is a
subconcept of C iff C subsumes D).

Cylinderpart Piston � Piston Rod � Valve, Piston ¬Piston Rod � ¬Valve

Piston Rod ¬Piston � ¬Valve, Valve ¬Piston � ¬Piston Rod

The cylinder example is translated as follows (the term λVol c. (. . .) is a unary
predicate of a numeric concrete domain for the dimension Volume with unit
m3).

Cylinder Motorpart � ∃=1 part of �
∃ displacement . λVol c . (0.001 ≤ c ≤ 1) �
∀ has part .Cylinderpart �
∃≥4 has cylinder part � ∃≤6 has cylinder part �
∃=1 has piston part � ∃=1 has piston rod part �
∃≥2 has valve part � ∃≤4 has valve part

We assume that displacement is declared as a feature. Furthermore, let ∃=1 R be
an abbreviation for ∃≥1 R � ∃≤1 R. In our example, the ABox being used is very
simple: A = {a :Cylinder � ∃ displacement . λVol c . (c ≥ 0.5)}.
In order to solve the problem to construct a Cylinder, the knowledge base (T ,A)
is tested for consistency. If the knowledge base is consistent, there exists a model
which can be considered as a solution (see [3]). Note that (T ,A) is only a very
simplified example for a representation of a configuration problem. For instance,
using an ABox with additional assertions it is possible to explicitly specify some
required cylinder parts etc. In order to actually compute a solution to a configura-
tion problem, a sound and complete calculus for the ALCNHR+(D)− knowledge
base consistency problem is required that terminates on any input.

4 A Tableaux Calculus for ALCNHR+(D)−

In the following a calculus to decide the consistency of an ALCNHR+(D)−

knowledge base (T ,A) is devised. As a first step, the original ABox A of the
knowledge base is transformed w.r.t. the TBox T . The idea is to derive an ABox
AT that is consistent (w.r.t. an empty TBox) iff (T ,A) is consistent. The calculus
introduced below is applied to AT .

In order to define the transformation steps for deriving AT , we have to in-
troduce a few technical terms. First, for any concept term we define its negation
normal form. A concept is in negation normal form iff negation signs may occur
only in front of concept names.

Every ALCNHR+(D)− concept term C can be transformed into negation
normal form nnf (C) by recursively applying the following transformation rules
to subconcepts from left to right:

¬(C � D)→ ¬C � ¬D, ¬(C � D)→ ¬C � ¬D, ¬∀R .C→ ∃R .¬C,
¬∃R .C→ ∀R .¬C, ¬¬C→ C, ¬∃≥n S→ ∃≤n−1 S, ¬∃≤m S→ ∃≥m+1 S,
¬∀ f .⊥D → ∃ f .�D, ¬∃ f1, . . . , fn .P→ ∃ f1, . . . , fn .P � ∀ f1 .⊥D � . . . � ∀ fn .⊥D
where P is the negation of P.

If no rule is applicable, the resulting concept is in negation normal form and
all models of C are also models of nnf (C) and vice versa. The transformation is
possible in linear time.

Definition 1 (Additional ABox Assertions). Let C be a concept term,
a, b ∈ O be individual names, and x �∈ O ∪OC , then the following expressions
are also assertional axioms: ∀ x . x :C (universal concept assertion),1 a � .= b (in-
equality assertion).

An interpretation ID satisfies an assertional axiom ∀ x . x :C iff CI = ∆I and
a � .= b iff aI �= bI .

Definition 2 (Fork, Fork Elimination). If it holds that
{(a, x1) : f, (a, x2) : f} ⊆ A then there exists a fork in A. In case of a fork w.r.t.
x1, x2, the replacement of every occurrence of x2 in A by x1 is called fork elimi-
nation.

Definition 3 (Augmented ABox). For an initial ABox A we define its aug-
mented ABox AT w.r.t a TBox T by applying the following transformation rules
to A. First of all, all forks in A are eliminated (note that the unique name
assumption is not imposed on concrete objects). Then, for every GCI C D
in T the assertion ∀ x . x : (¬C � D) is added to A. Every concept term occur-
ring in A is transformed into its negation normal form. Let OA = {a1, . . . , an}
be the set of individuals mentioned in A, then the set of inequality assertions
{ai � .= aj | ai, aj ∈ OA, i, j ∈ 1..n, i �= j} is added to A.

In order to check the consistency of an ALCNHR+(D)− knowledge base
(T ,A), the augmented ABoxAT is computed. Then, a set of so-called completion
rules (see below) is applied to the augmented ABox AT . The rules are applied
in accordance with a completion strategy.

Lemma 1. A knowledge base (T ,A) is consistent if and only if AT is consistent
(w.r.t. an empty TBox).

The proof is straightforward, for details see [6].
The tableaux rules require the notion of blocking their applicability. This is

based on so-called concept sets, an ordering for new individuals and concrete
objects, and the notion of a blocking individual.

Definition 4 (Ordering). We define an individual ordering ‘≺’ for new indi-
viduals (elements of ON) occurring in an ABox A. If b ∈ ON is introduced in A,
then a ≺ b for all new individuals a already present in A. A concrete object or-
dering ‘≺C ’ for elements of OC occurring in an ABox A is defined as follows. If
y ∈ OC is introduced in A, then x≺C y for all concrete objects x already present
in A.
1 ∀ x . x :C is to be read as ∀ x . (x :C).

Definition 5 (Concept Set, Blocking Individual, Blocked by). Given
an ABox A and an individual a occurring in A, we define the concept set of
a as σ(A, a) := {C | a :C ∈ A}. Let A be an ABox and a, b ∈ ON be individuals
in A. We call a the blocking individual of b if the following conditions hold:
σ(A, a) ⊇ σ(A, b) and a ≺ b. If a is a blocking individual for b, then b is said to
be blocked by a. An individual b mentioned in an ABox A is said to be blocked
(in A) iff there exists a blocking individual for b in A.

4.1 Completion Rules

We are now ready to define the completion rules that are intended to generate
a so-called completion (see also below) of an ABox AT . From this point on, if
we refer to an ABox A, we always consider ABoxes derived from AT .

Definition 6 (Completion Rules).
R� The conjunction rule.
if1. a :C � D ∈ A, and

2. {a :C, a :D} �⊆ A
then A′ = A ∪ {a :C, a :D}
R� The disjunction rule (nondeterministic).
if1. a :C � D ∈ A, and

2. {a :C, a :D} ∩ A = ∅
then A′ = A ∪ {a :C} or A′ = A ∪ {a :D}
R∀C The role value restriction rule.
if1. a :∀R .C ∈ A, and

2. ∃ b ∈ O ,S ∈ R↓ : (a, b) :S ∈ A, and
3. b :C �∈ A

then A′ = A ∪ {b :C}
R∀+C The transitive role value restriction rule.
if1. a :∀R .C ∈ A, and

2. ∃ b ∈ O ,T ∈ R↓,T ∈ T ,S ∈ T↓ : (a, b) :S ∈ A, and
3. b :∀T .C �∈ A

then A′ = A ∪ {b :∀T .C}
R∀x The universal concept restriction rule.
if1. ∀ x . x :C ∈ A, and

2. ∃ a ∈ O: a mentioned in A, and
3. a :C �∈ A

then A′ = A ∪ {a :C}
R∃C The role exists restriction rule (generating).
if1. a :∃R .C ∈ A, and

2. a is not blocked, and
3. ¬∃ b ∈ O ,S ∈ R↓ : {(a, b) :S, b :C} ⊆ A

then A′ = A ∪ {(a, b) :R, b :C} where b ∈ON is not used in A

R∃≥n The number restriction exists rule (generating).
if1. a :∃≥n R ∈ A, and

2. a is not blocked, and
3. ¬∃ b1, . . . , bn ∈ ON ,S1, . . . ,Sn ∈ R↓ :

{(a, bk) :Sk | k ∈ 1..n} ∪ {bi � .= bj | i, j ∈ 1..n, i �= j} ⊆ A
then A′ = A ∪ {(a, bk) :R | k ∈ 1..n} ∪ {bi � .= bj | i, j ∈ 1..n, i �= j}

where b1, . . . , bn ∈ON are not used in A
R∃≤n The number restriction merge rule (nondeterministic).
if1. a :∃≤n R ∈ A, and

2. ∃ b1, . . . , bm ∈ O ,S1, . . . ,Sm ∈ R↓: {(a, b1) :S1, . . . , (a, bm) :Sm} ⊆ A
with m > n, and

3. ∃ bi, bj ∈ {b1, . . . , bm} : i �= j, bi � .= bj �∈ A
then A′ = A[bi/bj], i.e. replace every occurrence of bi in A by bj

R∃P The predicate exists rule (generating).
if1. a :∃ f1, . . . , fn .P ∈ A, and

2. ¬∃x1, . . . , xn ∈ OC : {(a, x1) : f1, . . . (a, xn) : fn, (x1, . . . , xn) :P} ⊆ A
then A′ = A ∪ {(a, x1) : f1, . . . (a, xn) : fn, (x1, . . . , xn) :P}

where x1, . . . , xn ∈OC are not used in A,
eliminate all forks {(a, x) : fi, (a, xi) : fi} ⊆ A
such that (a, x) : fi remains in A if x≺Cxi, i ∈ 1..n

We call the rules R� and R∃≤n nondeterministic rules since they can be
applied in different ways to the same ABox. The remaining rules are called
deterministic rules. Moreover, we call the rules R∃C, R∃≥n and R∃P generating
rules since they can introduce new individuals or concrete objects.

Given an ABox A, more than one rule might be applicable to A. This is
controlled by a completion strategy in accordance to the ordering for new indi-
viduals (see Definition 4).

Definition 7 (Completion Strategy). We define a completion strategy that
must observe the following restrictions:

– Meta rules:
• Apply a rule to an individual b ∈ ON only if no rule is applicable to an

individual a ∈ OO .
• Apply a rule to an individual b ∈ ON only if no rule is applicable to

another individual a ∈ ON such that a ≺ b.
– The completion rules are always applied in the following order. A step is

skipped in case the corresponding set of applicable rules is empty.
1. Apply all nongenerating rules (R�, R�, R∀C, R∀+C, R∀x, R∃≤n) as

long as possible.
2. Apply a generating rule (R∃C, R∃≥n, R∃P) and restart with step 1 as

long as possible.

In the following we always assume that rules are applied in accordance to
this strategy. It ensures that the rules are applied to new individuals w.r.t. the
ordering ‘≺’ which guarantees a breadth-first order. No rules are applied if a
so-called clash is discovered.

Definition 8 (Clash, Clash Triggers, Completion). We assume the same
naming conventions as used above. An ABox A contains a clash if one of the
following clash triggers is applicable. If none of the clash triggers is applicable
to A, then A is called clash-free.

– Primitive clash: {a :C, a :¬C} ⊆ A
– Number restriction merging clash:
∃S1, . . . ,Sm ∈ R↓ : {a :∃≤n R} ∪ {(a, bi) :Si | i ∈ 1..m}∪
{bi � .= bj | i, j ∈ 1..m, i �= j} ⊆ A with m > n

– No concrete domain feature clash: {(a, x) : f, a :∀ f .⊥D} ⊆ A.
– Concrete domain predicate clash: (x(1)

1 , . . . , x
(1)
n1) :P1 ∈ A, . . . ,

(x(k)
1 , . . . , x

(k)
nk) :Pk ∈ A and the conjunction

∧k
i=1 Pi(x

(i)
1 , . . . , x

(i)
ni) is not satis-

fiable in D. Note that this can be decided since D is required to be admissible.

A clash-free ABox A is called complete if no completion rule is applicable to A.
A complete ABox A′ derived from an ABox A is also called a completion of A.

Any ABox containing a clash is obviously unsatisfiable. The purpose of the
calculus is to generate a completion for an initial ABox AT that proves the
consistency of AT or its inconsistency if no completion can be found.

4.2 Decidability of the ALCNHR+(D)− ABox Consistency Problem

In order to show that the calculus introduced above is correct, first the local
correctness of the rules is proven.

Proposition 1 (Invariance). Let A and A′ be ABoxes. Then:

1. If A′ is derived from A by applying a deterministic rule, then A is consistent
iff A′ is consistent.

2. If A′ is derived from A by applying a nondeterministic rule, then A is consis-
tent if A′ is consistent. Conversely, if A is consistent and a nondeterministic
rule is applicable to A, then it can be applied in such a way that it yields an
ABox A′ which is consistent.

Proof. 1. “⇐” Due to the structure of the deterministic rules one can immedi-
ately verify that A is a subset of A′. Therefore, A is consistent if A′ is consistent.

“⇒” In order to show that A′ is consistent after applying a deterministic
rule to the consistent ABox A, we examine each applicable rule separately. We
assume that ID = (∆I , ∆D, ·I) satisfies A. Then, by definition of ∗ it holds
that RI ⊆ SI if (R,S) ∈ ∗.

If the conjunction rule is applied to a :C � D ∈ A, then we get a new Abox
A′ = A ∪ {a :C, a :D}. Since ID satisfies a :C � D, ID satisfies a :C and a :D and
therefore A′.

If the role value restriction rule is applied to a :∀R .C ∈ A, then there must
be a role assertion (a, b) :S ∈ A with S ∈ R↓ and A′ = A ∪ {b :C}. ID satisfies A,
hence it holds that (aI , bI) ∈ SI ,SI ⊆ RI . Since ID satisfies a :∀R .C, bI ∈ CI

must hold. Thus, ID satisfies b :C and therefore A′.

If the transitive role value restriction rule is applied to a :∀R .C ∈ A, there
must be an assertion (a, b) :S ∈ A with S ∈ T↓ for some T ∈ T and T ∈ R↓ such
that we get A′ = A ∪ {b :∀T .C}. Since ID satisfies A, we have aI ∈ (∀R .C)I

and (aI , bI) ∈ SI ,SI ⊆ TI ⊆ RI . It holds that bI ∈ (∀T .C)I unless there is
some z ∈ ∆I with (bI , z) ∈ TI and z �∈ CI . Since T is transitive, (aI , z) ∈ TI

and aI �∈ (∀R .C)I in contradiction to the assumption that I satisfies A. Hence,
I must satisfy b :∀T .C and therefore ID is a model for A′.

If the universal concept restriction rule is applied to an individual a in A
because of ∀ x . x :C ∈ A, then A′ = A ∪ {a :C}. Since ID satisfies A, it holds
that CI = ∆I . Thus, it holds that aI ∈ CI and ID satisfies A′.

If the role exists restriction rule is applied to a :∃R .C ∈ A, then we get the
ABox A′ = A ∪ {(a, b) :R, b :C}. Since ID satisfies A, there exists a y ∈ ∆I such
that (aI , y) ∈ RI and y ∈ CI . We define the interpretation function ·I′

such that
bI

′
:= y and xI′

:= xI for x �= b. Hence, I ′D = (∆I , ∆D, ·I′
) satisfies A′.

If the number restriction exists rule is applied to a :∃≥n R ∈ A, then we get
A′ = A ∪ {(a, bk) :R | k ∈ 1..n} ∪ {bi � .= bj | i, j ∈ 1..n, i �= j}. Since ID satisfies A,
there must exist n distinct individuals yi ∈ ∆I , i ∈ 1..n such that (aI , yi) ∈ RI .
We define the interpretation function ·I′

such that bi
I′

:= yi and xI′
:= xI for

x �∈ {b1, . . . , bn}. Hence, I ′D = (∆I , ∆D, ·I′
) satisfies A′.

If the predicate exists rule is applied to a :∃ f1, . . . , fn .P ∈ A, then we get the
ABoxA′ = A ∪ {(x1, . . . , xn) :P, (a, x1) : f1, . . . , (a, xn) : fn}. After fork elimination,
some xi may be replaced by zi with zi≺Cxi. Since ID satisfies A, there exist
y1, . . . , yn ∈ ∆D such that ∀i ∈ {1, . . . , n} : (aI , yi) ∈ fi

I and (y1 , . . . , yn) ∈ PI .
We define the interpretation function ·I′

such that xi
I′

:= yi for all xi not replaced
by zi and (y1 , . . . , yn) ∈ PI′

. The fork elimination strategy used in the R∃P rule
guarantees that concrete objects introduced in previous steps are not eliminated.
Thus, it is ensured that the interpretation of xi is not changed in I ′D. It is easy
to see that I ′D = (∆I , ∆D, ·I′

) satisfies A′.
2. “⇐” Assume that A′ is satisfied by I ′D = (∆I , ∆D, ·I′

). By examining the
nondeterministic rules we show that A is also consistent.

If A′ is obtained from A by applying the disjunction rule, then A is a subset
of A′ and therefore satisfied by I ′D.

If A′ is obtained from A by applying the number restriction merge rule to
a :∃≤n R ∈ A, then there exist bi, bj in A such that A′ = A[bi/bj]. We define the
interpretation function ·I such that bi

I := bj
I′

and xI := xI
′

for every x �= bi.
Obviously, ID = (∆I , ∆D, ·I) satisfies A.

“⇒” We suppose that ID = (∆I , ∆D, ·I) satisfies A and a nondeterministic
rule is applicable to an individual a in A.

If the disjunction rule is applicable to a :C � D ∈ A and A is consistent, it
holds aI ∈ (C � D)I . It follows that either aI ∈ CI or aI ∈ DI (or both). Hence,
the disjunction rule can be applied in a way that ID also satisfies the ABox A′.

If the number restriction merge rule is applicable to a :∃≤n R ∈ A and A
is consistent, it holds aI ∈ (∃≤n R)I and ‖{b | (aI , bI) ∈ RI}‖ ≤ n. However, it
also holds ‖{b | (aI , bI) ∈ RI}‖ ≥ m with m > n. Without loss of generality we

only need to consider the case that m = n + 1. Thus, we can conclude by the
Pigeonhole Principle that there exist at least two R-successors bi, bj of a such
that bi

I = bj
I . Since ID satisfies A, it must have been possible to map bi and

bj to the same domain object, i.e. at least one of the two individuals must be a
new individual. Let us assume bi ∈ ON , then ID obviously satisfies A[bi/bj].

In order to define a canonical interpretation from a completion A, the notion
of a specific blocking individual is introduced. We call a the witness of b iff b is
blocked by a and ¬∃ c in A : c ∈ ON , c ≺ a, σ(A, c) ⊇ σ(A, b). The witness for a
blocked individual is unique (see [6]). Note that the canonical interpretation is
constructed differently from the one describe in [7].

Definition 9. Let A be a complete ABox that has been derived by the calcu-
lus from an augmented ABox AT . Since A is clash-free, there exists a vari-
able assignment α that satisfies (the conjunction of) all occurring assertions
(x1, . . . , xn) :P ∈ A. We define the canonical interpretation IC = (∆IC , ∆D, ·IC)
w.r.t. A as follows:

1. ∆IC := {a | a is mentioned in A}
2. aIC := a iff a is mentioned in A
3. xIC := α(x) iff x is mentioned in A
4. a ∈ AIC iff a :A ∈ A and A is a concept name
5. (a, α(x)) ∈ fIC iff (a, x) : f ∈ A
6. (a, b) ∈ RIC iff ∃ c0, . . . , cn, d0, . . . , dn−1 mentioned in A :2,

(a) n ≥ 1, c0 = a, cn = b, and

(b) (a, c1) :S1, (d1, c2) :S2, . . . (dn−2, cn−1) :Sn−1, (dn−1, b) :Sn ∈ A, and

(c) ∀i ∈ 1..n− 1 :
di = ci or
di is a witness for ci, and (di, ci+1) :Si+1 ∈ A, and

(d) if n > 1

∀ i ∈ 1..n : ∃R′ ∈ T, R′ ∈ R↓, Si ∈ R′↓

else
S1 ∈ R↓.

The construction of the canonical interpretation for the case 6 is illustrated with
an example in Figure 2. The following cases can be seen as special cases of case
6 introduced above (n = 1, c0 = a, c1 = b):

– c0 = d0 : (a, b) ∈ RIC iff (c0, c1) :S1 ∈ A for a role S1 ∈ R↓.
– c0 �= d0: (a, b) ∈ RIC iff d0 is a witness for c0, and

(d0, c1) :S1 ∈ A, for a role S1 ∈ R↓.

Since the witness of an individual is unique, the canonical interpretation is
well-defined because there exists a unique blocking individual (witness) for each
individual that is blocked.
2 Note that the variables c0, . . . , cn, d0, . . . , dn−1 not necessarily denote different indi-

vidual names.

R

R'

S1 S2 S4 S5

a c1 = d1 c2 c3 = d3 c4 = d4 b

S3d2

Fig. 2. Construction of the canonical interpretation. In the lower example we assume
that the individual d2 is a witness for c2 (see text).

Lemma 2 (Soundness). Let A be a complete ABox that has been derived by
the calculus from an augmented ABox AT , then AT has a model.

Proof. Let IC = (∆IC , ∆D, ·IC) be the canonical interpretation for the ABox A
constructed w.r.t. the TBox T . A is clash-free.

Features are interpreted in the correct way: There can be no forks in A
because (i) there are no forks in the augmented ABox AT and (ii) forks are
immediately eliminated after an application of the R∃P rule. This rule is the
only rule that introduces new assertions of the form (a, x) : f ∈ A. Note that
forks cannot be introduced by the R∃≤n rule due to the completion strategy.
Thus, IC maps features to (partial) functions because the variable assignment α
is a function.

All role inclusions in the role hierarchy are satisfied: For every S R it holds
that SIC ⊆ RIC This can be shown as follows. If (aIC , bIC) ∈ SIC , case 6 of De-
finition 9 must be applicable. Hence, there exists a chain of sub-roles possibly
with gaps and witnesses (see Definition 9, case 6). Thus, the corresponding con-
struction for IC adding (aIC , bIC) to SIC is also applicable to R since S ∈ R↓ (see
6d). Therefore, there is also a tuple (aIC , bIC) ∈ RIC .

All (implicit) transitivity axioms are satisfied, i.e. transitive roles are inter-
preted in the correct way: ∀R ∈ T : RIC = (RIC)+. If there exist (aIC , bIC) ∈ RIC

and (bIC , cIC) ∈ RIC then case 6 in Definition 9 must have been applied for each
tuple. But then, a chain of roles from a to c exists as well (possibly with gaps
and witnesses) such that (aIC , cIC) is added to RIC as well.

In the following we prove that IC satisfies every assertion in A.
For any a � .= b ∈ A or (a, b) :R ∈ A, IC satisfies them by definition.
For any (a, x) : f ∈ A, IC satisfies them by definition.
For any (x1, . . . , xn) :P ∈ A, IC satisfies them by definition. Since A is clash-

free there exists a variable assignment such that the conjunction of all predicate
assertions is satisfied. The variable assignment can be computed because the
concrete domain is required to be admissible.

Next we consider assertions of the form a :C. We show by induction on the
structure of concepts that a :C ∈ A implies aIC ∈ CIC .

If C is a concept name, then aIC ∈ CIC by definition of IC .
If C = ¬D, then D is a concept name since all concepts are in negation normal

form (see Definition 3). A is clash-free and cannot contain a :D. Thus, aIC �∈ DIC ,
i.e. aIC ∈ ∆IC \ DIC . Hence aIC ∈ (¬D)IC .

If C = C1 � C2 then (since A is complete) a :C1 ∈ A and a :C2 ∈ A. By induc-
tion hypothesis, aIC ∈ C1

IC and aIC ∈ C2
IC . Hence aIC ∈ (C1 � C2)

IC .
If C = C1 � C2 then (since A is complete) either a :C1 ∈ A or a :C2 ∈ A. By

induction hypothesis, aIC ∈ C1
IC or aIC ∈ C2

IC . Hence aIC ∈ (C1 � C2)
IC .

If C = ∀R .D, then it must be shown that for all bIC with (aIC , bIC) ∈ RIC

it holds that bIC ∈ DIC . If (aIC , bIC) ∈ RIC , then according to Definition 9, b
is a successor of a via a chain of roles Si ∈ R↓ or there exists corresponding
witnesses as domain elements of Si ∈ R↓, i.e. the chain might contain “gaps” with
associated witnesses (see Figure 2). Since (aIC , bIC) ∈ RIC and Si

IC ⊆ RIC there
exists tuples (ci

IC , ci+1
IC) ∈ Si

IC . Due to Definition 9 it holds that ∀i ∈ 1..n :
∃R′ ∈ T , R′ ∈ R↓, Si ∈ R′↓. Therefore ck :∀R′ .D ∈ A, (k ∈ 1..n− 1) because A is
complete. For the same reason b :D ∈ A. By induction hypothesis it holds that
bIC ∈ DIC . As mentioned before, the chain of roles can have one or more “gaps”
(see Figure 2). However, due to Definition 9 in case of a “gap” there exists a
witness such that a similar argument as in case 6 can be applied, i.e. in case of
a gap between ci and ci+1 with witness di for ci, the blocking condition ensures
that the concept set of the witness is a superset of the concept set of the blocked
individual. Since it is assumed that (di, ci+1) :Si+1 ∈ A and A is complete it holds
that ci+1 :∀R′ .D ∈ A. Applying the same argument inductively, we can conclude
that cn−1 :∀R′ .D ∈ A and again, we have bIC ∈ DIC by induction hypothesis.

If C = ∃R .D, then it must be shown that there exists an individual bIC ∈ ∆IC

with (aIC , bIC) ∈ RIC and bIC ∈ DIC . Since ABox A is complete, we have either
(a, b) :S ∈ A with S ∈ R↓ and b :D ∈ A or a is blocked by an individual c and
(c, b) :S ∈ A (again S ∈ R↓). In the first case we have (aIC , bIC) ∈ RIC by the
definition of IC (case 6, n = 1, ci = di) and bIC ∈ DIC by induction hypothesis.
In the second case there exists the witness c with c :∃R .D ∈ A. By definition c
cannot be blocked, and by hypothesis A is complete. So we have an individual
b with (c, b) :S ∈ A (S ∈ R↓) and b :D ∈ A. By induction hypothesis we have
bIC ∈ DIC , and by the definition of IC (case 6, n = 1, ci �= di, di is a witness for
ci, and a = ci, c = di) we have (aIC , bIC) ∈ RIC .

If C = ∃≥n R, we prove the hypothesis by contradiction. We assume that
aIC �∈ (∃≥n R)IC . Then there exist at most m (0 ≤ m < n) distinct S-successors
of a with S ∈ R↓. Two cases can occur: (1) the individual a is not blocked in IC .
Then we have less than n S-successors of a in A, and the R∃≥n-rule is applicable
to a. This contradicts the assumption that A is complete. (2) a is blocked by an
individual c but the same argument as in case (1) holds and leads to the same
contradiction.

For C = ∃≤n R we show the goal by contradiction. Suppose that aIC �∈ (∃≤n R)IC .
Then there exist at least n + 1 distinct individuals b1

IC , . . . , bn+1
IC such that

(aIC , bi
IC) ∈ RIC , i ∈ 1..n + 1. The following two cases can occur. (1) The indi-

vidual a is not blocked: We have n + 1 (a, bi) :Si ∈ A with Si ∈ R↓ and Si �∈ T ,

i ∈ 1..n + 1. The R∃≤n rule cannot be applicable since A is complete and the bi

are distinct, i.e. bi � .= bj ∈ A, i, j ∈ 1..n + 1, i �= j. This contradicts the assump-
tion that A is clash-free. (2) There exists a witness c for a with (c, bi) :Si ∈ A,
Si ∈ R↓, and Si �∈ T , i ∈ 1..n+1. This leads to an analogous contradiction. Due
to the construction of the canonical interpretation in case of a blocking condi-
tion (with c being the witness) and a non-transitive role R (R is required to be a
simple role, see the syntactic restrictions for number restrictions and role boxes),
there is no (aIC , bk

IC) ∈ RIC if there is no (cIC , bk
IC) ∈ RIC (k ∈ 1..n + 1).

If C = ∃ f1, . . . , fn .P we show that there exist concrete objects y1, . . . , yn ∈
∆D such that (aIC , y1) ∈ f1

IC , . . . , (aIC , yn) ∈ fn
IC and (y1, . . . , yn) ∈PIC . The

R∃P rule generates assertions (a, x1) : f1, . . . , (a, xn) : fn, (x1, . . . , xn) :P. Since A
is clash-free there is no concrete domain clash. Hence there exists a variable
assignment α that maps x1, . . . , xn to elements of ∆D. The conjunction of con-
crete domain predicates is satisfiable and (x1

IC , . . . , xn
IC) ∈ PIC . By definition

of IC it holds that (aIC , x1
IC) ∈ f1

IC , . . . , (aIC , xn
IC) ∈ fn

IC . Thus, there exist
y1, . . . , yn such that the above-mentioned requirements are fulfilled and there-
fore aIC ∈ (∃ f1, . . . , fn .P)IC

If C = ∀ f .⊥D then we show that aIC ∈ (∀ f .⊥D)IC . Because A is clash-free,
there cannot be an assertion (a, x) : f ∈ A for some x in Oc and an f ∈ F . Thus,
it does not hold that there exists (aIC , y) ∈ fIC and hence aIC ∈ (∀ f .⊥D)IC .

If ∀ x . x :D ∈ A, then –due to the completeness of A– for each individual a
in A we have a :D ∈ A and, by the previous cases, aIC ∈ DIC . Thus, IC satisfies
∀ x . x :D. Finally, since IC satisfies all assertions in A, IC satisfies A.

Lemma 3 (Completeness). Let AT be an augmented ABox be a role box. If
AT is consistent, then there exists at least one completion A′ being computed by
applying the completion rules.

Proof. By contraposition: Obviously, an ABox containing a clash is inconsistent.
If there does not exists a completion of AT , then it follows from Proposition 1
that the ABox AT is inconsistent.

Lemma 4 (Termination). The calculus described above terminates on every
(augmented) input ABox.

Proof. The termination of the calculus is shown by specifying an upper limit
on the number of assertions that can result from an (augmented) input ABox
of a certain length n. Compared to ALCNHR+ in the termination proof for
ALCNHR+(D)− the additional constructs for concrete domains have to be con-
sidered. Basically, since features do not “interact” with value and number restric-
tions (see the completion rules), the same upper limit O(24n) for a completion
can be derived. For details see [6].

Theorem 1 (Decidability). Let D be an admissible concrete domain. Check-
ing whether an ALCNHR+(D)− knowledge base (T ,A) is consistent is a decid-
able problem.

Proof. Given a knowledge base (T ,A), an augmented ABox AT can be con-
structed in linear time. The claim follows from Lemmas 1, 2, 3, and 4.

5 Conclusion

We presented a tableaux calculus deciding the knowledge base consistency prob-
lem for the description logic ALCNHR+(D)−. Applications of the logic in the
context of configuration problems have been sketched. The Cylinder example
demonstrates that some requirements of a model-based configuration system are
fulfilled by ALCNHR+(D)−. The calculus presented in this paper can be used
to solve “simple” configuration problems in which the configuration space can be
described by an ALCNHR+(D)− knowledge base (see [6] for an analysis of the
models resulting from the canonical interpretation). We conjecture that concrete
domains without features chains can also be included in description logics with
inverse roles and qualified number restrictions.

A highly optimized variant of the calculus for the sublogic ALCNHR+ is
already implemented in the ABox description logic system RACE. RACE is
available at http://kogs-www.informatik.uni-hamburg.de/˜race/. RACE will be
extended with support for reasoning with concrete domains in the near future.
With this paper we provide a sound basis for practical extensions of expressive
DL systems such that, for instance, construction problems can be effectively
solved with description logic reasoning techniques.

References

1. F. Baader and P. Hanschke. A scheme for integrating concrete domains into concept
languages. In Twelfth International Conference on Artificial Intelligence, 1991,
pages 452–457, 1991. A longer version appeared as Tech. Report DFKI-RR-91-10.

2. F. Baader and P. Hanschke. Extensions of concept languages for a mechanical engi-
neering application. In H.J. Ohlbach, editor, Proceedings, GWAI-92: 16th German
Conference on Artificial Intelligence, pages 132–143. Springer, 1992.

3. M. Buchheit, R. Klein, and W. Nutt. Configuration as model construction: The
constructive problem solving approach. In F. Sudweeks and J. Gero, editors, Proc.
4th Int. Conf. on Artificial Intelligence in Design. Kluwer, Dordrecht, 1994.

4. V. Haarslev and R. Möller. Consistency testing: The RACE experience. In Proceed-
ings International Conference Tableaux’2000. Springer-Verlag, 2000.

5. V. Haarslev and R. Möller. Expressive ABox reasoning with number restrictions,
role hierachies, and transitively closed roles. In A.G. Cohn, F. Giunchiglia, and
B. Selman, editors, Proceedings of the Seventh International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR’2000), 2000.

6. V. Haarslev, R. Möller, and M. Wessel. The description logic ALCNHR+ extended
with concrete domains. Technical Report FBI-HH-M-290/00, University of Ham-
burg, Computer Science Department, August 2000.

7. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proceedings of the
6th International Conference on Logic for Programming and Automated Reasoning
(LPAR’99), number 1705 in LNAI, pages 161–180. Springer, 1999.

8. C. Lutz. The complexity of reasoning with concrete domains (revised version).
LTCS-Report 99-01, LuFG Theoretical Computer Science, RWTH Aachen, 1999.

9. J.R. Wright, E.S. Weixelbaum, G.T. Vesonder, K. Brown, S.R. Palmer, J.I. Berman,
and H.H. Moore. A knowledge-based configurator that supports sales, engineering,
and manufacturing at AT&T network systems. AI Magazine, 14(3):69–80, 1993.

