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Abstract

Although nowadays powerful Semantic Web toolkits exist, these frameworks are still
hard to apply for designing applications, since they often focus on fixed representa-
tion structures and languages. Prominent examples for applications using Semantic
Web representation languages are ontology-based information systems. In search of
a more flexible software technology for implementing systems of this kind, we have
developed a framework-based approach which is influenced by Description Logics
but also supports the integration of reasoning facilities for other formalisms. We
claim – and support that claim using case studies – that our framework can cover
regions in the system design space instead of just isolated points. The main insights
gained with this framework are presented in the context of ontology-based query
answering as part of a geographical information system.
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1 Introduction

It is now widely accepted that ontologies will play an important role for the
next generation of information systems (ISs). The use of ontologies for ISs
will not only enable “better” and “smarter” retrieval facilities than current
ISs based on the predominant relational data model (cf. the vision of the Se-
mantic Web [1]), but also play a key role in supporting data and information
quality checks, IS interoperability, and information integration [2–4]. Ontolo-
gies provide the means for solving problems raised by semantic heterogeneity
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in ISs based on different conceptual or logical data models, because ontolo-
gies inherently work on a semantic rather than on a syntactic level and thus
support a seamless incorporation of conceptual domain constraints into the
machinery of an information system [5].

In this paper we present a formal and implemented generic framework for
building ontology-based information systems (OBISs). As such, our frame-
work must offer the means for (i) the extensional layer, (ii) the intensional
layer, and (iii) the query component. Being ontology-based, our framework is
strongly influenced by Description Logics (DLs) and offers novel solutions for
certain problems we have encountered during our endeavor of implementing
OBISs with a standard DL system. We make these problems transparent by
means of a case study: design and implementation of an ontology-based geo-
graphic information system (GIS). Based on our framework we present empir-
ically successful solutions for problems in this specific IS domain. The focus in
the case study is on ontology-based query answering. The DLMAPS system
supports ontology-based spatio-thematic query answering for city maps [6,7].

Mostly for performance reasons, retrieval systems nowadays still use rather
simple thesaurus-based retrieval models (possibly based on statistical infor-
mation) [8]. From a logical point of view, a thesaurus-based system uses a
rather inexpressive representation formalism. Recent developments in Descrip-
tion Logic inference technology have shown that expressive formalisms can
indeed be used for building practical systems in general, and practical in-
formation systems in particular. For instance, information retrieval systems
based on Description Logics are described in [9,10]. In this article, we broaden
this view, and describe a framework for building OBISs.

Let us provide some background first. An ontology provides the vocabulary
of a conceptualization in a machine-processable format such that the inher-
ent domain constraints and their interrelationships are properly represented. 1

According to Gruber [11], an ontology is an explicit formalization of such a
conceptualization; formal means that a machine-processable language with
formal semantics is used so that the “meaning” is available to the machine.
The term semantic information processing describes this situation quite ac-
curately, although one could argue that information is “semantic” per se.
Ontology-based query answering then means that the vocabulary defined in
the ontology can be used in queries to retrieve the desired information from
the extensional IS component(s).

DLs are nowadays an accepted standard for decidable knowledge representa-
tion. It can also be claimed that DLs provide the theoretical foundation for

1 Unlike in the relational model, where there is usually an information loss when
going from the conceptual to the logical data model, e.g., cardinality constraints in
the ER diagram are no longer found in the table declarations.
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(formal) ontologies, as well as for the Semantic Web (e.g., the semantics of the
Web Ontology Language, OWL, is based on DLs). Usually, in a DL one dis-
tinguishes between ABox and TBox. The ABox is the extensional component,
representing information about particular objects of the domain in terms of
so-called assertions. From a first-order logic perspective, the ABox contains
closed – and in most cases even atomic – ground formulas (also called facts).
The TBox is also called the intensional component and contains the termi-
nology in terms of concepts and roles (unary and binary predicates). From a
first-order logic perspective, it contains closed universal first order sentences
(axioms). Together, ABox and TBox are called a knowledge base (KB). Infer-
ence problems for concepts, roles, and knowledge bases are defined as usual in
logic-based formalisms (for details see [12]). The notion of an ontology in the
DL sense is a synonym for knowledge base.

For building applications based on Description Logics, an inference engine is
needed. Our investigations in this article on building practical information
systems are based on the RacerPro engine [13]. RacerPro implements
the very expressive DL ALCQHIR+(D−), also known as SHIQ(D−) [14,15],
and offers multiple TBoxes, ABoxes as well as expressive concrete domains
(of which the OWL “datatypes” are only a subset). Even though it is not
clear under which circumstances a reasoning system can be called empirically
successful, we claim the RacerPro is such a system given the evidence that
it has many academic as well as commercial users.

Up to now the number of implemented OBISs is rather small, however. Con-
sequently, experience with the scalability of the DL approach is limited. This
is not surprising, since DL systems are a rather new technology compared to
databases and, as we will see in the following, some problems remain to be
solved in today’s DL technology.

1.1 Problem Identification and Motivation for the Approach

We have identified 7 main problems P1 – P7 which contribute to the difficul-
ties we encountered regarding the use of DL systems for building OBISs. In
this section we identify and describe these problems; later on in Section 2 we
describe the pragmatic solutions offered by our framework. The problems P1,
P2 are DL-specific, whereas P3 – P6 are specific to the APIs of contemporary
DL systems. P7 concerns the software architecture of DL systems.

We believe that DLs have their deficiencies regarding expressivity and are not
a panacea for arbitrary information modeling and representation (of course,
this holds for all formalisms). DLs are very well suited for the representation
of semi-structured (or even incomplete/uncertain) information [16], but things
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become more complicated if special “non-abstract” domains such as space are
considered (→ P1: DL applicability problem). We say “non-abstract” since
space has a rich inner natural structure which is not “man-made”, but is given
by the laws of physics. Here, either non-standard DLs or non-trivial logical
encodings are needed. For these non-standard DLs, no working systems exist,
and in our experience, complex logical encodings are very likely to decrease
the performance of the reasoning component.

Due to the well-known expressivity vs. complexity tradeoff, sound and complete
reasoning with expressive DLs is not a trivial task. Data scalability is not al-
ways easy to achieve for expressive DLs. There exist inexpressive ontology
languages such as, for instance, RDF(S) [17–19] which scale well regarding
data complexity. However, these approaches fail to scale regarding expressivity
and problems then have to be solved outside the information system by resort-
ing to programming. We believe that a generic framework for building OBISs
should be parameterizable in both dimensions: data scalability and expres-
sivity scalability (→ P2: data and expressivity scalability problem) [20,21].
If high expressivity is required, it should be supported. However, if only low
expressivity is needed, then the user should not have to pay the higher price
if a reasoner was used which implements a much more expressive logic (see,
e.g., the case study in [22]). This implies that a reasoner should be selected
that implements just the required logic, so that the lower complexity bound is
sufficient, and the upper bound is tight.

DL systems somehow live in their own realm and are thus not really interop-
erable with the rest of the more conventional IS infrastructure, e.g., existing
relational database technology (→ P3: interoperability and middleware prob-
lem). However, due to the inherent intellectual complexity of building a DL
system, existing DL systems must be reused and exploited as componentware
if possible.

Even though standards such as DIG exist [23], it can be observed that for
building practical OBIS some API functionality is still missing, only part of
which is currently about to be standardized in DIG2.0 [24]. Compared with
the APIs found in relational database management systems (RDMSs), one can
observe that functionality regarding the management of the physical schema
or storage layer of a DL system is missing (→ P4: missing storage-layer-
functionality problem).

Moreover, as for RDMSs, plug-in mechanisms or “stored procedures” would be
beneficial in order to open up the server architectures for applications as well as
to achieve high-bandwidth communication. Extensibility and openness is not
yet achieved in standard DL systems [6,24] (→ P5: extensibility and open-
ness problem). Even though there is an extension proposal for DIG2.0, which
we believe is a very promising idea, DIG2.0 still does not support functional-
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ity or API functions to be added to a DL system by users (i.e., application
builders). It is clear that this problem can only be addressed by some kind of
programming facility or plug-in mechanism.

Only recently, expressive query languages (QLs) have been investigated and
incorporated into DL systems (→ P6: missing QL problem) [25–27,7,28]. How-
ever, these are indispensable for OBIS.

The last problem (P7) is closely related to P2 and concerns the software ar-
chitecture of a reasoner. Although reasoners implementing highly expressive
logics are also capable to processing KBs utilizing only a (less expressive)
sublogic, one can sometimes observe that specialized reasoners crafted to sup-
port smaller logics perform better than reasoners supporting more expressive
logics. From the perspective of the more expressive reasoner, the more ef-
ficient (and more specialized) inference algorithm implemented by the less
expressive reasoner can be seen as an optimization technique. In principle,
the performance of the more expressive reasoner can become comparable once
a specialized optimization is built in. With more and more dedicated opti-
mizations, whose applicability must be automatically detected, however, the
maintenance of the DL system software becomes a serious problem. We be-
lieve that it is important to have appropriate software abstractions which help
to maintain the software and manage the complexity introduced by language-
specific optimization techniques.

Specialized reasoning algorithms are not only needed in order to realize special
optimizations, but also to implement certain inference tasks. From a theoretical
perspective, most expressive DL systems “only” have to implement a reasoner
to decide one core inference problem, e.g., an ABox satisfiability checker since
the other inference problems are reducible to the core problem. However, from
a computational perspective, this seems inadequate because highly dedicated
algorithms for special inference problems have to be used to ensure scalability,
e.g., for the instance retrieval problem [29]. These algorithms are sometimes
even more complex than tableau calculi [30], and thus deserve a clean separa-
tion from other parts of the system code in order to achieve maintainability.
Again, appropriate domain-specific software abstractions are needed. We thus
call P7 the “software-abstraction problem”.

1.2 Layered vs. Integrated Approaches for OBIS

Why not simply use an RDMS for the storage layer of an OBIS? This would
result in a classical layered architecture for an OBIS. From the point of view
of the RDMS, the inference algorithms then have to reside in the application
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layer. 2 Since ontology-based query answering requires inference, the assertions
in the database are used as input assertions for the inference algorithm. Un-
fortunately, the question which assertions to retrieve from the database can
only be resolved at runtime by the inference algorithm itself. But if there is
no way to tell in advance which assertions will contribute to the final answer
of the query and which will not, then database indices are of no great help in
order to reduce the set of candidate assertions to consider. Thus, for expressive
ontology languages, a layered architecture results in a lot of communication
overhead, and the retrieved candidate results from the database must be com-
bined and reasoned about to get the final query answer. Obviously, it would
be better if this computation and integration of required sub-results could be
done in the RDMS itself by means of a single query. This is possible as the
authors of the QuOnto system have shown, but “only” for rather inexpres-
sive DLs. In the case of QuOnto, ontology-based query answering can be
performed by the RDMS query answering engine on its own, since the inex-
pressivity of the underlying DL makes it possible to expand the original query
in such a way that it takes the ontology into account [31]. Thus, no real ABox
retrieval algorithms are needed. At the time of this writing, it is not clear
whether the rewritten queries are always easy for database engines to deal
with. The drawback of this layered approach for OBIS is that it is not obvious
how to account for expressivity scalability.

We therefore pursue a truly-integrated approach for OBIS, although the imple-
mentation burden is very high. This means that the storage layer includes the
required inference algorithms as well as the query evaluation engine, in one
single component, so that data and index structures can be shared. However,
our framework also provides support for the layered approach.

1.3 Contributions and Structure of this Article

The main contribution of this article is the description of the framework and
the abstractions it provides. We believe that it is important that these abstrac-
tions are understood as abstractions on the knowledge level as well as on the
symbol level (as introduced into AI by Newell [32]). The framework is designed
to tackle the identified problems P1–P7 (see Section 2), which provide the
motivation for the whole approach. Our framework contains abstractions (and
working implementations) to realize (i) the extensional component, (ii) the in-
tensional component, and (iii) the query language component of an OBIS.

It will become clear that for all three areas, highly flexible solutions are needed:
for the extensional component, the so-called substrate data model is intro-

2 We think it is unrealistic to assume that a system as complex as a tableaux
reasoner can be realized as a stored procedure within a RDMS.
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duced, for the intensional level, the MiDeLoRa toolkit for crafting DL sys-
tems is presented, and for (iii) the substrate query language (SuQL) frame-
work is designed. Due to a lack of space, we focus on (i) and (iii). The flexi-
bility of the provided abstractions, and thus of the framework, is empirically
demonstrated by means of investigations with specific instantiations of the
framework. These instantiations thus support our claim that the framework
is generic and can cover regions in the OBIS design space.

The most important instantiation discussed in this paper is the DLMAPS
system, which implements ontology-based spatio-thematic query answering in
the domain of digital city maps. In this IS domain of digital city maps, we must
(a) pragmatically solve the map representation problem, especially regarding
the spatial and the thematic aspects of map objects (these notions are defined
in Section 3.1), and (b) provide an expressive spatio-thematic query language.
This QL must be able to address spatial as well as the thematic aspects of map
objects. Due to the inherent complexity of the field, we believe that DL system
application studies are valuable per se. In the DLMAPS domain, the situation
is even more complicated because of the applicability problem for DLs, which
mainly concerns the representation of spatial aspects of maps (which we will
call the spatial representation problem in the following). Moreover, we present
some important optimization techniques which are critical for ontology query
answering engines.

This paper is structured as follows. We first describe the overall framework
and explain how the identified problems P1–P7 are addressed. In the next
section we present the DLMAPS case study. We first describe the IS domain
of digital city maps, the concrete map data we use, as well as the idea of
spatio-thematic ontology-based query answering on such city maps. We discuss
the spatial representation problem and present four different representation
options for the extensional and query component of the DLMAPS system in
our framework. All these have pros and cons, demonstrate the flexibility of the
framework and thus support our claim that the framework is generic. Next we
describe the substrate QL framework SuQL, which plays a crucial role in this
work. The nRQL ABox QL [33,34] is discussed as a concrete instantiation
of SuQL. Especially for the DLMAPS system, we show how nRQL can be
extended by spatial atoms in order to become a spatio-thematic QL. We then
describe indispensable optimizations in the SuQL query answering engine and
discuss their effectiveness.

2 An Architectural Framework for Building OBISs

In this section we first describe the framework from the knowledge level per-
spective [32]. From a logical point of view, a so-called substrate data model is
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introduced, and the main principles of the associated query language SuQL
are presented. We also briefly remark on implementation aspects, the symbol
level perspective. We believe that both perspectives on a reasoning system are
of equal importance in order to guarantee empirical success. A “good design”
should encompass both perspectives in order to avoid performance bottlenecks
and impedance mismatches. After having presented the framework, we discuss
how the problems P1 – P7 are tackled. Please recall that P1 – P7 provide
the motivation for the whole approach; more precisely, P1, P2 address the
knowledge level, whereas the problems P3 – P7 address the symbol level.

We do not claim that the substrate model is interesting from a theoretical
perspective. Its generic character is of course also its weakness. Thus, it must
be specifically instantiated. An instantiation of the model results in a specific
substrate type, e.g. a substrate type ABox. The formalization presented here
is only as detailed and formally elaborated as is beneficial and required for the
description of the semantics of the services, especially of the query answering
service. We claim that the presented formalization is sufficient for our purpose.

From the knowledge level perspective, the data model is partially inspired
by the work on E-Connections [35], tableaux data structures [14], as well as
by RDF(S). However, it would be inappropriate to claim that this is an
E-Connection application, since we are basically just using labeled graphs,
defined by means of first order logic, and similar knowledge models have been
used in AI since the 1960s [12, Chapter 4] (although the substrate model is
primarily an extensional knowledge model). SuQL is inspired by [25].

From the symbol level perspective, our approach is related to JENA [36],
but we have a somewhat broader scope, and the underlying knowledge (data)
models are more general than RDF(S), as will become clear in the following.

2.1 The Knowledge Level Perspective

Formally, we base our framework on a graph-based data model which provides
the required flexibility and extensibility for the extensional component, the so-
called substrate data model. A generic substrate query language called SuQL
for this data model provides the required flexibility and extensibility on the
QL side. The definition of SuQL is only prepared in this section and continued
and elaborated on in Section 5.

The substrate model serves both as a mediator and as an abstraction layer
(“semantic middleware”). It enables us to specify and build extensional rep-
resentation layers for spatial and hybrid representations (see Section 3), and
is sufficiently general to also encompass ABoxes and RDF(S) graphs. A sub-
strate is thus defined as a very general notion:
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Definition 1 A substrate is an edge- and node-labeled directed graph
(V, E, LV , LE ,LV ,LE), with V being the set of substrate nodes, and E be-
ing a set of substrate edges. The node labeling function LV : V → LV maps
nodes to descriptions in an appropriate node description language LV , and
likewise for LE : E → LE , where LE is an edge description language.

If (i, j) ∈ E, then j is called a successor of i, and i is called a predecessor
of j. In case R ∈ LE((i, j)), we can (more specifically) talk of an R-successor
resp. -predecessor.

The languages LV and LE are not fixed and can be seen as subsets of first-order
predicate logic, FOPL, (denoted in variable-free syntax), e.g., some modal
logic, description logic, or propositional logic. Using this FOPL perspective,
V is a set of constant symbols, and LV and LE are indexing functions into
sets of closed FOPL formulas.

Let us illustrate this with an example. Consider an ALC ABox A. We can con-
sider this ABox as a substrate S = (V, E, LV , LE,LV ,LE) if we identify V with
the ABox individuals, V = inds(A), E with the set of pairs of individuals men-

tioned as arguments in role assertions, E = { (i, j) | (i, j) : R ∈ A}, with LV =

ALC, and LE = (NR,⊓) would be the set of ALC role names NR closed under
conjunction, such that C ∈ LV (i) iff i : C ∈ A, and R1 ⊓ · · · ⊓Rn = LE((i, j))

iff {R1, . . . , Rn |Ri ∈ NR, (i, j) : Ri ∈ A}. From the FOPL perspective, LV (i)

and LE((i, j)) correspond to {Φ(C)x←i, . . . , R1(i, j), . . . , Rn(i, j)}, where Φ(C)
returns the FOPL standard translation [12, pp. 50] of the concept C, which is a
first order formula with one free variable, x, e.g. Φ(∃R.C) = ∃yR(x, y)∧C(y).

However, for many substrates, the corresponding FOPL set will simply contain
ground atoms (facts).

An associated TBox of an ABox manifests itself in additional FOPL sentences.
Formally, we simply define a substrate with a background theory (having an ad-
ditional set of closed FOPL axioms). These additional FOPL sentences are ob-
tained by applying the standard translation to the TBox axioms. This should
be clear. We will give a formal example for such a substrate with background
theory when we discuss the RCC substrate in Section 4.4.

To get spatial representations, we state that a substrate can also encode geo-
metric / spatial structures using FOPL means. For the DLMAPS system, we
assume that the nodes are instances of spatial datatypes (e.g., polygons). Such
a geometric substrate is called an SBox (Space Box). The geometry of such
spatial nodes can be described using an appropriate (FOPL-based) geometry
description language. However, we do not present these details here.
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Unlike for an ABox, it is reasonable to assume for an SBox that its logical
theory is complete, as there is neither underspecified nor indeterminate in-
formation in an SBox. It simply represents “spatial data”. Viewed as set of
FOPL ground atoms, the SBox is basically isomorphic to its (unique minimal)
Herbrand model. On the declarative knowledge level we can simply assume
that the well-known Clark completion axioms are present [37], and that their
impact will be “intrinsically” encoded into the inference procedures defined
for an SBox.

Since we simply rely on standard FOPL semantics, everything is well defined.
We just inherit the standard FOPL notions of satisfiability, entailment (“|=”),
etc. The entailment relationship is needed for the definition of the SuQL.

The SuQL framework allows for the definition of specialized substrate QLs,
tailored for special substrate classes (e.g., ABoxes, SBoxes). The SuQL frame-
work is based on the general notion of (ground) query atom entailment. All
that matters here is that a notion of logical entailment between a substrate
S and a query atom for S is defined and decidable. Query atoms are, concep-
tually slightly simplified, again FOPL formulas with one or two free FOPL
variables (we use x and y in the remaining paper for these); the atoms are
thus called unary (resp. binary) query atoms. Thus, S |= Px←i must be decid-
able for the unary atom P and the node i ∈ V , and S |= Qx←i,y←j must be
decidable for the binary atom Q and the nodes i, j ∈ V .

The SuQL framework provides a great deal of flexibility, extensibility and
adaptability, since specialized query atoms (resp. P and Q) can be tailored
for specific substrate classes, e.g., if S is an SBox, then P, Q can be spatial
predicates, for example, RCC predicates (see Section 4).

2.2 The Symbol Level Perspective

A substrate is an instance of a Clos (Common Lisp Object System) class [38]
– a substrate class thus provides the implementation of a substrate type (or
kind). On the one hand, a substrate is thus a representation on the knowledge
level, but on the other hand also – and much more importantly in this work
– a structure on the symbol (or implementation) level.

We have already used the phrase instantiation of the substrate data model in-
formally. More specifically, from now on this means that a new substrate class
is defined (tailored for certain representation tasks) by means of subclassing.
In the same sense we are using the phrase SuQL instantiation to refer to a
specialized substrate QL, e.g., one that offers substrate-specific, tailored query
atoms. Last but not least, an instantiation of the framework encompasses all
kinds of instantiations; for example, the DLMAPS system is an instantiation
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which contains specific substrate types and specialized SuQL instantiations.

Since Clos offers multiple inheritance (i.e., allows a class to have multiple
parent classes), it becomes possible to define combinations of substrates. For
example, one can define a substrate class spatial ABox having the substrate
classes ABox and SBox as parents. As a result, instances in such a spa-
tial ABox are, on the one hand, ABox individuals, and instances of spatial
datatypes on the other hand [6]. This can eliminate the need for a hybrid rep-
resentation in favor of an integrated representation. However, the substrate
data model also supports hybrid representations (see Sections 4.2 and 4.4).

Another important idea is that the nodes and edges in a substrate can be
“virtual”, i.e., the substrate is simply used as a mediation layer or “facade”
that provides a graph perspective on a different representation, e.g. a Racer-
Pro ABox. In this case, the API functions of the substrate just pass through
to the API functions of RacerPro. Thus, a substrate class may or may not
correspond to a physical store.

Not only substrates, but also SuQL query atoms are instances of Clos classes.
This enables the definition of the |= relation as a (binary) Clos multi-method
substrate-entails-atom-p. A multi-method is polymorphic (does late bind-
ing) according to the types of all its arguments [38], unlike languages like Java,
where only the type of the first argument is used for dispatching. Thus, de-
pending on the class of substrate and atom, different inference algorithms will
be called for (e.g., a DL system API function in case an ABox is queried, and
a geometric algorithm performing some kind of spatial model checking if an
SBox is queried). Furthermore, intrinsically encoded axioms can be taken into
account in the implementation of a substrate-entails-atom-p method, sim-
ply by means of programming. For example, the Clark completion axioms must
not be explicitly present as sentences. They are only needed for a description
of the semantics on the knowledge level, but not on the symbol level. 3

The generic SuQL query answering engine (see Section 6) immediately sup-
ports the evaluation of specialized atoms once a substrate-entails-atom-p

method is applicable, since there are generic enumerator and tester methods
defined. However, these will not exhibit good performance, since they only im-
plement linear retrieval algorithms (instances are retrieved using “enumerate
and test”). However, good performance can be achieved if dedicated gener-
ators and tester are defined for specialized atoms. These methods will also
exploit indices and caches, and so the performance can be very good as we
have demonstrated with the nRQL instantiation. Also the cost-based SuQL

3 However, this is not meant to reopen the “declarative vs. procedural” debate;
instead, our framework shows that both approaches can and have to live together
well, given that appropriate abstractions are provided which are “on the right level”
for both perspectives.

11



query optimizer (see Section 6.1) is easily configurable (some methods must
be overridden).

In order to decide entailment (as needed for query answering), inference algo-
rithms which “work on substrates” must be called. In order to realize the inte-
grated approach (and to address P1 – P7), our framework includes the MiDe-
LoRa 4 toolkit for DL system crafting. MiDeLoRa allows for the defini-
tion of specialized provers for certain tasks, working on specialized substrates.
Provers are conceived as regions (or single points) in the three-dimensional
MiDeLoRa space:

Definition 2 (MiDeLoRa Space) The MiDeLoRa space is the cartesian
product S × L × T , where S is the set of substrate classes, L is the set of
supported (DL) languages, and T is a set of prover tasks.

For example, T can contain the DL standard inference problems [12]: T =
{abox consistent?, concept instances, . . .}. Again, substrates, languages and tasks
are modeled as Clos classes. A MiDeLoRa prover is a ternary multi-method
with arguments 〈S, L, T 〉 ∈ S×L×T . Polymorphism is exploited for all three
arguments. Since inheritance is exploited for the definitions of the classes (el-
ements) in the sets S, L, and T , a single MiDeLoRa prover defined for a
point (S, L, T ) can cover a whole region in the MiDeLoRa space.

2.3 Benefits of the Framework

The problems P1 – P7 are tackled as follows:

P1, “DL applicability problem”. In the DLMAPS domain, there is a need
to represent the spatial aspects of the maps, and for other IS domains, there
may be other informational aspects which cannot be represented in a single
representational framework (e.g., an ABox). Regarding the spatial aspects of
map objects, their representation is difficult or impossible with a standard
DL ABox (see Section 4.1). Different substrate classes thus provide different
extensional representation means. Substrates can also be hybrid and thus allow
creation of layered representations: In a hybrid substrate, a DL ABox can be
combined with some other arbitrary substrate, e.g., an SBox. Thus, the DL
applicability problem can be defused pragmatically.

P2, “Data and Expressivity Scalability Problem”. DLs form a whole
family of representation languages. In principle, DLs account for expressiv-
ity scalability. Data scalability can nowadays be achieved for simpler DLs, or
RDF(S). In order to achieve data scalability, not only the knowledge level,

4 Michael’s Description Logic Reasoner
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but also the symbol level must also be considered. A (persistent) database sub-
strate can be used if the extensional data is extensive (substrate graphs are
then stored in an RDMS). Thus, the framework accounts for data scalability.
It also accounts for expressivity scalability, since MiDeLoRa allows for the
definition of language-specific provers. However, the services of standard DL
systems such as RacerPro are also available to the framework.

P3, “Interoperability and Middleware Problem”. The substrate data
model can provide an abstraction layer on top of which the OBIS is built.
This abstraction layer can, for example, shield the client code of the OBIS
from details in the APIs of different DL systems (see also the Design Patterns
Adapter, Bridge and Facade in [39]). A substrate can offer caching mecha-
nisms, abstract from remote vs. local API procedure calls, etc. A substrate
can thus also play the role of a mediator or semantic middleware. The remote
componentware system need not even be a DL system, but can also be an
RDF(S) triple store, an RDMS on which a graph view is established, etc.

Since substrates are Clos classes utilizing inheritance which implement in-
terfaces, additional services can easily be offered by means of substrate sub-
classing. For example, a RacerPro substrate class will offer unique Racer-
Pro services as methods in addition to the methods that are inherited from
its DL system substrate superclass.

P4, “Missing Storage Layer Functionality Problem”. Given that a
substrate is not only a conceptual data model (an abstract data type on the
knowledge level) but also implemented as a Clos class, it is obvious that,
by means of programming, the framework offers the flexibility to address and
parameterize the storage layer. For example, in the SBox substrate class we
have implemented spatial index structures. A substrate can also be made
persistent in a file or a mySQL database.

P5, “Extensibility Problem”. Extensibility and openness of the architec-
ture is obviously realized, since object-orientation supports the well-known
“Open-Closed Principle”. However, reuse in frameworks has been identified
as problematic in some cases, because inheritance-based reuse is “white box
reuse” which thus requires knowledge about the internals of the class machin-
ery. It is known that domain specific languages (DSLs) can resolve some of
these problems [40].

P6, “Missing QL Problem”. To address this problem, the SuQL engine
is provided, which is as open, extensible and parameterizable as the rest of
the framework. Decidability is guaranteed given that the required entailment
relationship is decidable. From a theoretician’s point of view, SuQL offers
unions of grounded conjunctive queries (see Section 5).

P7, “Software-Abstraction Problem”. We have argued that appropri-
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ate domain-specific software abstractions shall be provided in order to ensure
maintainability and comprehensibility of a DL system and to avoid the “big
ball of mud” (as understood in Software Engineering) syndrome in the life of
a DL system.

Our approach is to define many small, comprehensible and specific provers for
specific problems instead of just one big prover (implementing the core infer-
ence problem for a very expressive DL). The MiDeLoRa space provides the
general structure for pinpointing provers. It provides a domain-specific soft-
ware abstraction. The different provers are more comprehensible and concise
than one big prover, since optimization techniques can be better localized (see
Section 1.1). However, a big number of smaller provers can only be more main-
tainable and comprehensible if appropriate software abstractions are provided.
MiDeLoRa offers prover definition languages, which can be understood as
DSLs. Provers defined in these DSLs are almost as concise and comprehensible
as the mathematical tableaux calculi used for DLs [14,30]. Due to a lack of
space we cannot present the details of MiDeLoRa in this paper.

3 DLMAPS: Ontology-Based Queries to City Maps

We now describe the digital city maps scenario. As mentioned, we are primarily
using RacerPro as our standard DL component reasoner, but other setups
are possible as well (some of these are described in the following).

3.1 The DISK Data

We are using digital vector maps of the city of Hamburg provided by the
land surveying office (“Amt für Geoinformation und Vermessungswesen Ham-
burg”); these maps are called the DISK (“Digitale Stadtkarte”). Part of the
DISK is visualized by the Map Viewer component of our system in Fig. 1.
Each map object (also called geographic feature) is thematically annotated. The
basic thematic annotations (TAs) have been established by the land surveying
office itself. These TAs say something about the “theme” or semantics of the
map objects. Simple concept names such as “green area”, “meadow”, “public
park”, “lake” are used. A few hundred TAs are used and documented in a
so-called thematic dictionary (TD), which is organized in so-called (thematic)
layers (e.g., one layer for infrastructure, one for vegetation, etc.).

Sometimes, only highly specific TAs are available, such as “Cemetery for Non-
Christians”, and generalizing common sense vocabulary, e.g. “Cemetery”, is
missing. This is unfortunate, since it prevents the intuitive usage of common
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Fig. 1. The Map Viewer and Query Inspector of the DLMAPS System

sense natural language vocabulary for query formulation, especially for non-
casual users. We have repaired this defect by adding a background ontology
(in the form of a TBox) providing generalizing TAs by means of taxonomic
relationships.

On the other hand, defined concepts (“if and only if”) can be added and
exploited to automatically enrich the given basic annotations. Thus, we might
define our own required TA “public park containing a lake” as a “park which
is public and contains a lake” with a TBox axiom such as

public park containing a lake≡̇park ⊓ public ⊓ ∃contains.lake

bird sanctuary park≡̇park ⊓ ∀contains.¬building

and we might want to retrieve the instances of these concepts. This means that
such instances must be recognized automatically, and this is what ontology-
based query answering is all about. Obviously, inference is required to obtain
these instances, since there are no told instances of
public park containing a lake. For simple queries, simple instance retrieval
queries might be sufficient. However, for reasons of expressivity and because
we want to retrieve constellations 5 of map objects, a QL with variables is
needed whose answer tuples can be visualized as in Fig. 1.

A definition such as public park containing a lake refers to thematic as well
as to spatial aspects of the map objects:

Thematic aspects: the name of the park, that the park is public, the amount
of water contained in the lake, etc.

Spatial aspects: the spatial attributes such as the area of the park (or lake),
the concrete shape, qualitative spatial relationship such as “contain”, quan-
titative (metric) spatial relationships such as distance, etc.

5 We use the term “constellation” to stress that a certain spatial arrangement of
map objects is requested with a query.
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Fig. 2. RCC8 base relations: EQ = Equal, DC = D isconnected , EC = Externally
Connected, PO = Partial Overlap, TPP = Tangential Proper Part, NTPP =
N on-Tangential Proper Part. All relations with the exception of TPP and NTPP
are symmetric; the inverse relations of TPP and NTPP are called TPPI and
NTPPI .

We use the following terminology: a thematic concept refers only to thematic
aspects, whereas a spatial concept refers solely to spatial aspects. A spatio-
thematic concept refers to both. In the same sense we are using the terminology
thematic, spatial and spatio-thematic queries.

Thus, there are different thematic and spatial aspects one would like to repre-
sent in the extensional component and subsequently query. Since the concrete
geometry is given in the map, the spatial aspects of the map objects are in prin-
ciple intrinsically represented and available. This mainly concerns the spatial
relationships which are depicted in the map. However, spatial attributes such
as the area or length of a map object can in principle also be derived (com-
puted from the geometry), although this will not be very accurate. A function
which exploits the map geometry to compute or verify a certain spatial aspect
(for example, whether a certain qualitative relationship holds between two
map objects) is called an inspection method in the following. This notion is
defined as follows:

Definition 3 (Inspection Method) Let S be an SBox, and P be a spatial
FOPL formula without free variables (for example, an RCC ground atom such
as EC(a, b), where a, b ∈ V ). An inspection method is a (geometric) algorithm
which exploits the geometry of S to decide whether S |= P holds.

It is obvious that qualitative spatial descriptions are of great importance. On
the one hand, they are needed for the definitions of concepts in the TBox such
as “public park containing a lake”. On the other hand, they are needed in the
spatio-thematic QL (“retrieve all public parks containing a lake”). A popular
and well-known set of qualitative spatial relationships is given by the RCC8
relations [41], see Fig. 2.

On the other hand, since the concrete geometry is given by means of the
map, in principle, no qualitative representation is needed in the extensional
component, since it can be reconstructed at query answering time by means of
inspection methods. However, if we want to use a (standard-DL) ABox for the
extensional component, then the spatial representation options are limited,
and we must primarily resort to qualitative descriptions.

16



replacemen

a a

b

b
c

c

EQ

EQEQ
PO

TPPI NTPP

Fig. 3. Geometric constellation and its RCC net-
work (inverse edges omitted)

ABox

Geometry (SBox)

?*x

?x
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4 Representing and Querying the DISK

Spatial representations are, in principle, possible with expressive spatial con-
crete domains (CDs) [42,43] or specialized DLs [44] or spatial modal logics
[45]. However, many of these logics are either undecidable, or if they are de-
cidable, no mature DL system supporting these non-standard DLs exists. In
principle, MiDeLoRa allows for the definition of tableaux provers for such
specialized languages. However, in this paper we focus on more pragmatic
representations which incorporate RacerPro.

It is clear that the kind of representation we will devise for the DISK in the
extensional component also determines what and how we can query. Without
doubt, the thematic aspects of the DISK map objects can be represented
satisfactorily with a standard DL. To solve the spatial representation problem
of the DISK in the extensional component, we consecutively consider four
different representation options and analyze their impacts.

4.1 Representation Option 1 – Simply Use an ABox

We can try to represent as many spatial aspects as possible in the ABox, given
the DL supported by the exploited DL system, e.g. ALCQHIR+(D−) in the
case of RacerPro. Regarding the spatial relationships, we can only represent
qualitative relationships. We can compute a so-called RCC network from the
geometry of the map and represent this by means of RCC role assertions in
the ABox, e.g. (i, j) : TPPI etc. In Fig. 4(a) a “geometric scene” and its
corresponding RCC8 network is depicted. Such a network will always take the
form of an edge-labeled complete graph 6 , due to the JEPD property of the
RCC base relations: The base relations are jointly exhaustive and pairwise
d isjoint). Moreover, an RCC network derived from a geometric scene will

6 Such a graph is called a Kn in graph theory.
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always be RCC consistent (see Section 4.4).

Moreover, selected spatial attributes such as area and length can be repre-
sented in the ABox utilizing the concrete domain by means of concept asser-
tions such as i : ∃(has area). =12.345.

Since the represented spatial aspects are accessible to RacerPro, this sup-
ports spatio-thematic concept definitions in the TBox, for example

public park containing a lake≡̇park ⊓ public ⊓ ∃contains.lake

(∃contains.lake is short for (∃TPPI .lake) ⊔ (∃NTPPI .lake) for reasons of
readability), the framework recognizes these qualitative spatial relationships
and rewrites the query accordingly). Obviously, an individual i in the ABox
can only be recognized as an instance of that concept if appropriate RCC role
assertions are present as well.

In principle, the specific properties of qualitative spatial (RCC) relationships
cannot be captured completely within ALCQHIR+(D−) as roles (we will elab-
orate on this point below when we discuss qualitative spatial reasoning with
the RCC substrate). This means that the computed taxonomy of the TBox
will not correctly reflect the intended subsumption relationships. However,
MiDeLoRa also supports ALCIRCC [44,46]. Even though this DL is undecid-
able [45], the corresponding prover has successfully computed taxonomies of
ALCIRCC8 TBoxes. Moreover, the deduced implied subsumption relationships
can be made syntactically explicit by means of additional TBox implication
axioms, and this augmented TBox can be used instead of the original one in
RacerPro.

Much more important in our scenario is the observation that ontology-based
query answering can still be achieved in a way that correctly reflects the se-
mantics of the spatial (RCC) relationships with RacerPro. Consider the
instance retrieval query public park containing a lake(?x) on the ABox

A = {i : park ⊓ public, k : lake, j : meadow, (i, j) : TPPI , (j, k) : NTPPI , . . .}

Since this ABox has been computed from the concrete geometry of the map, it
must also contain (i, k) : NTPPI , because a RCC network which is computed
from a spatial constellation that shows (i, j) : TPPI and (j, k) : NTPPI must
necessarily also show (i, k) : NTPPI .

In order to retrieve the instances of public park containing a lake, we consider
and check each individual separately. Let us consider i. Verifying whether i is
an instance of public park containing a lake is reduced to checking the un-
satisfiability of A ∪ {(i, k) : NTPPI }∪ {i : ¬public park containing a lake},
or
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A∪ {(i, k) : NTPPI } ∪

{i : (¬park ⊔ ¬public ⊔ ((∀NTPPI .¬lake) ⊓ (∀TPPI .¬lake)))}

This ABox is unsatisfiable; thus, i is a public park containing a lake.

Regarding query concepts that contain or imply a universal role or number
restriction, we can answer queries completely only if we turn on a “closed
domain reasoning mode”. We must close the ABox w.r.t. the RCC role as-
sertions and enable the Unique Name Assumption (UNA) 7 in order to keep
the semantics of the RCC roles. To close the ABox A w.r.t. the RCC role
assertions, we count the number of RCC role successors of each individual for
each RCC role: for i ∈ individuals(A) and the RCC role R, we determine the

number of R-successors n = |{ j | (i, j) : R ∈ A}| and add the so-called num-

ber restrictions i : (≤n R)⊓ (≥n R) to A. This concept assertion is satisfied in

an interpretation I iff n = { x | (iI , x) ∈ RI }; thus, i must have exactly n R

successors in every model. In combination with the Unique Name Assumption
(UNA), this turns on a closed domain reasoning on the individuals which are
mentioned in the RCC role assertions and thus prevents the reasoner from
the generation of “new anonymous RCC role successors” in order to satisfy an
existential restriction such as ∃NTPPI .lake. In order to satisfy ∃NTPPI .lake,
the prover must thus necessarily reuse one of the existing RCC role fillers from
the ABox [6].

Let us demonstrate this technique using the query concept

bird sanctuary park≡̇park ⊓ ∀contains.¬building.

Assuming that both lake and meadow imply ¬building, we can show that i

is an instance of a bird sanctuary, since the ABox

A ∪ {(i, k) : NTPPI } ∪

{i : (≤1 TPPI ) ⊓ (≥1 TPPI ), i : (≤1 NTPPI ) ⊓ (≥1 NTPPI ), . . .} ∪

{i : (¬park ⊔ ((∃TPPI .building) ⊓ (∃NTPPI .building)))}

is again unsatisfiable, because the alternative i : ¬park immediately produces
an inconsistency. Thus, the alternative i : (∃TPPI .building)⊓(∃NTPPI .building)
is considered. Due to i : (≤1 TPPI )⊓(≥1 TPPI ), only j can be used to satisfy
∃TPPI .building, and only k to satisfy ∃NTPPI .building. Since j : meadow

and thus j : ¬building, k : lake and thus k : ¬building, the ABox must be
unsatisfiable.

Thus, we have argued that spatio-thematic ontology-based query answering

7 The UNA enforces that different individuals i, j are interpreted as different do-
main individuals in the interpretation: iI 6= jI .
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can be done on such an ABox representation of the DISK, and that this is to
some extent – using some logical encoding tricks – possible even with simple
instance retrieval queries.

4.1.1 Using an Expressive ABox Query Language

We now demonstrate that the RacerPro ABox query language nRQL [33,34]
offers valuable additional query formulation facilities in this scenario. For now,
we are using grounded conjunctive queries in mathematical (Horn-logic) syn-
tax and assume that the reader has an intuitive understanding (in addition
to our explanations). The semantics of SuQL (and nRQL) will be defined
formally in Section 5 (Section 5.1). We demonstrate that nRQL’s negation
as failure (NAF negation) enables a great deal of differentiation possibilities
for query formulation. For example, we can query for living areas adjacent to
parks which contain a lake . . .

(1) . . . which are provably not adjacent to industrial areas. Thus, all adjacent
areas are provably not industrial areas (note that adjacent is recognized as
synonym for EC):

ans(?living area, ?park, ?lake)←

living area(?living area), park(?park), lake(?lake),

contains(?park, ?lake), adjacent(?living area, ?park),

(∀adjacent.¬industrial area)(?living area)

(2) . . . for which there are no adjacent industrial areas known (NAF negation):

ans(?living area, ?park, ?lake)←

living area(?living area), park(?park), lake(?lake),

contains(?park, ?lake), adjacent(?living area, ?park),

\(∃adjacent.industrial area(?living area))

Slightly simplified, the subquery \(∃adjacent.industrial area(?living area))
first retrieves the instances of the concept ∃adjacent.industrial area, and then
simply builds the complement set (this explains the use of “\”). Thus, a can-
didate binding for ?living area must be in that complement set. Please note
that the instances of ∀adjacent.¬industrial area form a subset of this set.
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(3) . . . for which there are no known adjacent industrial areas known:

ans(?living area, ?park, ?lake)←

living area(?living area), park(?park), lake(?lake),

contains(?park, ?lake), adjacent(?living area, ?park),

\(π(?living area) adjacent(?living area, ?i), industrial area(?i))

The subquery \(π(?living area) adjacent(?living area, ?i), ind. area(?i)) re-
turns the complement set of the answer to the query
ans(?living area) ← adjacent(?living area, ?i), ind. area(?i)). 8 So, an in-
stance is in \(π(?living area) adjacent(?living area, ?i), ind. area(?i) iff for
?living area there is no known adjacent industrial area present. However, in
principle ?living area might have an unknown adjacent industrial area (in
case there is no corresponding ABox individual) – thus, this query returns
a superset of \(∃adjacent.industrial area(?living area)), and the query is
therefore more general than (2).

4.1.2 Drawbacks of the ABox Representation

Even though ontology-based query answering is sort of possible using the just
discussed ABox representation, it nevertheless has the following drawbacks:

(1) The size of the generated ABoxes is significant. Since the RCC network
is explicitly encoded in the ABox, the number of required role assertions
is quadratic in the number of map objects, |V |2 (several million role
membership assertions for the DISK).

(2) Most spatial aspects cannot be handled that way. For example, distance
relations are very important for map queries. It is thus not possible to
retrieve all subway stations within a distance of 100 meters from a certain
point.

(3) Query processing will not be efficient for queries which mention spatial
aspects, since spatial index structures are missing.

(4) In the DLMAPS system, the geometric representation of the map is
needed anyway, at least for presentation purposes. Thus, from a non-
logical point of view, the ABox cannot be the only representation used
in the extensional component of such a system. Thus, it seems plausible
to exploit this geometric representation for query answering as well.

(5) Most importantly, we have demonstrated that this kind of ontology-based
query answering works only if the domain is “RCC closed”. However, DL
systems are not really good at closed domain reasoning, since the Open

8 Please note that π is called the body projection operator, see Section 5.
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Domain Assumption (ODA) is made in DLs. This will be illustrated in
Section 4.3.

In contrast, since the geometry of the map is completely specified, there
is neither unknown nor underspecified spatial information. This motivates
the classification of such a map as spatial data. We thus switch to a hybrid
representation incorporating an SBox.

4.2 Representation Option 2 – Use a Map Substrate:

Due to the problems with spatio-thematic concepts and since closed domain
reasoning is all that we can achieve here anyway, it seems more appropri-
ate to represent the spatial aspects primarily in the SBox (a kind of “spatial
database”), and associate an ABox with that SBox. We have already men-
tioned that the geometry of the map must be represented in the extensional
component anyway (at least for presentation purposes). If we say that the spa-
tial aspects are primarily represented in the SBox, then this does not neces-
sarily exclude the (additional) representation possibilities of dedicated spatial
aspects in the ABox as just discussed.

The resulting hybrid (SBox, ABox) representation is illustrated in Fig. 4(b);
we call it a map substrate. The figure illustrates that some ABox individuals
have corresponding instances in the SBox, and vice versa. A partial and in-
jective mapping function “∗” which maps nodes in the SBox to nodes in the
ABox (and vice versa, ∗−1) is used. Thus, we first define a hybrid substrate
and a map substrate as follows:

Definition 4 A hybrid substrate is a triple (S1, S2, ∗), with Si, i ∈ {1, 2}
being substrates (Vi, Ei, LVi

, LEi
) using LV i and LE i, ∗ being a partial and in-

jective function ∗ : V1 7→ V2. A map substrate is a hybrid substrate (S1, S2, ∗),
where S1 is an SBox, and S2 is an ABox.

If the spatial aspects of the DISK are now primarily kept in the SBox, then
they are no longer necessarily available for ABox reasoning and retrieval.
Thus, nRQL (or instance retrieval) queries are no longer sufficient to address
these spatial aspects – we will thus extend nRQL to become a hybrid spatio-
thematic QL, also offering spatial query atoms to query the SBox: SnRQL.

The SnRQL query answering engine will combine the retrieved results from
the SBox with results from the ABox. The thematic part of such a SnRQL
query is given by a plain nRQL query, and the spatial part utilizes spatial
query atoms which are evaluated on the SBox by means of inspection meth-
ods. The SBox provides a spatial index, supporting the efficient evaluation of
inspection methods by means of spatial selection operations. Computed spa-
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tial aspects can also be materialized in order to avoid repeated re-computation
(e.g., RCC relations can be materialized as edges).

Given a hybrid substrate, a hybrid query now contains two kinds of query
atoms: Those for S1, and those for S2. In order to distinguish atoms meant
for S1 from atoms meant for S2, we simply prefix variables in query atoms
for S2 with a “?∗” instead of “?”; the same applies to individuals. Intuitively,
the bindings which will be established for variables must also reflect the ∗-
function: If ?x is bound to i ∈ V1, then ? ∗ x will automatically be bound to
∗(i) ∈ V2 (if defined), and vice versa (w.r.t. ∗−1). Such a binding is called
∗-consistent. We will only consider such ∗-consistent bindings. The notion of
a ∗-consistent binding is also depicted in Fig. 4.

Assume we are using a map substrate for the DISK representation. Let us
consider the example query given in Section 4.1.1 again. Since the RCC net-
work is now no longer represented in the ABox, the SBox must be queried
for spatial relationships. Queries (1) and (2) from Section 4.1.1 thus no longer
work.

However, query (3) has a “SnRQL equivalent” which looks as follows. Note
that nRQL query atoms now use ∗-prefixed variables, since the ABox is S2,
and the SBox is S1:

ans(?living area, ?park, ?lake)←

living area(? ∗ living area), park(? ∗ park),

contains(?park, ?lake), adjacent(?living area, ?park),

\ ( π(?living area) ( adjacent(?living area, ?industrial area),

industrial area(? ∗ industrial area)))

Thus, we not only gain, but also lose something here (queries (1) and (2)
cannot be expressed). This is an important insight. On the positive side, we
are now able to define and evaluate spatial predicates which are richer than
RCC predicates, since the geometry of the map is represented. We can thus
design dedicated spatial query atoms. These spatial atoms (e.g., distance query
atoms) are discussed in Section 5.2.

4.3 Representation Option 3 – Use a Spatial MiDeLoRa ABox

Using the MiDeLoRa toolkit, we can define provers working on specialized
substrate classes. We already mentioned in Section 2.1 that MiDeLoRa of-
fers so-called spatial ABoxes. There is then no longer a need for a hybrid map
representation, since ABox individuals are also instances of spatial datatypes
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(like SBox nodes). From the point of view of a standard DL prover in MiDe-
LoRa, the spatial aspects of these nodes are invisible. However, dedicated
“spatial” MiDeLoRa provers or query answering procedures (implementa-
tions of spatial query atoms) can be defined which exploit the spatial aspects
of the nodes.

With a spatial ABox, the RCC role assertions need not be precomputed and
added as assertions at all. They can be computed by means of inspection
methods and materialized on the fly if needed during the tableau proof. Thus,
there is no need to explicitly store an |V |2 number of RCC role assertions
in the ABox, as they are “intrinsically represented”. However, this requires a
dedicated prover which can be defined in MiDeLoRa.

In Section 4.1 we have closed the ABox w.r.t. the RCC role assertions. As ex-
plained, the i : (≤ R n)⊓(≥ R n) number assertions force the tableaux prover
to reuse existing ABox individuals when existential (successor generating) con-
cepts are expanded which reference an RCC role. This forces RacerPro into
a closed domain reasoning mode; however, this is a two-step process in the
ALCQHIR+(D−) tableau calculus. First, a fresh node satisfying the existen-
tial concept is created. Then, later on in the tableaux expansion process, it
is found that this fresh node contradicts the (≤ R n) assertion. Thus, the
so-called merge rule identifies and merges the superfluous successors with an
already existing R successor (mentioned in a role assertion). However, this is
a highly non-deterministic process. Thus we stated in Section 4.1.2 (5) that
DL reasoners are not very good at closed domain reasoning.

It is obvious that this behavior of the tableaux prover could also be achieved
in a more direct way if the generating rules were modified in such a way
that first the reuse of an existing successor is tried before a fresh successor
is generated for an RCC role. (However, the generating rules become non-
deterministic with that modification). The tableaux rules of MiDeLoRa can
be parameterized to work in such a way.

4.4 Representation Option 4 – Use an ABox + RCC Substrate

Finally, we can discuss a fourth option. The primary motivation for this option
is to make some spatial functionality available to other users of the RacerPro
system. Thus, in order to offer a comparable spatio-thematic query answering
functionality to other users of the RacerPro system without having to add
the whole SBox functionality to RacerPro (spatial datatypes), we devise yet
another kind of substrate, the RCC substrate, which captures the semantics of
the RCC relations by exploiting techniques from qualitative spatial reasoning.
Unlike the |= relation for the SBox, which only exploits spatial model checking
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by means of inspection methods, spatial inference is thus required here. The
RCC substrate is, on the one hand, more expressive then the SBox, since also
vague or unknown RCC relations can be expressed. On the other hand, the
geometry of the map cannot be preserved (as in Option 1).

Users of RacerPro can associate an ABox A with an RCC substrate RCC by
means of a hybrid substrate (A,RCC, ∗) and query this hybrid substrate with
nRQL + RCC query atoms (see Section 5.3). Unlike for the map substrate,
the ABox is the primary substrate S1, since the RCC substrate is an “add
on” from the perspective of the RacerPro user. Let us describe the RCC
substrate:

Definition 5 Let R =def {EQ ,DC ,EC ,PO ,TPP ,TPPI ,NTPP ,NTPPI }
be the set of RCC8 base relations. An RCC substrate RCC is a substrate such
that V is a set of RCC nodes with LV = ∅, and LE = 2R.

The RCC base relations have already been discussed. An edge label represents
a disjunction of RCC base relations, representing coarser or even unknown
knowledge regarding the spatial relation (where the set is not a singleton).
Disjunctions of base relations are thus RCC relations as well. The properties
of the RCC relations are captured by the so-called JEPD property (see Page
17) as well as the so-called RCC composition table. This table is used for solving
the following basic inference problem: Given: RCC relations R(a, b) and
S(b, c). Question: Which relation T holds between a and c? The table
thus lists, at column for base relation R and row for base relation S, the RCC
relation T . In general, T will not be a base relation, but a set denoting a
disjunctive RCC relation: {T1, . . . Tn}. The RCC table is given as a set RCCT
of sentences of the form {R ◦ S = {T1, . . . , Tn}, . . .}.

An RCC substrate RCC containing only base relations can be viewed as a
set of FOPL ground atoms. Such a RCC network is said to be relationally
consistent iff RCC′ is satisfiable:

RCC′ = RCC ∪ {∀x.EQ(x, x)} ∪

{∀x, y, z.R(x, y) ∧ S(y, z)→ T1(x, z) ∨ · · · ∨ Tn(x, z) |

R ◦ S = {T1, . . . , Tn} ∈ RCCT } ∪

{∀x, y.
∨

R∈RR(x, y)} ∪ {∀x, y.
∨

R,S∈R,R6=S R(x, y) ∧ ¬S(x, y)}

For example, the network RCC = {NTPPI (a, b),DC (b, c),PO(a, c)} is incon-
sistent, because if a is contained in b (atom NTPPI (a, b)), and b is discon-
nected from c (atom DC (b, c)), then a must be disconnected from c as well.
The RCC8 composition table contains the axiom NTPPI ◦DC = {DC}. Thus,
RCC′ |= DC(a, c), which contradicts PO(a, c), due to the JEPD property.

Let us briefly define some more notions. Entailment of RCC relations or
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RCC ground query atoms can be reduced to inconsistency checking as fol-
lows: RCC′ |= R(a, b) iff RCC′ ∪ {(R \ R)(a, b)} is unsatisfiable. A (general)
RCC network is relationally consistent iff at least one of its configurations
is relationally consistent. A configuration of an RCC network is obtained by
choosing (and adding) one disjunct / base relation out of every non-base re-
lation in that network (thus, a configuration contains only base relations).

For example, consider RCC = {NTPP(a, b),DC (b, c)}. We have RCC′ |=
DC (a, c), since RCC′ ∪ {EQ ,EC ,PO ,TPP ,TPPI ,NTPP ,NTPPI }(a, c) is
not relationally consistent, because none of its configurations RCC′∪{EQ(a, c)}
. . .RCC′ ∪ {NTPPI (a, c)} is relationally consistent.

Since the RCC substrate defines a notion of logical entailment, the semantics
of the RCC relations will be correctly captured for query answering. Consider
the hybrid substrate (A,RCC, ∗) with

A = {hamburg : german city, paris : french city, fr : country, ger : country},

RCC = {NTPP(∗hamburg, ∗ger),EC (∗ger , ∗fr),NTPP(∗paris, ∗fr)}

and with the obvious mapping ∗(x) = ∗x for x ∈ {hamburg, paris, fr , ger}.
Then, the query

ans(?city1, ?city2)← city(?city1), city(?city2),DC (? ∗ city1, ? ∗ city2)

correctly returns ?city1 = hamburg, ?city2 = paris, and vice versa, even
though DC (∗paris, ∗hamburg) is not present in RCC.

5 SuQL – The Substrate Query Language Framework

In the following we describe the core design principles underlying the generic
substrate query language SuQL, its instantiations (nRQL, SnRQL), as well
as the features and core optimizations found in the query answering engine.

Some ideas of the SuQL framework have already been outlined, and addi-
tionally some examples for queries using abstract Horn-logic syntax have been
given. In the following, we will use the concrete syntax of the query language
framework in order to make it less abstract. 9 The query

ans(?x, ?y)← woman(?x), has child(?x, ?y)

takes the following form in concrete syntax:

(retrieve (?x ?y) (and (?x woman) (?x ?y has-child))).

9 The prefix Lisp syntax is as readable and as formal as the mathematical syntax.
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The expression (?x ?y) is called the head, and (and (?x woman) (?x ?y

has-child)) the body of the query. SuQL offers substrate-specific unary and
binary query atoms (whose concrete syntax may be defined accordingly), from
which complex queries can be constructed using the (generic) body construc-
tors and, or, neg and project-to; neg corresponds to “\”, and project-to

to “π”, as already used and briefly discussed in Section 4.1.1.

If we assume that (?x woman) is a concept query atom, – a specialized unary
query atom for substrates of class ABox –, and (?x ?y has-child) is a role
query atom – a specialized binary query atom for for substrates of class ABox
–, then, if posed to a substrate of type ABox, the query returns all mother-child
pairs from that ABox.

SuQL has the following peculiarities which we want to discuss briefly before
syntax and semantics is specified:

Variables and individuals can be used in query atoms. Both variables and
individuals are called objects. The variables range over V , the nodes of
the substrate. Thus, SuQL offers only so-called distinguished or must-bind
variables [27]. Variables are bound to nodes which satisfy the query – a
variable binding satisfies a query iff the ground query – that is obtained
from replacing all variables with their bindings – is logically entailed by the
substrate. For example, the atom P (x) is satisfied in substrate S if x = i,
i ∈ V and S |= P (x)x←i. Thus, a variable is only bound to a substrate node
iff it can be proven that this binding holds in all models of the substrate.

Returning to the example body (and (?x woman) (?x ?y has-child)),
?x is only bound to those individuals which are instances of the concept
woman having a known child ?y in all models of the KB.

Negation as Failure (NAF) Operator The neg operator implements a
Negation as Failure Semantics (NAF). For example, (neg (?x woman))

returns all substrate nodes for which it cannot be proven that they are
instances of woman. Thus, (neg (?x woman)) returns the complement set
of (?x woman) (w.r.t. V , the set of all substrate nodes). If a binary query
atom is NAF negated, e.g. (neg (?x ?y has-child)), then the comple-
ment is two-dimensional. Thus, all pairs of individuals are returned which
are not in the has-child relation.

Let us define the extension of a unary (binary) query atom P (?x) (Q(?x, ?y))
as the query answer of the query ans(?x) ← P (?x) (resp. ans(?x, ?y) ←
Q(?x, ?y), and denote that extension as P (?x)E (resp. Q(?x, ?y)E). It is ob-
vious that the following equalities must hold, for any substrate S with nodes
V :

V = P (?x)E ∪ (\P (?x))E

V × V = V 2 = Q(?x, ?y)E ∪ (\Q(?x, ?y)).E

Let us consider the ABox query language case again. We would like to
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stress that (?x (not woman)) has a different semantics from (neg (?x

woman)), since the former returns the individuals for which the DL system
can prove that they are not instances of woman, whereas the latter returns
all instances for which the DL system cannot prove that they are instances
of woman. Also note that neg and not are equivalent on substrates which
employ the CWA (e.g., the SBox).

Different Notions of Equality are Available Equality atoms can either
use syntactic or semantic equality predicates: “=syn” or “=sem”; these no-
tions coincide if the UNA is used. 10

The Body Projection Operator (project-to) This operator is required
in order to reduce the “dimensionality” of the extension of a subbody in
a query body before the complement set is computed with neg. It allows
to “fold in” subbodies for which dedicated horn rules would have to be
written otherwise. For example, in order to retrieve those individuals which
do not have a known child, we have to use (neg (project-to (?x) (?x

?y has-child))), since the extension of (neg (?x ?y has-child)) is a
two-dimensional set.

5.1 Syntax and Semantics

We only specify syntax and semantics for non-hybrid queries. The extension
to hybrid queries is straightforward, but does not really add to this paper.

Definition 6 (Syntax of SuQL) The head and body of a SuQL query,
(retrieve head body), are defined by the following grammar ({a|b} means
a or b):

head := (object∗)

object := variable | individual

variable := a symbol beginning with ?

individual := a symbol

body := atom | ( {and | union} body∗) | (neg body) |

(project-to (object∗) body)

atom := unary atom | binary atom | equality atom

unary atom := (object unary atom predicate)

binary atom := (object object binary atom predicate)

equality atom := (object object {=syn | =sem})

The predicates unary atom predicate and binary atom predicate are conceived
as FOPL formulas with one (resp. two) free variables x and y; however, the
concrete syntax may offer a variable-free syntax for them.

10 The predicate =sem is the standard equality predicate in FOPL with equality.
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The function obs(q) returns the objects (individuals and variables) referenced
in q and is defined inductively as follows: obs(unary atom) =def {x1} if
unary atom = (x1 unary atom predicate), obs(binary atom) =def {x1, x2}
if binary atom = (x1 x2 Q) with Q ∈ {binary atom predicate, =syn, =sem},
obs(({ and | union | neg } q1 . . . qm)) =def

⋃
1≤i≤m obs(qi), but

obs((project-to (x1 . . . xm) . . . )) =def {x1 . . . xm}. Thus, obs “stops at pro-
jections”.

Before we can define the semantics we need some auxiliary operations. Let T
be a set of n-ary tuples 〈t1, . . . , tn〉 and 〈i1, . . . , im〉 be an index vector with
1 ≤ ij ≤ n for all 1 ≤ j ≤ m. Then we denote the set T ′ of m-ary tuples with

T ′ =def { 〈ti1, . . . , tim〉 | 〈t1, . . . , tn〉 ∈ T } = π〈i1,...,im〉(T ),

called the projection of T to the components mentioned in the index vector
〈i1, . . . , im〉. For example, π〈1,3〉{〈1, 2, 3〉, 〈2, 3, 4〉} = {〈1, 3〉, 〈2, 4〉}.

Let ~b = 〈b1, . . . , bn〉 be a bit vector of length n, bi ∈ {0, 1}. Let m ≤ n. If ~b is
a bit vector which contains exactly m 1s, and B is some set (“the base”), and
T is a set of m-ary tuples, then the n-dimensional cylindrical extension T ′ of
T w.r.t. B and ~b is defined as

T ′ =def { 〈i1, . . . , in〉 | 〈j1, . . . , jm〉 ∈ T , 1 ≤ l ≤ m, 1 ≤ k ≤ n

and ik = jl if bk = 1 and bk is the lth “1” in ~b,

and ik ∈ B otherwise. }

and denoted by χB,〈b1,...,bn〉(T ). For example, χ{a,b},〈0,1,0,1〉({〈x, y〉}) =
{〈a, x, a, y〉, 〈a, x, b, y〉, 〈b, x, a, y〉, 〈b, x, b, y〉}.

We denote an n-dimensional bit vector having 1s at positions specified by the
index set I ⊆ 1 . . . n as ~1n,I . For example, ~14,{1,3} = 〈1, 0, 1, 0〉. Moreover, with
IDn,B we denote the n-dimensional identity relation over the set B.

Definition 7 (Semantics of SuQL) Let S = (V, E, LV , LE ,LV ,LE) be a
substrate, and q be a body.

The semantics of a query is given by the set of tuples it returns if posed to a
substrate S. This set of answer tuples is called the extension of q and denoted
by qE .

First we add equality atoms for query atoms which reference individuals. The
query body q is thus first rewritten. We define Θ(q) for atom with obs(atom)∩
V = {v1, . . . , vn}, n ∈ {1, 2} as

Θ(atom) =def (and atom (xv1
v1 = ) . . . (xvn

vn = )),

(please note that = ∈ {=syn, =sem}, as previously discussed, and that xvi
is
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the representative variable for vi) and extend the definition of Θ in the ob-
vious (inductive) way to complex query bodies as well. Moreover, Θ replaces
all occurrences of individuals in the projection list of project-to and in the
query head with their representative variables.

Let q′ = Θ(q) be the rewritten query. So we simply declare qE =def q′E . Let
us specify q′E . Let 〈x1,q′, . . . , xn,q′〉 be some fixed enumeration of obs(q′) (so
n = |obs(q′)|).

We define ·E inductively. We start with the query atoms:

(xi ,q ′ P)E =def χV,~1n,{i}
({< v > | v ∈ V, S |= Px←v } )

(xi ,q ′ xj ,q ′ Q)E =def χV,~1n,{i,j}
({< u, v > |u, v ∈ V, S |= Qx←u,y←v } )

(please note that due to Θ, all unary and binary query atoms which are not
equality atoms now have one and two variables correspondingly). The seman-
tics of the equality predicates is fixed as follows: S |= i =syn i and S 6|= i =syn j,
and S |= i =sem j iff for all models I of S (I |= S): iI = jI . Thus we define:

(xi ,q ′ xj ,q ′ =syn)
E =def χ

V,~1n,{i,j}
({< u, v > | u, v ∈ V,

if xi,q′ ∈ V , then u = xi,q′, if xj,q′ ∈ V , then v = xj,q′ })

(xi ,q ′ xj ,q ′ =sem)E =def χ
V,~1n,{i,j}

({< u, v > | u, v ∈ V, S |= u =sem v,

if xi,q′ ∈ V , then u = xi,q′, if xj,q′ ∈ V , then v = xj,q′ }).

We extend the definition of ·E inductively for complex (sub)bodies in q′:

(and q ′1 . . . q ′i)
E =def

⋂
1≤j≤i q

′
j
E

(union q ′1 . . . q ′i)
E =def

⋃
1≤j≤i q

′
j
E

(neg q ′1)
E =def V n \ q′1

E

(project-to (xi1,q′ . . . xik,q′) q ′1)
E =def π〈i1,...,ik〉(q

′
1

E)

To get the final answer of a query, the head has to be considered, for a final
projection. Thus, the result of (retrieve head q) is simply given as

(retrieve head q)E =def (project-to Θ(head) Θ(q)).E

5.2 The nRQL Instantiation of the SuQL

nRQL [33,34] is a specialized SuQL. It offers dedicated query atoms for
ALCQHIR+(D−), e.g. atoms addressing the concrete domain part of an ABox.
The nRQL atoms are: concept query atoms, e.g. (?x (some has-child human));
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role query atoms, e.g. (?x ?y has-child), and (binary) constraint query
atoms. All atoms have been discussed already, with the exception of constraint
query atoms. The following query uses all kinds of nRQL atoms:

(retrieve (?x)

(and (?x (and woman (min age 40))) (?x ?y has-child)

(?y ?y (constraint (has-father age) (has-mother age)

(<= (+ age-2 8) age-1)))))

This query returns thus instances of the concept women which are older than
40 and which have children whose fathers are at least 8 years older than their
mothers. Note that (has-father age) denotes a role chain ended by a so-
called concrete domain attribute, a kind of “path expression”: starting from
the individual bound to ?y (the child), we retrieve “the value” of the concrete
domain attribute age of the individual which is the filler of the has-father

role (feature) of this individual. In a similar way, the age of the mother of ?y is
retrieved. These concrete domain values are then used as actual arguments to
check whether the predicate (<= (+ age-2 8) age-1) holds for them; age-2
refers to (has-mother age), and age-1 refers to (has-father age). 11 How-
ever, these “values” are in fact variables in a concrete domain constraint net-
work (which can be left unspecified, i.e., no syntactically specified so-called
told value must exist).

Also more general role terms are admissible in role and constraint query atoms;
a role term is an element in the set of role names closed under the operators
{not, inv}. Thus, nRQL offers not only NAF negated roles, but also classical
negated roles, which are not provided by ALCQHIR+(D−).

Given the generic semantics definition, it should be clear how the semantics of
the dedicated nRQL atoms can be defined. Basically, we just need to define
S |= Px←v as well as S |= Qx←u,y←v; note that S is now an ABox A. However,
this is easy using the standard translation Φ of DL into FOPL [12]; e.g., for
a concept query atom predicate P = C this boils down to ordinary instance
checking or an instance retrieval query: A |= Φ(C)x←i iff A |= i : C iff A∪{i :
¬C} is unsatisfiable (basically, just one of the RacerPro API functions
concept instances or individual instance? need to be called), and for positive
roles R in role atoms we get A |= Φ(R)x←i,y←j iff A |= (i, j) : R iff A ∪ {i :
∀R.M, j : ¬M} is unsatisfiable, for some fresh concept name M (again, there
are standard API functions: role fillers and individuals related?). However, for
negated roles, we need to perform an ABox satisfiability (consistency) check,
since negated roles are not supported inALCQHIR+(D−):A |= Φ(¬R)x←i,y←j

iff A ∪ {(i, j) : R} is unsatisfiable. These “reduction tricks” are well known

11 Note that the suffixes -1, -2 have been added to the age attribute in order to
differentiate the two values (the mechanism is not needed where the two chains end
in different attributes).
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[47]. Particular API functions are called for constraint query atoms as well.

5.3 Concrete SuQL Instantiations for the DLMAPS System

We have discussed four representation options in the DLMAPS system. Al-
though the principal ideas have been laid out, we briefly present the resulting
spatio-thematic query languages in the SuQL framework for the DLMAPS
system. Which spatio-thematic QL is now applicable for the different repre-
sentation options (1–4) in the DLMAPS system?

Option 1: We can use plain nRQL, as explained.
Option 2: The resulting hybrid QL is called SnRQL. It provides the follow-

ing additional spatial atoms (note that it does not really add to the message
of this text to define these here formally); the extensions of the atoms are
computed on the fly by means of inspection methods.
RCC atoms: Atoms such as (?x ?y (:tppi :ntppi)); (:tppi :ntppi)

denotes the disjunctive RCC relation {TPPI ,NTPPI }. A rich set of
common sense natural language spatial prepositions such as :contains,
:adjacent, :crosses, :overlaps, :flows-in is available. The Θ func-
tion rewrites these into (the closest possible) RCC relation.

Distance Atoms: (?x ?y (:inside-distance <min> <max>)), where
<min>, <max> specifies an interval [min; max]; NIL can be used for 0
(or ∞); this applies to the subsequent interval specifications as well. For
example, the extension of (i ?x (:instance-distance nil 100)) con-
sists of all SBox objects which are not further than 100 meters from i.
Either the shortest distance or the distance between the centroids of these
objects is used.

Epsilon Atoms: (?x ?y (:inside-epsilon <min> <max>)). With that
atom, all objects ?y are retrieved, such that ?y is contained within the
buffer zone of a size specified by the interval [min; max] around ?x. This
buffer zone consists of all points (x, y) whose shortest distance to the
fringe of (the individual bound to) ?x is contained within [min; max].

Geometric Attribute Atoms: Atoms regarding geometric attributes, e.g.
length and area: The extension of (?x (:area 100 1000)) consists of
all nodes of type polygon in V whose area is in [100; 1000]. Also :length

is understood for linear objects. Moreover, simple type checking atoms
such as (?x :is-polygon), (?x :is-line) etc. are available (these are
needed in order to guard the application of certain spatial operators).
Here is a query which selects an appropriate home for a millionaire:

(retrieve (?villa ?living-area ?golf-club ?church)

(and (?*living-area (and living-area

(or (all classification first-class-area)
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(string= name "Beverley Hills"))))

(?living-area ?villa :contains)

(?*villa (and villa

(all status for-sale) (> has-price 10000000)

(some has-comfort swimming-pool)))

(?church ?living-area (:inside-epsilon nil 200))

(?living-area ?golf-club :adjacent)

(?*golf-club (and golf-club (all members millionaire)))))

Option 3: In principle like SnRQL, but the queries are no longer hybrid.
Moreover, the MiDeLoRa prover currently does not offer concrete do-
mains. Thus, the ABox query language part is reduced to concept and role
query atoms.

Option 4: The resulting hybrid QL is called nRQL + RCC atoms. This lan-
guage can only offer RCC atoms in addition to nRQL, since the geometry
of the map is not represented. The same syntax is used as for the SnRQL
RCC atoms (but the implementation obviously differs, since geometric com-
putations are required in one case, and RCC constraint checking in the other
case).

6 The SuQL Query Answering Engine

The SuQL engine exploits two generic optimization techniques: a cost-based
syntactic optimizer [34] and a semantics-based optimization, the so-called
query repository [34,48] (which is not described here).

The cost-based optimizer first transforms the body of the query into Disjunc-
tive Normal Form (DNF). In the DNF, each disjunct of the DNF is either a
single atom or a conjunctive query. Each conjunctive query is optimized indi-
vidually. To do so, the optimizer generates a potential n! number of possible
execution plans, if n conjuncts are present. An execution plan of a conjunctive
query determines the order of sequence in which the atoms are about to be
evaluated. In order to determine the “costs” of an atom in a plan, a method
get-score is called for, which can be overridden for specialized atoms. A
plan is thus generated step-by-step, and given a plan (a1, . . . , an), an atom
an+1 which yields the maximal score is selected and added next to the plan:
(a1, . . . , an, an+1). In such a way, a heuristic search procedure using standard
beam search (of sufficient breadth) searches for a “good” plan (if n gets big,
not all of the n! plans can be considered).

The standard implementation of get-score simply considers the role of the
atom in the currently evaluated plan and weights the atom accordingly. A
unary atom can either play the role of a tester or of a generator, depending on
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whether the variable referenced in the atom will be already bound at execution
time (specified by the plan) or not. The standard get-score implementation
simply prefers testers over generators. A binary atom (?x ?y R) can addi-
tionally take the role of a successor generator where only ?x is already bound,
or of a predecessor generator in case only ?y is already bound.

For example, consider the query (and (?x ?y R) (?y D) (?x C)). Using the
standard get-score implementation, of that 3! = 6 plans, the plans (a)=(?x

C), (?x ?y R), (?y D) are (b)= (?y D), (?x ?y R), (?x C) get the high-
est overall score. This optimization strategy is reasonable if one assumes that
the average number of R-successors or of R-predecessors of an individual is
small compared to the number of C and D instances. Thus, the “navigational”
approach for computing bindings is preferable over, e.g., the cross product
generation (e.g., in the plan (?x C), (?y D), (?x ?y R)).

The get-score method is refined for nRQL. Here, also ABox statistics are
taken into account. This enables a preference selection: plan (a) will be pre-
ferred iff |(?x C)E | ≤ |(?y D)E |, and (b) will be preferred otherwise. Since
this information is not always available, one sometimes has to rely on told
information.

We have performed an evaluation of the effectiveness of this optimization
technique, using the so-called Lehigh University Benchmark (LUBM) and the
LUBM Query No. 9 (Q9 in the following) [49]. The details of the LUBM
are not important here. It is sufficient to state that the LUBM consists of
an ontology modeling the university domain, as well as an ABox containing
thousands of individuals. The size of this ABox can be scaled, depending on
the number of Universities and University Departments. Q9 is the following
query:

(retrieve (?x ?y ?z)

(and (?x Student) (?y Faculty) (?z Course)

(?x ?y advisor) (?x ?z takesCourse) (?y ?z teacherOf)))

Obviously, 6!=720 execution plans exist. In order to measure the effectiveness
of the heuristic optimizer, we switched off the optimizer and executed and
measured the runtimes of all 720 permutation queries. Moreover, we executed
the queries in an incomplete nRQL mode such that no ABox reasoning is
required. The rationale for doing so is to measure the effectiveness of just this
single optimization technique; thus, approximately constant time is needed for
each variable binding test and each variable binding generation step. The size
of the LUBM ABox is also not important here, but for the sake of completeness
of information we state that we have used 6 university departments (we have
kept the size small, since the test takes too long otherwise). The measured
and (in ascending order) sorted runtimes are shown in Fig. 5. The fastest
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Fig. 5. Execution Times of the 720 Permutation Queries for Q9

permutation query needed only 0.013 seconds, and the slowest 62.723 seconds.
This is a factor of 4824.846. If the optimizer is turned on, then it generates a
plan which corresponds to the third best permutation query; we measured 0.03
seconds. However, since query answering is performed in milliseconds here,
this could be noise as well and one could claim that the optimizer selected an
“optimal” query. We did not measure variances. The result shows that this
optimization is good enough and indispensable.

Another very important optimization technique exploited concerns the com-
putation of the role successors and role predecessors; this technique is very
important, since the optimizer prefers a navigational approach to variable
binding computation (since successor and predecessor generators of binary
atoms are preferred over unary generators). In principle, an ABox satisfiabil-
ity check is required in order to check whether j is an R successor of i in A,
since A |= (i, j) : R iff the ABox A ∪ {i : ∀R.M, j : ¬M} is unsatisfiable,
for some fresh marker concept M . However, for simple DLs without number
restrictions or features, an important optimization can be turned on:

Lemma 1 (Syntactic Test for Role Filler Entailment) Let A be an
ALCHIR+ ABox, and R be a role. Then, A |= (i, j) : R iff A ; (i, j) : R,
where A ; (i, j) : R holds iff (i, j) : S ∈ A, S ⊑ R, or (j, i) : S ∈ A, for
S ⊑ R−1, or A; (i, k) : R and A; (k, j) : R, for some k ∈ inds(A), if R is
a transitive role.
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This Lemma is a direct consequence of [15, pp. 11, Def. 9,6.]; the optimiza-
tion is also suggested in [27] and [12, pp. 67]. We omit the (rather trivial)
proof here. The Lemma has been exploited for nRQL starting with Rac-
erPro 1.8.0 (even for the so-called incomplete modi which do not require
ABox reasoning [48]). Please note that the Lemma no longer holds as soon as
equality statements (or owl:same-as), functional roles or number restrictions
are added. However, a weaker statement can then be made which states that
in order for A |= (i, j) : R to hold, there must at least be some connecting
path of role assertions or same-as assertions in the ABox between i and j. The
test can be used as a guard for the ABox satisfiability tests which reduces the
number of tests.

Let us use Q9 to demonstrate the effectiveness of the optimizations. This time
we have used MiDeLoRa on a LUBM ABox containing a single university
department (it contains 1555 individuals). Q9 returns 13 result tuples; MiDe-
LoRa needs 1.3 seconds to compute these if all optimizations are turned on
(the system does not yet achieve the performance of RacerPro). The initial
ABox satisfiability test (which is needed in order to decide whether query an-
swering makes sense at all) still takes 12 seconds, but the subsequent ABox
satisfiability checks run faster due to optimizations described in [29,21]. Such
a subsequent ABox test currently needs 3.7 seconds. For answering Q9, not a
single ABox consistency test was performed. We have counted the number of
calls to the API function individuals related?, initiated by the role tester, role
successor and role predecessor generator functions. Given individuals i, j, a
role R and an ABox A (with associated TBox), individuals related?(A, i, j, R, )
decides A |= R(i, j). individuals related? was called 4133 times. So, without the
described optimization, 4133 ABox satisfiability tests would be required for
answering Q9, each one taking approx. 3.7 seconds. This means that 4133 *
3.7 = 4.25 hours would be needed for answering Q9 with MiDeLoRa. More-
over, the number of individuals related? calls is already minimized, since i and
j are only checked for relatedness if there is an appropriate path of role asser-
tions connecting i and j. Thus, a näıve implementation would perhaps even
generate 15552 = 2418025 ABox consistency checks, thus, 103.37 days would
be needed. These numbers demonstrate the significance of the optimizations.

7 Conclusion

Building OBIS with enabling DL technology is a non-trivial task, especially
for IS in non-standard domains such as the one considered here. The space of
design decisions is very large. Thus we have designed a flexible and generic
framework which offers appropriate abstractions that are able to cover regions
in these design spaces instead of just points.
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Since decidability and scalability is not always easy to achieve for OBIS, we
believe that it is of even more importance to identify practical solutions which,
even though they do not exploit or advance the latest theoretical state-of-the-
art techniques in DL research, can nevertheless be considered an advance
regarding the current state-of-the-art IS technology and provide guidance and
“road maps” for similar designs.

We claim that our framework for building pragmatic combinations of special-
ized representation layers (including DL ABoxes) for which orthogonal spe-
cialized substrate QLs and dedicated provers can be defined, provides a great
deal of flexibility for building similar OBIS. Moreover, some of the functional-
ity described here is immediately available for other users (of the RacerPro
system). We claim that the identified software abstractions are valuable, also
for non-Lisp developers, as are the identified optimization techniques for on-
tology query answering engines.
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[47] R. Möller, M. Wessel, Terminological Default Reasoning About Spatial
Information: A First Step, in: Proc. of the Int. Conference on Spatial
Information Theory (COSIT’99), 1999.

[48] Racer Systems GmbH & Co. KG, RacerPro User’s Guide 1.9.0, Tech. Rep.,
http://www.racer-systems.com/products/racerpro/users-guide-1-9.pdf,
2005.

[49] Y. Guo, Z. Pan, J. Heflin, An Evaluation of Knowledge Base Systems for Large
OWL Datasets, in: Proc. of the Third Int. Semantic Web Conference (ISWC’04),
2004.

40


