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– idea of the Semantic Web & logic-based Knowledge Representation

● Reasoning with formal ontologies

– RacerPro & RacerPorter reasoning demo 

– W3C SemWeb „languages“ (OWL, RDFS, SPARQL, SWRL, …)

● Semantic Web programming in the „RacerPro environment“

– JRacer, LRacer, MiniLisp, extensibility, OWLAPI, OWLlink, ...

● The role of Lisp 
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                 - Architecture & History

● Started as Racer at the University 
 of Hamburg in 1998, project of
 Volker Haarslev & Ralf Möller

● First description logic (DL) 
  reasoner „of the new generation“ 
  of highly optimized DL systems 
  with ABox (individuals, relations)
● One of the first OWL DL (-) 
 systems (2002), DL 

● Commercial offspring RacerPro 
 by Racer Systems (2004 - today) 

● Expressive query language nRQL 
● First DL system that could give 
  complete answers to the 
 LUBM Benchmark queries (2004)

● First DL system with inference-
  aware SWRL & SPARQL 
● Main memory-based
● Recently: Integrated AllegroGraph 
● Some special-purpose 
 representations and reasoning 

● Free for education & research 
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● „The big database in the sky“

– Web 1.0 – syntactic web, technical basis (HTTP, HTML, …) 

– Web 2.0 – social / community web for people
(Wikis, Blogs, Boards, Flicker, Blogger, Twitter, ...) 

● folksonomies („(geo) tagging“)

– Web 3.0 – Web 2.0 plus meta data for machines
● meta data = page annotations, service descriptions, ...

provided in terms of ontologies 
(provide explicit formal semantics for terms → reasoning)

● annotations = logical propositions about resources 
identified by URIs

● SPARQL endpoints & RDFa (RDF in HTML) 

● Technically, the SemWeb is not really a „database“ (see below) 

The Semantic Web - „A Web of Data“
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RDF Mashups / Linked Open Data 
(© LOD Cloud)

© DBPedia - 
RDF from Wikis

274 million “facts”
„Wikipedia for

machines“
uses AllegroGraph

FOAF
scalability
is an issue!
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Semantic Web Stack (Layer Cake) © W3C

SWRL„SPARQL 
DL“

RDFa

Web
Ontology
Language

RDF 
„applications“:

FOAF, 
RSS, SKOS, 
EXIF, DC, ...

    fixed semantics, 
basic reasoning

(is-a, ...)

Arbitrary
meta data

(vocabularies)
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Logic-Based Knowledge 
Representation & Reasoning

 ● SemWeb = „KR&R on the Web“ 

● Replace real-world reasoning
with computational operations 
performed in a model (     ) 

● Model ~ representation ~ KB 

● Ontology: explicit specification 
of a conceptualization

– „formal account of what 
exists in the world“

– logic-based definitions of 
concepts & relations in terms 
of other concepts & relations 

– automated reasoning

– inference makes implicit 
knowledge explicit

Initial KB
(repr. of

propositions)

Final KB
(ask f. entailed 
propositions)

Initial 
Propositions 

Final 
Propositions

desired 
real-world
reasoning

Representation
(TELL)

Interpretation
(ASK)

 … „in“ the world
(ontology =
„what exists 
in the world“)

… of some 
cognitive agent

(knowledge 
representation)

Relevant aspects
should be isomorphic

with real world
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Logic-Based KR&R (2)

 

● First-Order Predicate Logic:      undeceidable

● Description Logics (OWL DL): deceidable, 
                                                    but NEXPTIME complete

desired 
real-world
reasoning

Representation
(TELL)

Interpretation
(ASK)

Q: „Is Betty a woman?“
A: Yes

Q: „Has Betty a child?“
A: Yes

„Betty is a mother“
„Mothers are woman“

„ABox“
axioms
(facts, 

assertions)

„TBox“
axioms
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Reasoning with Formal Ontologies

● Demo of some standard inferences using RacerPro & RacerPorter

– Basis: „People & Pets“ ontology 

by Sean Bechhofer (Univ. of Manchester) 

– but will use KRSS / Racer Lisp syntax in this demo

– show some OWL syntaxes later
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RacerPorter – The Listener („Racer Shell“)

Comfortable
RacerPro listener
with completion,

function doc, 
history, pretty 

printing, …
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The Racer Editor with Some Example Queries

RacerEditor for 
        knowledge base creation, 

expression evaluation, ...
supports OWL RDF,

KRSS, SPARQL
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The Class (Concept) Hierarchy („Taxonomy“)

               derived logical 
       consequence („|=“):

cat owners are
cat likers, 

old ladies are 
cat owners!
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The Relation (Role / Property) Hierarchy

   Relation hierarchy - 
  „has pet“ is a subrelation

of „likes“
(having a pet implies

that you like it) 
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Individuals & Relationships – ABox Graph

Another inference
(„reasoning about data“): 

   Minnie is an old lady because
she is a female elderly person. 
Old ladies are cat owners → 

Tom is a cat!

TBox

ABox
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Inspecting Class Assertions for Tom

It is
 not asserted explicitly

that Tom is a cat! 
(„Class Assertion“)

(top = thing concept)
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Relation („Role“) Assertions for Tom

It is asserted that
Tom is a pet of Minnie

(„Role assertion“)
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Syntaxes

● Old lady concept in... 

– KRSS / Racer native:

– New: OWL 2 Functional Syntax (almost S-Expressions...)

Racer can be
used as a 

syntax converter
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Syntaxes (2)

● Old lady concept in OWL RDF/XML:

(equivalent old_lady...

… (and ...

 … person female elderly ...

… )) 



  Michael Wessel13.09.2009 20

Syntaxes (3)

● Old lady concept in OWL RDF/XML continued
(implies old_lady ...

… (and ...

… (all has_pet cat) ...

… (some has_pet cat) ...
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ABox Part of an OWL Ontology - RDF Graph

Minnie Tom
has_pet

elderly

       
rdf:type

female

           rdf:type
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ABox Part of an OWL Ontology - RDF Graph

Minnie Tom
has_pet

elderly

       
rdf:type

female
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W3C RDF Query Language - SPARQL

SQL-like
syntax
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SPARQL with RacerPro Demo

SPARQL queries
can be evaluated 
from the Listener
or the editor, also
in native Syntax
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Some Comments on SPARQL... 

● SPARQL was not meant as an OWL query language

– does it consider inferred triples (rdf:type? inferred properties?) 

● can't retrieve old ladies
– no negation as failure, no universal quantification, no aggregation

● most of our example queries cannot be formulated 

– as a rule language: has construct, but cannot create new URIs 

● SPARQL in Racer, 2 modi:

1: use AllegroGraph SPARQL processor (filled by Racer with triples) 

● scalable, secondary memory, …, but only shallow inference

2: translated into nRQL query (uses AllegroGraph SPARQL parser)  

● full OWL reasoning, but not so scalable, SPARQL subset only

compromiss: let RacerPro materialize the inferred triples in 
AllegroGraph, then use mode 1 for SPARQL query answering
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W3C Semantic Web Rule Language - SWRL

● Motiviation: enhanced relational expressivity 
(certain relational structures can't be encoded with concepts)

● Horn rules in RDF/XML syntax

– Jess-based implementations

● undeceidable, but deceidable fragments 

● Racer supports restricted subset of SWRL

– translated into nRQL rules 

– nRQL rules need not be horn
● and can construct new individuals 
● but have a non-logical semantics (similar to Jess)

Male
?y ?x

?z

 Has  childhas                  
uncle                

Has
sibling
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ABox Queries & Indefinite Information

Assuming all blocks are red or green 
- then, is there a green block on the 
table which is next to a red one?
  © Brachman & Levesque

?

on-table, next-to, block, green, red, ...

next-to next-to

on-table

table

block, green

Conceptualization
(Abstraction)

Formalization

Problem Solving

Ask for instances of the concept
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ABox Queries & Indefinite Information (2)

t

        There are two possiblities.
    If the middle block is red,
   then the green left block is
       next to a red one. But... 

next-to next-to

on-table

table

block, green block, red

Model 1
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ABox Queries & Indefinite Information (3)

t

next-to next-to

on-table

table

block, green block, green

Model 1 Model 2

      … if the middle block is green,
then it is also next to the

red block – so YES, there
always is such a block!
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ABox Queries vs. Database Queries

t

?

However: 

● Unlike DB queries, instance retrieval queries can cope with

– incomplete information (have to perform case analysis)

– have to consider ALL models, not only one („model = DB“)

– only the existence of such a block is entailed
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More Expressive Queries: 
Conjunctive ABox Queries 

t

?

● Answer should be:              

– most DL systems nowadays return no answer 

– deceidability open until recently

● You can't retrieve       because its binding can't be fixed

– answer (head) variables  & other variables 
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Solving Problems with Reasoning - Sudoku

C4 C1

C3 C2

Create a KB whose 
logical models represent 

all possible Sudoku solutions. 
A good Sudoku has only 
ONE solution → entailed

facts = solution!
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Sudoku – ABox Construction

C4

ABox construction

– by hand? OK for 4x4, but for 9x9?
→ create the structure programmatically 
    (MiniLisp)

– transitive & symmetric property → 
● use different backward property 

instead of a symmetric property
● quantification over common parent property

C4
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C4

Sudoku – Relational Structure 

dashed = inferred
by transitivity

bold =
asserted
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Solving Sudokus with Racer Reasoning!

MiniLisp 
for programmatic KB 

  (here: ABox) creation, and
 output generation.

New „ad hoc“ server 
functions can be defined in 

MiniLisp.
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RacerPorter – MiniLisp HTML Generation

HTML generation 
with MiniLisp - 

created page served
with AllegroServe
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End of Presented Material... 

… due to a lack of time I couldn't
present the remaining material but

I am including the slides here anyway.
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● RacerPro is a server: 2 sockets / ports 

– 8088 TCP Lisp syntax (→ Porter)

– 8080 HTTP XML (DIG)

– file IO

– approx 1000 API functions

● RacerPro remote 
access libraries (sets of stubs) 

– LRacer for Lispers

(ACL, Lispworks, SBCL, CLisp)

– JRacer for Java

– unicode (UTF8)

● DIG, OWLlink, OWLAPI

„SemWeb“ Development with Racer
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LRacer for Lispers

● Size: > 1000 API
functions / macros
● HAS to be 

generated automatically
● Some roblems with 

UTF8 socket streams 
on different Lisps

● ACL „modern Lisp“ 
● Racer is case 

sensitive „mlisp“
● LRacer: maybe „alisp“
● NIL ↔ nil
● conversion required!

… but for which
symbols? depends 
on packages! 

● with-macros...
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JRacer for Java Developers

● Automatically generated
● Strings or ArrayLists
  for S-Expressions → generics,
  structure iteration
● Typecasts and runtime 
  checks not avoidable...
● UTF8 
● Java ellipsis for  
   &rest, &key 
● overloaded methods for
 &optional a b …
● with-... macros
● > 3000 Java methods
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● XML over HTTP-based 

– 8080 port of RacerPro 

– AllegroServe / CL-HTTP

– DIG used by Protégé 3.x 

ontology editor

● OWLlink

– successor of DIG 

– we are developing an 
S-Expression over HTTP 
(instead of XML messages) 
binding for the protocol 
(idea: turn OWL functional syntax into S-Expressions)

DIG & OWLlink – XML-over-HTTP APIs
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The OWLAPI Java „SemWeb“ Framework

● An important Java framework
for SemanticWeb programming
(similar to Jena for RDF, ...)

● Basis of Protégé 4.x 

– handles reasoner access

– RacerAdapter required 

– RacerReasoner adapter 
& Protégé plugin developed
and provided by Olaf Noppens 
from Ulm University

– required an entirely new Racer-API
(Racer-OWLAPI) in order to make the 
adapter work (have to support the core OWLAPI abstractions)
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Graphical OWL2 Modeling with Protégé 4
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Graphical OWL2 Modeling with RacerPorter
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● MiniLisp

– ad-hoc server extensions (API function missing?)  

– executed on the server (no communication latency → fast)

– user-defined query predicates 

– report generation, programmatic knowledge base creation  
(„Sudoku Grid“), „Racer scripting“ 

● Plugin mechanism

– create a FASL file with AllegroExpress, convert it into a plugin

– server extensions possible (hook mechanism)

– „at our own risk“, full access to Racer internals, .... 

– faster & more general than MiniLisp, but not „ad hoc“ 

RacerPro Extensibility
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● A simple „Lisp 1 Lisp in Lisp“ (own evaluator) 

● Motivation: termination safe & simple (important if used in queries!) 

– total recursive functions 

● Basic datatypes and operations (both borrowed from CL) for

– lists, numbers, symbols, characters, booleans, basic IO streams 

– no cyclic lists

● Control structures (mostly borrowed from CL)

– bounded loops, structure mapping (no cyclic lists)
dotimes, dolist, maplist, maptree, …

– if, when, unless, cond, … 

● defun and defpar, defcon 

– recursion always aborted at runtime (stack inspection)

MiniLisp in a Nutshell
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● No macros

● All RacerPro API functions / macros callable (macros treated as functions)

● setq (incf, decf), but no generalized variables (prevent cyclic lists)

● No closures

– impossible

 ((lambda (x x) (x x)) (lambda (x x) (x x))) 

– (built-in) higher order functions have to be special forms  
(maplist (lambda (x) (1+ x)) '(1 2 3))

● evaluate

– but no (evaluate … (evaluate …) …) 

● Quote, backquote, … 

● Claim: covers 99,99% of the typical „Racer programming“ cases! 

MiniLisp in a Nutshell (2)
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● Racer could have been implemented in another language...

– … but some Lisp-features are especially valuable here

– „standard arguments“ (GC, closures, …) apply to may languages 
nowadays (Haskell, Phython, Ruby, JavaScript, F#,  …) 

● Merits of functional programming

– Racer tableaux prover (= system core / kernel) was implemented in a 
functional style (seems natural) 

– good for debugging 

– but problems with stack size someday 

● switched to closures for representation of backtracking context 
(„continuation-passing style“)

● implementation didn't break although this was a drastic change in 
the system architecture → flexibility of Lisp 

Benefits of Lisp
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● Ability to concisely represent and conveniently manipulate 
complex expression 

– structured literals 

– you don't want 
expr.add(new this(„a“).add(new that(„b“))); 

– ArrayLists : [„a“, „b“] 

– S-Expressions were invented for symbolic computation 
→ perfect 

– S-Expressions for the front-end syntax 
(things get encoded later)

… LOTS of operations deal with front-end syntax only

Benefits of Lisp (2)
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● Abstraction 

– W3C standards such as OWL2 are still a moving target

● a very flexible basis is needed / prototyping 
● decouple implementation from standardization ;-) 
● transform OWL (SPARQL, SWRL, ...) into that representation 

(but keep the original representation) 

– Lisp allows you to defer decisions 

● no static typing (no extensive „type“ or class hierarchy refactorings) 
● no tight data structure (class hierarchy) / operations coupling

→ operations can be combined in a more flexible way
● macros can save you a LOT of refactoring time

(change the macro, keep the code!) 
● „open“ method / function signatures / delegation chains:

(defun f1 (… &rest args &allow-other-keys) 
… (apply #'f2 args)))) 

Benefits of Lisp (3)
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● Reflexive / introspective qualities of Lisp

– meta-information is always there  

within the SAME environment (→ synergy effect), e.g. 

● racer-defun does many things in one place:

– registers the function for the server listener 
– creates LRacer & JRacer stubs based on lambda list
– creates code for RacerPorter to support completion, … 

● defowlaxiomclass 

– creates the axiom editor CAPI dialogs for Porter by 
„inspecting“ its slots, conjoining appropriate CAPI code 
for the different attributes

● „data driven“ meta programming 

→ Lisp allows a very small company (us!) to survive 
     W3C Semantic Web standards ;-) 

Benefits of Lisp (4)
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● Lack of „(quasi) standardized“ frameworks / solutions

– and quality of the existing frameworks probably not as good as in 
the Java world (MUCH less developers are using them on a daily 
basis)

● Java ↔ Lisp „in memory“ integration still very hard

– e.g., very nice graph layouters in Java

– Java developers get much more for free

→ Lispers have to work harder: more hand-crafted solutions

● Language too old (?) 

– unicode sockets, custom streams (e.g., gzipped streams), … 

● GC is a big plus, but very hard to control sometimes (for large 
KBs)

Drawbacks of Lisp 
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● CL-HTTP (John Mallery) / AllegroServe

– owl-read-document (HTTP client)

● owl:Import (downloads an ontology from the web)

– DIG / OWLlink server 

● Wilbur (Ora Lassila)

– basic RDF processing 

● AllegroGraph

– SPARQL parser & triple store for RacerPro 

● Lispworks CAPI and Lispworks editor 

– for RacerPorter / RacerEditor 

– thanks to Martin Simmons for great CAPI support

Exploited Lisp Frameworks
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● www.racer-systems.com

there is the 2.0 preview version

– no license required

– to be finalized soon

● A recent research project
which uses RacerPro: 
www.boemie.org

     Thanks! 

How do I get RacerPro ?

http://www.racer-systems.com/
http://www.boemie.org/
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