
 Michael Wessel13.09.2009 1

The RacerPro Environment for
Lisp-based Semantic Web Applications

 Michael Wessel

GmbH & Co. KG
Blumenau 50

22089 Hamburg

 Michael Wessel13.09.2009 2

● History

– Racer, Racer Systems, RacerPro

● Background

– idea of the Semantic Web & logic-based Knowledge Representation

● Reasoning with formal ontologies

– RacerPro & RacerPorter reasoning demo

– W3C SemWeb „languages“ (OWL, RDFS, SPARQL, SWRL, …)

● Semantic Web programming in the „RacerPro environment“

– JRacer, LRacer, MiniLisp, extensibility, OWLAPI, OWLlink, ...

● The role of Lisp

Table of Contents

 Michael Wessel13.09.2009 3

 - Architecture & History

● Started as Racer at the University
 of Hamburg in 1998, project of
 Volker Haarslev & Ralf Möller

● First description logic (DL)
 reasoner „of the new generation“
 of highly optimized DL systems
 with ABox (individuals, relations)
● One of the first OWL DL (-)
 systems (2002), DL

● Commercial offspring RacerPro
 by Racer Systems (2004 - today)

● Expressive query language nRQL
● First DL system that could give
 complete answers to the
 LUBM Benchmark queries (2004)

● First DL system with inference-
 aware SWRL & SPARQL
● Main memory-based
● Recently: Integrated AllegroGraph
● Some special-purpose
 representations and reasoning

● Free for education & research

 Michael Wessel13.09.2009 4

 – Partners & Friends

Prof.
Ralf Möller

Prof.
Volker Haarslev

Michael
Wessel

President
Kay Hidde

AllegroGraph
ACL

mutual
redistribution

Research in
DLs, OWL,

Racer-projects

 Michael Wessel13.09.2009 5

● „The big database in the sky“

– Web 1.0 – syntactic web, technical basis (HTTP, HTML, …)

– Web 2.0 – social / community web for people
(Wikis, Blogs, Boards, Flicker, Blogger, Twitter, ...)

● folksonomies („(geo) tagging“)

– Web 3.0 – Web 2.0 plus meta data for machines
● meta data = page annotations, service descriptions, ...

provided in terms of ontologies
(provide explicit formal semantics for terms → reasoning)

● annotations = logical propositions about resources
identified by URIs

● SPARQL endpoints & RDFa (RDF in HTML)

● Technically, the SemWeb is not really a „database“ (see below)

The Semantic Web - „A Web of Data“

 Michael Wessel13.09.2009 6

RDF Mashups / Linked Open Data
(© LOD Cloud)

© DBPedia -
RDF from Wikis

274 million “facts”
„Wikipedia for

machines“
uses AllegroGraph

FOAF
scalability
is an issue!

 Michael Wessel13.09.2009 7

Semantic Web Stack (Layer Cake) © W3C

SWRL„SPARQL
DL“

RDFa

Web
Ontology
Language

RDF
„applications“:

FOAF,
RSS, SKOS,
EXIF, DC, ...

 fixed semantics,
basic reasoning

(is-a, ...)

Arbitrary
meta data

(vocabularies)

 Michael Wessel13.09.2009 8

Logic-Based Knowledge
Representation & Reasoning

 ● SemWeb = „KR&R on the Web“

● Replace real-world reasoning
with computational operations
performed in a model ()

● Model ~ representation ~ KB

● Ontology: explicit specification
of a conceptualization

– „formal account of what
exists in the world“

– logic-based definitions of
concepts & relations in terms
of other concepts & relations

– automated reasoning

– inference makes implicit
knowledge explicit

Initial KB
(repr. of

propositions)

Final KB
(ask f. entailed
propositions)

Initial
Propositions

Final
Propositions

desired
real-world
reasoning

Representation
(TELL)

Interpretation
(ASK)

 … „in“ the world
(ontology =
„what exists
in the world“)

… of some
cognitive agent

(knowledge
representation)

Relevant aspects
should be isomorphic

with real world

 Michael Wessel13.09.2009 9

Logic-Based KR&R (2)

● First-Order Predicate Logic: undeceidable

● Description Logics (OWL DL): deceidable,
 but NEXPTIME complete

desired
real-world
reasoning

Representation
(TELL)

Interpretation
(ASK)

Q: „Is Betty a woman?“
A: Yes

Q: „Has Betty a child?“
A: Yes

„Betty is a mother“
„Mothers are woman“

„ABox“
axioms
(facts,

assertions)

„TBox“
axioms

 Michael Wessel13.09.2009 10

Reasoning with Formal Ontologies

● Demo of some standard inferences using RacerPro & RacerPorter

– Basis: „People & Pets“ ontology

by Sean Bechhofer (Univ. of Manchester)

– but will use KRSS / Racer Lisp syntax in this demo

– show some OWL syntaxes later

 Michael Wessel13.09.2009 11

RacerPorter – The Listener („Racer Shell“)

Comfortable
RacerPro listener
with completion,

function doc,
history, pretty

printing, …

 Michael Wessel13.09.2009 12

The Racer Editor with Some Example Queries

RacerEditor for
 knowledge base creation,

expression evaluation, ...
supports OWL RDF,

KRSS, SPARQL

 Michael Wessel13.09.2009 13

The Class (Concept) Hierarchy („Taxonomy“)

 derived logical
 consequence („|=“):

cat owners are
cat likers,

old ladies are
cat owners!

 Michael Wessel13.09.2009 14

The Relation (Role / Property) Hierarchy

 Relation hierarchy -
 „has pet“ is a subrelation

of „likes“
(having a pet implies

that you like it)

 Michael Wessel13.09.2009 15

Individuals & Relationships – ABox Graph

Another inference
(„reasoning about data“):

 Minnie is an old lady because
she is a female elderly person.
Old ladies are cat owners →

Tom is a cat!

TBox

ABox

 Michael Wessel13.09.2009 16

Inspecting Class Assertions for Tom

It is
 not asserted explicitly

that Tom is a cat!
(„Class Assertion“)

(top = thing concept)

 Michael Wessel13.09.2009 17

Relation („Role“) Assertions for Tom

It is asserted that
Tom is a pet of Minnie

(„Role assertion“)

 Michael Wessel13.09.2009 18

Syntaxes

● Old lady concept in...

– KRSS / Racer native:

– New: OWL 2 Functional Syntax (almost S-Expressions...)

Racer can be
used as a

syntax converter

 Michael Wessel13.09.2009 19

Syntaxes (2)

● Old lady concept in OWL RDF/XML:

(equivalent old_lady...

… (and ...

 … person female elderly ...

…))

 Michael Wessel13.09.2009 20

Syntaxes (3)

● Old lady concept in OWL RDF/XML continued
(implies old_lady ...

… (and ...

… (all has_pet cat) ...

… (some has_pet cat) ...

 Michael Wessel13.09.2009 21

ABox Part of an OWL Ontology - RDF Graph

Minnie Tom
has_pet

elderly

rdf:type

female

 rdf:type

 Michael Wessel13.09.2009 22

ABox Part of an OWL Ontology - RDF Graph

Minnie Tom
has_pet

elderly

rdf:type

female

 Michael Wessel13.09.2009 23

W3C RDF Query Language - SPARQL

SQL-like
syntax

 Michael Wessel13.09.2009 24

SPARQL with RacerPro Demo

SPARQL queries
can be evaluated
from the Listener
or the editor, also
in native Syntax

 Michael Wessel13.09.2009 25

Some Comments on SPARQL...

● SPARQL was not meant as an OWL query language

– does it consider inferred triples (rdf:type? inferred properties?)

● can't retrieve old ladies
– no negation as failure, no universal quantification, no aggregation

● most of our example queries cannot be formulated

– as a rule language: has construct, but cannot create new URIs

● SPARQL in Racer, 2 modi:

1: use AllegroGraph SPARQL processor (filled by Racer with triples)

● scalable, secondary memory, …, but only shallow inference

2: translated into nRQL query (uses AllegroGraph SPARQL parser)

● full OWL reasoning, but not so scalable, SPARQL subset only

compromiss: let RacerPro materialize the inferred triples in
AllegroGraph, then use mode 1 for SPARQL query answering

 Michael Wessel13.09.2009 26

W3C Semantic Web Rule Language - SWRL

● Motiviation: enhanced relational expressivity
(certain relational structures can't be encoded with concepts)

● Horn rules in RDF/XML syntax

– Jess-based implementations

● undeceidable, but deceidable fragments

● Racer supports restricted subset of SWRL

– translated into nRQL rules

– nRQL rules need not be horn
● and can construct new individuals
● but have a non-logical semantics (similar to Jess)

Male
?y ?x

?z

 Has childhas
uncle

Has
sibling

 Michael Wessel13.09.2009 27

ABox Queries & Indefinite Information

Assuming all blocks are red or green
- then, is there a green block on the
table which is next to a red one?
 © Brachman & Levesque

?

on-table, next-to, block, green, red, ...

next-to next-to

on-table

table

block, green

Conceptualization
(Abstraction)

Formalization

Problem Solving

Ask for instances of the concept

 Michael Wessel13.09.2009 28

ABox Queries & Indefinite Information (2)

t

 There are two possiblities.
 If the middle block is red,
 then the green left block is
 next to a red one. But...

next-to next-to

on-table

table

block, green block, red

Model 1

 Michael Wessel13.09.2009 29

ABox Queries & Indefinite Information (3)

t

next-to next-to

on-table

table

block, green block, green

Model 1 Model 2

 … if the middle block is green,
then it is also next to the

red block – so YES, there
always is such a block!

 Michael Wessel13.09.2009 30

ABox Queries vs. Database Queries

t

?

However:

● Unlike DB queries, instance retrieval queries can cope with

– incomplete information (have to perform case analysis)

– have to consider ALL models, not only one („model = DB“)

– only the existence of such a block is entailed

 Michael Wessel13.09.2009 31

More Expressive Queries:
Conjunctive ABox Queries

t

?

● Answer should be:

– most DL systems nowadays return no answer

– deceidability open until recently

● You can't retrieve because its binding can't be fixed

– answer (head) variables & other variables

 Michael Wessel13.09.2009 32

Solving Problems with Reasoning - Sudoku

C4 C1

C3 C2

Create a KB whose
logical models represent

all possible Sudoku solutions.
A good Sudoku has only
ONE solution → entailed

facts = solution!

 Michael Wessel13.09.2009 33

Sudoku – ABox Construction

C4

ABox construction

– by hand? OK for 4x4, but for 9x9?
→ create the structure programmatically
 (MiniLisp)

– transitive & symmetric property →
● use different backward property

instead of a symmetric property
● quantification over common parent property

C4

 Michael Wessel13.09.2009 34

C4

Sudoku – Relational Structure

dashed = inferred
by transitivity

bold =
asserted

 Michael Wessel13.09.2009 35

Solving Sudokus with Racer Reasoning!

MiniLisp
for programmatic KB

 (here: ABox) creation, and
 output generation.

New „ad hoc“ server
functions can be defined in

MiniLisp.

 Michael Wessel13.09.2009 36

RacerPorter – MiniLisp HTML Generation

HTML generation
with MiniLisp -

created page served
with AllegroServe

 Michael Wessel13.09.2009 37

End of Presented Material...

… due to a lack of time I couldn't
present the remaining material but

I am including the slides here anyway.

 Michael Wessel13.09.2009 38

● RacerPro is a server: 2 sockets / ports

– 8088 TCP Lisp syntax (→ Porter)

– 8080 HTTP XML (DIG)

– file IO

– approx 1000 API functions

● RacerPro remote
access libraries (sets of stubs)

– LRacer for Lispers

(ACL, Lispworks, SBCL, CLisp)

– JRacer for Java

– unicode (UTF8)

● DIG, OWLlink, OWLAPI

„SemWeb“ Development with Racer

 Michael Wessel13.09.2009 39

LRacer for Lispers

● Size: > 1000 API
functions / macros
● HAS to be

generated automatically
● Some roblems with

UTF8 socket streams
on different Lisps

● ACL „modern Lisp“
● Racer is case

sensitive „mlisp“
● LRacer: maybe „alisp“
● NIL ↔ nil
● conversion required!

… but for which
symbols? depends
on packages!

● with-macros...

 Michael Wessel13.09.2009 40

JRacer for Java Developers

● Automatically generated
● Strings or ArrayLists
 for S-Expressions → generics,
 structure iteration
● Typecasts and runtime
 checks not avoidable...
● UTF8
● Java ellipsis for
 &rest, &key
● overloaded methods for
 &optional a b …
● with-... macros
● > 3000 Java methods

 Michael Wessel13.09.2009 41

● XML over HTTP-based

– 8080 port of RacerPro

– AllegroServe / CL-HTTP

– DIG used by Protégé 3.x

ontology editor

● OWLlink

– successor of DIG

– we are developing an
S-Expression over HTTP
(instead of XML messages)
binding for the protocol
(idea: turn OWL functional syntax into S-Expressions)

DIG & OWLlink – XML-over-HTTP APIs

 Michael Wessel13.09.2009 42

The OWLAPI Java „SemWeb“ Framework

● An important Java framework
for SemanticWeb programming
(similar to Jena for RDF, ...)

● Basis of Protégé 4.x

– handles reasoner access

– RacerAdapter required

– RacerReasoner adapter
& Protégé plugin developed
and provided by Olaf Noppens
from Ulm University

– required an entirely new Racer-API
(Racer-OWLAPI) in order to make the
adapter work (have to support the core OWLAPI abstractions)

 Michael Wessel13.09.2009 43

Graphical OWL2 Modeling with Protégé 4

 Michael Wessel13.09.2009 44

Graphical OWL2 Modeling with RacerPorter

 Michael Wessel13.09.2009 45

● MiniLisp

– ad-hoc server extensions (API function missing?)

– executed on the server (no communication latency → fast)

– user-defined query predicates

– report generation, programmatic knowledge base creation
(„Sudoku Grid“), „Racer scripting“

● Plugin mechanism

– create a FASL file with AllegroExpress, convert it into a plugin

– server extensions possible (hook mechanism)

– „at our own risk“, full access to Racer internals,

– faster & more general than MiniLisp, but not „ad hoc“

RacerPro Extensibility

 Michael Wessel13.09.2009 46

● A simple „Lisp 1 Lisp in Lisp“ (own evaluator)

● Motivation: termination safe & simple (important if used in queries!)

– total recursive functions

● Basic datatypes and operations (both borrowed from CL) for

– lists, numbers, symbols, characters, booleans, basic IO streams

– no cyclic lists

● Control structures (mostly borrowed from CL)

– bounded loops, structure mapping (no cyclic lists)
dotimes, dolist, maplist, maptree, …

– if, when, unless, cond, …

● defun and defpar, defcon

– recursion always aborted at runtime (stack inspection)

MiniLisp in a Nutshell

 Michael Wessel13.09.2009 47

● No macros

● All RacerPro API functions / macros callable (macros treated as functions)

● setq (incf, decf), but no generalized variables (prevent cyclic lists)

● No closures

– impossible

 ((lambda (x x) (x x)) (lambda (x x) (x x)))

– (built-in) higher order functions have to be special forms
(maplist (lambda (x) (1+ x)) '(1 2 3))

● evaluate

– but no (evaluate … (evaluate …) …)

● Quote, backquote, …

● Claim: covers 99,99% of the typical „Racer programming“ cases!

MiniLisp in a Nutshell (2)

 Michael Wessel13.09.2009 48

● Racer could have been implemented in another language...

– … but some Lisp-features are especially valuable here

– „standard arguments“ (GC, closures, …) apply to may languages
nowadays (Haskell, Phython, Ruby, JavaScript, F#, …)

● Merits of functional programming

– Racer tableaux prover (= system core / kernel) was implemented in a
functional style (seems natural)

– good for debugging

– but problems with stack size someday

● switched to closures for representation of backtracking context
(„continuation-passing style“)

● implementation didn't break although this was a drastic change in
the system architecture → flexibility of Lisp

Benefits of Lisp

 Michael Wessel13.09.2009 49

● Ability to concisely represent and conveniently manipulate
complex expression

– structured literals

– you don't want
expr.add(new this(„a“).add(new that(„b“)));

– ArrayLists : [„a“, „b“]

– S-Expressions were invented for symbolic computation
→ perfect

– S-Expressions for the front-end syntax
(things get encoded later)

… LOTS of operations deal with front-end syntax only

Benefits of Lisp (2)

 Michael Wessel13.09.2009 50

● Abstraction

– W3C standards such as OWL2 are still a moving target

● a very flexible basis is needed / prototyping
● decouple implementation from standardization ;-)
● transform OWL (SPARQL, SWRL, ...) into that representation

(but keep the original representation)

– Lisp allows you to defer decisions

● no static typing (no extensive „type“ or class hierarchy refactorings)
● no tight data structure (class hierarchy) / operations coupling

→ operations can be combined in a more flexible way
● macros can save you a LOT of refactoring time

(change the macro, keep the code!)
● „open“ method / function signatures / delegation chains:

(defun f1 (… &rest args &allow-other-keys)
… (apply #'f2 args))))

Benefits of Lisp (3)

 Michael Wessel13.09.2009 51

● Reflexive / introspective qualities of Lisp

– meta-information is always there

within the SAME environment (→ synergy effect), e.g.

● racer-defun does many things in one place:

– registers the function for the server listener
– creates LRacer & JRacer stubs based on lambda list
– creates code for RacerPorter to support completion, …

● defowlaxiomclass

– creates the axiom editor CAPI dialogs for Porter by
„inspecting“ its slots, conjoining appropriate CAPI code
for the different attributes

● „data driven“ meta programming

→ Lisp allows a very small company (us!) to survive
 W3C Semantic Web standards ;-)

Benefits of Lisp (4)

 Michael Wessel13.09.2009 52

● Lack of „(quasi) standardized“ frameworks / solutions

– and quality of the existing frameworks probably not as good as in
the Java world (MUCH less developers are using them on a daily
basis)

● Java ↔ Lisp „in memory“ integration still very hard

– e.g., very nice graph layouters in Java

– Java developers get much more for free

→ Lispers have to work harder: more hand-crafted solutions

● Language too old (?)

– unicode sockets, custom streams (e.g., gzipped streams), …

● GC is a big plus, but very hard to control sometimes (for large
KBs)

Drawbacks of Lisp

 Michael Wessel13.09.2009 53

● CL-HTTP (John Mallery) / AllegroServe

– owl-read-document (HTTP client)

● owl:Import (downloads an ontology from the web)

– DIG / OWLlink server

● Wilbur (Ora Lassila)

– basic RDF processing

● AllegroGraph

– SPARQL parser & triple store for RacerPro

● Lispworks CAPI and Lispworks editor

– for RacerPorter / RacerEditor

– thanks to Martin Simmons for great CAPI support

Exploited Lisp Frameworks

 Michael Wessel13.09.2009 54

● www.racer-systems.com

there is the 2.0 preview version

– no license required

– to be finalized soon

● A recent research project
which uses RacerPro:
www.boemie.org

 Thanks!

How do I get RacerPro ?

http://www.racer-systems.com/
http://www.boemie.org/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54

