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Overview of Tutorial
• The nRQL Query Language

• Introductory examples - why nRQL?
• Syntax (query atoms, variables, . . . )
• Querying OWL Documents
• Semantics, . . .

• The nRQL Query Processing Engine
• Incremental Query Processing
• Configurable Completeness
• Simple Rules
• Query Reasoning, Optimization, . . .

• Querying Large OWL KBs
• The Lehigh University Benchmark (LUBM)
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Motivating Simple Example

PSfrag replacements

Alice

Betty

CharlesBetty

age = 80

has_mother

has_child

mother(alice), age(alice) = 80 ,

has_mother(betty , alice),

has_mother(charles , alice),

mother(betty), mother(betty)

• How do we retrieve pairs of siblings (e.g.,
{(betty, charles)})?

• Not expressible as DL instance retrieval query!

	 Solution 1: write a search program
⊕ Solution 2: use nRQL:

> (retrieve (?x ?y)

(and (has-child ?z ?x)

(has-child ?z ?y)))
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Motivating Simple Example (2)

PSfrag replacements

Alice

Betty

CharlesBetty

age = 80

has_mother

has_child

mother(alice), age(alice) = 80 ,

has_mother(betty , alice),

has_mother(charles , alice),

mother(betty), mother(betty)

• How do we retrieve pairs of siblings (e.g.,
{(betty, charles)})?

• Not expressible as DL instance retrieval query!

	 Solution 1: write a search program
⊕ Solution 2: use nRQL:

> (((?X CHARLES) (?Y BETTY))

((?X BETTY) (?Y CHARLES)))
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nRQL Language – Overview
• Compositional syntax and semantics
• Compound/complex queries build from query

atoms, using boolean connectors
• Query atoms contain objects = variables and/or

individuals
• Syntax for variables: ?x, $?x
• Syntax for individuals: betty, . . .
• Queries have a head and a body
(retrieve <head> <body>)

• <head> might also contain special projection
operators . . .

• . . . or generalized ABox assertions (nRQL rules)
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Example KB
;;; Role Declarations

(define-primitive-role has-ancestor

:inverse has-descendant :transitive t)

(define-primitive-role has-parent

:inverse has-child

:domain person :range person)

(define-primitive-attribute has-mother

:parent has-parent)

(define-primitive-attribute has-father

:parent has-parent)

(define-concrete-domain-attribute age :type cardinal)
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Example KB (2)
;;; Concept Axioms

(disjoint man woman)

(implies man person)

(implies woman person)

(implies person (or man woman))

(implies person (and human (an age)))

(equivalent mother

(and woman

(some has-child person)))

(equivalent grandmother

(and mother

(some has-child mother)))
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Example KB (3)
;;; The ABox

(instance alice mother)

(instance betty mother)

(related betty alice has-mother)

(related charles alice has-mother)

(constrained alice alice-age age)

(constraints (= alice-age 80))

(instance charles man)

(instance james (not woman))
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nRQL Query Atoms
• Concept Query Atoms

• With variables in head and body
? (retrieve (?x) (?x woman))
> ( ((?X ALICE)) ((?X BETTY)) )

• With variables in body and empty head
? (retrieve () (?x woman))

> T

• With individuals in body

? (retrieve () (betty woman))

> T
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nRQL Query Atoms (2)
• Role Query Atoms

• With variables

? (retrieve (?x ?y)

(?x ?y has-child))
> (((?X ALICE) (?Y BETTY))

((?X ALICE) (?Y CHARLES)))

• With variables and individuals
? (retrieve (?x)

(alice ?x has-child))
> (((?X BETTY)) (?X CHARLES)))
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nRQL Query Atoms (3)
• Constraint Query Atoms

• Querying the Concrete Domain part of an
ABox

• Who has parents of same age?
• We add (related charles james has-father),

(constrained james james-age age),
(constraints (= james-age 80))

? (retrieve (?x)

(?x ?x (constraint

(has-father age)

(has-mother age) = ))

> (((?X CHARLES)))
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nRQL Query Atoms (4)
• Constraint Query Atoms (2)

• Who has a father that is at least 40 years
older?

• We add (constrained charles charles-age

age), (constraints (= charles-age age 38))

? (retrieve (?x)

(?x ?x (constraint

(has-father age) age

(< (+ 40 age-2) age-1))))

> (((?X CHARLES)))

• nRQL also supports role chains ended by
attributes, e.g.
• (has-child has-father age)
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Head Projection Operators
• How to retrieve values from the CD, e.g. the age

of Alice?
• Projection operators to fillers of CD attributes or

OWL datatype properties

? (retrieve (?x (AGE ?x))

(?x (and grandmother (an age))))

> (((?X ALICE) ((AGE ?X) (ALICE-AGE))))

• Projection to told values of the CD

? (retrieve (?x (TOLD-VALUE (AGE ?x)))

(?x (and grandmother (an age))))

> (((?X ALICE) ((:TOLD-VALUE (AGE ?X))
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nRQL Variables
• nRQL employs the active domain assumption

(ADA): variables must always be bound to ABox
individuals

• nRQL offers two kinds of variables

? (retrieve (?x ?y) (and (?x man) (?y man)))

> (((?X JAMES) (?Y CHARLES))

((?X CHARLES) (?Y JAMES)))

• RQL employs the unique name assumption
(UNA) for variables

• The UNA can be turned off:
? (retrieve ($?x $?y)

(and ($?x man) ($?y man)))

> (...(($?X JAMES) ($?Y JAMES))

nRQL Tutorial – p.14/55



nRQL Query Atoms (5)
• Other atoms

• Bind a variable to an individual with
same-as

? (retrieve (?x)

(same-as ?x betty))

> (((?X BETTY)))

• Check for the existence of role successors:
? (retrieve (?x)

(?x (has-known-successor has-father)))

> (((?X CHARLES)))
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nRQL Peculiarities
• The meaning of queries with individuals in head

? (retrieve (betty)

(betty woman))

> ((($?BETTY BETTY)))

• Explanation: query is rewritten into

(AND (SAME-AS $?BETTY BETTY)

($?BETTY WOMAN))

• $?BETTY is a variable that does not obey the
unique name assumption for variables

• (SAME-AS $?BETTY BETTY) enforces binding
of $?BETTY to BETTY
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Complex nRQL Queries
• Compound nRQL queries are defined inductively

• Every query atom ai is a body.
• If a1 ...an are query bodies, then the

following expressions are also bodies
• (neg ai)
• (and a1 ...an)
• (union a1 ...an)
• (project-to (objects-in-ai) ai)

• Each variable creates a new axis in an
n-dimensional tuple space

⇒ Variable names matter
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Complex nRQL Queries (2)
• More on union queries:

? (retrieve (?x)

(union (?x woman) (?y man))) =

(retrieve (?x)

(union (and (?x woman) (?y top))

(and (?x top) (?y man)))) =

(retrieve (?x) (union (?x woman)

(?x top))) =

(retrieve (?x) (?x top))

> (((?X BETTY)) ((?X ALICE))

((?X CHARLES)) ((?X JAMES)))

• Can be tricky!
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nRQL Peculiarities (2)
• “Negation as Failure (NAF)” with neg:

? (retrieve (?x) (neg (?x woman)))

> ((?X CHARLES) (?X JAMES))

• In this example,
(retrieve (?x) (?x (not woman)))
yields the same answer, but not in general
? (retrieve (?x) (neg (?x foobar)))
> (((?X CHARLES)) ((?X JAMES))

((?X BETTY)) ((?X ALICE)))

? (retrieve (?x) (?x (not foobar)))
> NIL

• Also for role query atoms
(retrieve (?x ?y) (neg (?x ?y has-child)))
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nRQL Peculiarities (3)
• “Negation as Failure (NAF)” (2)

• “NAF” for atoms with individuals can be
tricky
(retrieve (betty)

(neg (betty woman)))

=

(retrieve ($?betty)

(neg (and ($?betty woman)

(same-as $?betty betty))))

=

(retrieve ($?betty)

(UNION (neg ($?betty woman))

(neg (same-as $?betty betty))))

(due to DeMorgan’s Law)
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nRQL Peculiarities (4)
• DL-like “true” negation:

• Different from “NAF” negation
• For which individuals can Racer prove they

are not woman?
? (retrieve (?x) (?x (not woman)))

> (((?X CHARLES)) ((?X JAMES)))

• For which pairs of individuals can Racer
prove they are not in the has-father
relationship?

? (retrieve (?x ?y)
(?x ?y (not has-father)))

> (((?X CHARLES) (?Y ALICE))

((?X CHARLES) (?Y BETTY)))
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nRQL Peculiarities (5)
• “Pseudo-nominals” for concept query atoms:

• treat atomic concept BETTYNOM as
pseudo-nominal, referring to individual betty

• (retrieve (?x)

(?x (some has-child BETTYNOM)))

• Defined queries:
• (defquery mother

(?x ?y)

(and (?x woman)

(?x ?y has-child)))

(retrieve (?x ?child)

(?x ?child mother))
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nRQL Peculiarities (6)
• The projection operator project-to for query

bodies - why is it needed?
• Use the previously defined query mother to

retrieve woman with known children:
? (retrieve (?x ?x) (?x ?y mother))

> (((?X ALICE) (?Y CHARLES))

(((?X ALICE) (?Y BETTY))))

• If we are just interested in the bindings of ?X,
we can also supply NIL as a parameter to the
defined query mother:

? (retrieve (?x ) (?x nil mother))

> (((?X ALICE)))
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nRQL Peculiarities (7)
• The projection operator project-to for query

bodies - why is it needed? (2)
• How do we retrieve the complement of the

previous query?
• For atoms, this is what NAF achieves!
• Thus we try:

? (retrieve (?x )

(NEG (?x nil mother)))

> (((?X CHARLES)) ((?X JAMES))

((?X ALICE)) ((?X BETTY)))

• What went wrong?
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nRQL Peculiarities (8)
• The projection operator project-to for query

bodies - why is it needed? (3)

• (retrieve (?x )

(neg (?x nil mother)))

= (neg (and (?x woman)

(?x ?y-ano has-child)))

= (union (neg (?x woman))

(neg (?x ?y-ano has-child)))

= (union (and (neg (?x woman))

(?y-ano top))

(neg (?x ?y-ano has-child)))

≈ (?x top)
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nRQL Peculiarities (9)
• The projection operator project-to for query

bodies - why is it needed? (4)
• The “problem” is that neg preserves the arity:

the complement set returned by neg has the
same arity as the argument set

• Solution: first project to ?x, and then build
the complement:

? (retrieve (?x )

(neg (project-to (?x)

(?x nil mother))))

> (((?X CHARLES)) ((?X JAMES))

((?X BETTY)))
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Querying OWL KBs
• Support for querying OWL datatype properties:

<owl:Class rdf:ID="Person">

<rdfs:label>person</rdfs:label>

</owl:Class>

<owl:DatatypeProperty rdf:ID="age">

<rdfs:domain rdf:resource="#Person" />

<rdfs:range rdf:resource=

"http://www.w3.org/2001/XMLSchema#integer" />

</owl:DatatypeProperty>

<Person rdf:about="http://www.test.com/michael">

<age>34</age>

<Person>
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Querying OWL KBs (2)
• Support for querying OWL datatype properties

(2):
? (retrieve

(?x

(datatype-fillers

(|http://www.test.com/test.owl#age| ?x)))

(?x (some |http://www.test.com/test.owl#age|

(and (min 30) (max 35)))))

> (((?X |http://www.test.com/michael|)

((:TOLD-VALUE

(|http://www.test.com/test.owl#age| ?X)) (34))))

• Extended Racer concept syntax (expressions like
(and (min 30) (max 35)) only recognized by
nRQL)
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Querying OWL KBs (3)
• Support for retrieval of values of OWL

annotation properties from OWL documents

<owl:DatatypeProperty rdf:ID="annot1">

<rdfs:range rdf:resource=

"http://www.w3.org/2001/XMLSchema#string"/>

<rdf:type rdf:resource=

"http://www.w3.org/2002/07/owl#

AnnotationProperty"/>

</owl:DatatypeProperty>

• A special head projection operator
annotations is provided by nRQL

• Similar to querying for datatype properties
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nRQL - Syntax
Let a, b ∈ O; C be an ALCQHIR+(D−) concept expression, R a nRQL role

expression (a nRQL role expression is either a ALCQHIR+(D−) role

expression, or a negated ALCQHIR+(D−) role expression); P one of the

concrete domain expressions offered by Racer; and f, g be so-called attributes

(whose range is defined to be one of the available concrete domains offered by

Racer). Then, the set of nRQL atoms is given as follows:

• Unary concept query atoms: C(a)

• Binary role query atoms: R(a, b)

• Binary constraint query atoms: P (f(a), g(b))

• Binary same-as atoms: same_as(a, i)

• Unary has-known-successor atoms: has_known_successor(a, R)

• Negated atoms: If A is a nRQL atom, then so is \(A), a so-called

negation as failure atom or simply negated atom.
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nRQL - Syntax (2)
A nRQL Query has a head and a body. Query bodies are defined inductively

as follows:

• Each nRQL atom A is a body; and

• If b1 . . . bn are bodies, then the following are also bodies:

• b1 ∧ · · · ∧ bn, b1 ∨ · · · ∨ bn, \(bi)

We use the syntax body(a1, . . . , an) to indicate that a1, . . . , an are all the

object names (ai ∈ O) mentioned in body. A nRQL Query is then an

expression of the form

ans(ai1 , . . . , aim
)← body(a1, . . . , an),

The expression ans(ai1 , . . . , aim
) is also called the head, and (i1, . . . , im) is

an index vector with ij ∈ 1 . . . n. A conjunctive nRQL query is a query which

does not contain any ∨ and \ operators.
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nRQL - Semantics
Let K = (T ,A) be an ALCQHIR+(D−) knowledge base.

A positive ground query atom A is logically entailed (or implied) by K iff

every model I of K is also a model of A. In this case we write K |= A.

Moreover, if I is a model of K (A) we write I |= K (I |= A). We therefore

have to specify when I |= A holds. In the following, if the atom A contains

individuals i, j, it will always be the case that i, j ∈ inds(A). From this it

follows that iI ∈ ∆I and jI ∈ ∆I , for any I = (∆I , ·I) with I |= K:

• If A = C(i), then I |= A iff iI ∈ CI .

• If A = R(i, j), then I |= A iff (iI , jI) ∈ RI .

• If A = P (f(i), g(j)), then I |= A iff (fI(iI), gI(jI)) ∈ P I .

• If A = same_as(i, i), then I |= A.

• If A = same_as(i, j), then I 6|= A.

• If A = has_known_successor(i, R), then I |= A iff for some

j ∈ inds(A): I |= R(i, j).
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nRQL - Semantics (2)
Let ans(ai1 , . . . , aim)← body(a1, . . . , an) be a nRQL query q

such that body is in NNF. Let β(ai) =def xai
if ai ∈ I, and ai

otherwise; i.e., if ai is an individual we replace it with its

representative unique variable which we denote by xai
. Let K be

the knowledge base to be queried, and A be its ABox. The

answer set of the query q is then the following set of tuples:

{ (ji1 , . . . , jim) | ∃j1, . . . , jn ∈ inds(A),∀m,n,m 6= n : jm 6= jn,

K |=NF α(body)[β(a1)←j1,...,β(an)←jn] }

Finally, we state that {()} =def TRUE and {} =def FALSE.
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Features of the nRQL Engine
• Cost-based optimizer
• Compilation of queries possible (similar to LISP

implementations of Prolog)
• Different query processing modes

• Set-at-a-time mode (“Get all tuples”)
• Tuple-at-a-time mode (“Get next tuple”)
• Uses LISP processes
⇒ more than one active (running) query

possible
• Lazy: compute next tuple if requested
• Eager: precompute next tuple(s)
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Features of the nRQL Engine (2)
• Cost-based optimizer
• Compilation of queries possible (similar to LISP

implementations of Prolog)
• Different query processing modes
• Degree of completeness configurable (next slide)
• Non-recursive defined queries (macro queries)
• Simple rule engine
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Features of the nRQL Engine (3)
• Degree of completeness configurable

• Told information (very incomplete)
• Told information + exploited TBox

information (much more complete)
• Complete Racer ABox Retrieval (expensive!)

• 3×#{set_at_a_time,tuple_at_a_time} = 6

• Variations: realize ABox / classify TBox (or not)
• 7th tuple-at-a-time mode: “two-phase processing”

• Phase 1: deliver cheap tuples (incomplete)
• Warn user; then, if next tuple requested, start
• Phase 2: use full ABox reasoning to deliver

remaining tuples (complete)
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Incremental Query Answering

TBox: ABox :

person v > spouse(doris)

man v person spouse(betty)

woman v person man(adam)

spouse
.
= woman u woman(eve)

(∃married_to.man) maried_to(eve, adam)

• (retrieve (?x) (?x spouse))

⇒ (:QUERY-1 :RUNNING)

• (get-next-tuple :query-1)

⇒ ((?X DORIS))
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Incremental Query Answering

TBox: ABox :

person v > spouse(doris)

man v person spouse(betty)

woman v person man(adam)

spouse
.
= woman u woman(eve)

(∃married_to.man) maried_to(eve, adam)

• (retrieve (?x) (?x spouse))

⇒ (:QUERY-1 :RUNNING)

• (get-next-tuple :query-1)

⇒ ((?X BETTY))
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Incremental Query Answering

TBox: ABox :

person v > spouse(doris)

man v person spouse(betty)

woman v person man(adam)

spouse
.
= woman u woman(eve)

(∃married_to.man) maried_to(eve, adam)

• (retrieve (?x) (?x spouse))

⇒ (:QUERY-1 :RUNNING)

• (get-next-tuple :query-1)

⇒ :WARNING-EXPENSIVE-PHASE-TWO-STARTS
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Incremental Query Answering

TBox: ABox :

person v > spouse(doris)

man v person spouse(betty)

woman v person man(adam)

spouse
.
= woman u woman(eve)

(∃married_to.man) maried_to(eve, adam)

• (retrieve (?x) (?x spouse))

⇒ (:QUERY-1 :RUNNING)

• (get-next-tuple :query-1)

⇒ ((?X EVE))
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Incremental Query Answering

TBox: ABox :

person v > spouse(doris)

man v person spouse(betty)

woman v person man(adam)

spouse
.
= woman u woman(eve)

(∃married_to.man) maried_to(eve, adam)

• (retrieve (?x) (?x spouse))

⇒ (:QUERY-1 :RUNNING)

• (get-next-tuple :query-1)

⇒ :EXHAUSTED
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Incremental Query Answering

TBox: ABox :

person v > spouse(doris)

man v person spouse(betty)

woman v person man(adam)

spouse
.
= woman u woman(eve)

(∃married_to.man) maried_to(eve, adam)

• (retrieve (?x) (?x spouse))

⇒ (:QUERY-1 :RUNNING)

• (get-answer :query-1)

⇒ (((?X DORIS)) ((?X BETTY)) ((?X EVE)))
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Features of the nRQL Engine (5)
• Reasoning with Queries

• Incomplete for full nRQL, but still useful
• Complete for restricted nRQL
• Query consistency check
• Query entailment check (subsumption)
⇒ maintenance of a “Query repository” lattice

(similar to a TBox)
⇒ use cached tuples of queries in repository for

optimization purposes (“materialized views”)
• Semantic optimization: query “realization”

(similar to ABox realization)
⇒ add implied conjuncts to enhance

informdness of backtracking search
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Features of the nRQL Engine (6)
• Defined queries (simple Macro-mechanism)

• (defquery mother

(?x ?y)

(and (?x woman)

(?x ?y has-child)))

(defquery mother-with-male-child

(?x ?child)

(and (:substitute

(mother ?x ?child))

(?child man)))
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Features of the nRQL Engine (7)
• Simple rule mechanism

• (defrule

(and (?x woman) (?y man) (?x ?y married))

(neg (?x (:has-known-successor has-child)))

((instance (new-ind child-of ?x ?y) human)

(instance ?x mother)

(instance ?y father)

(related (new-ind child-of ?x ?y) ?x

has-mother)

(related (new-ind child-of ?x ?y) ?y

has-father)))

⇒ Rule antecedence is a query body;
consequence is a list of generalized ABox
assertions (also operators like new-ind)
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Features of the nRQL Engine (8)
• Complex TBox queries

• What are the child concepts of the concept
woman?

> (tbox-retrieve (?x ?y)

(and (?x woman)

(?x ?y has-child)))

> (((?X WOMAN) (?Y SISTER))

((?X WOMAN) (?Y AUNT))

((?X WOMAN) (?Y *BOTTOM*))

((?X WOMAN) (?Y MOTHER))

((?X WOMAN) (?Y GRANDMOTHER)))

• . . . most of the present nRQL features have been
requested by users

• . . . for more nRQL peculiarities: see manual
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Querying Large OWL KBs
• Lehigh University Benchmark for benchmarking

semantic web repositories
• See http://www.lehigh.edu/˜yug2/Research/

SemanticWeb/LUBM/LUBM.htm

• Modeling of a university
• OWL (DAML+OIL) classes for
departments, various kinds of professors,
students, . . .

• roles like worksFor, subOrganization
(transitive),

• Datatype properties telephone, age, . . .
• Benchmark generator generates “ABoxes”
• 14 benchmarking queries

nRQL Tutorial – p.47/55



The LUBM (2)
Query 9: (retrieve

(?x ?y ?z)

(and (?x Student)

(?y Faculty)

(?z Course)

(?x ?y advisor)

(?x ?z takesCourse)

(?y ?z teacherOf)))

“Retrieve all triples <?x,?y,?z> such that ?x is (bound

to) a student undertaking a course ?z whose teacher ?y

(from the faculty) happens to be his/her advisor”
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The LUBM (3)
Query 12: (retrieve

(?x ?y www.University0.edu)

(and (?x chair)

(?y Department)

(?x ?y memberOf)

(?y www.University0.edu

subOrganizationOf)))

Cite LUBM: “The benchmark data do not produce any in-

stances of class Chair. Instead, each Department individual

is linked to the chair professor of that department by pro-

perty headOf. Hence this query requires realization, i.e., in-

ference that that professor is an instance of class Chair be-

cause he or she is the head of a department.”
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Benchmarking Racer + nRQL
• We ran LUBM queries in 3 settings:
• Setting 1: complete ABox querying using an

unrealized ABox
• Setting 2: complete ABox reasoning using a

realized ABox
• Setting 3: “told information querying” enhanced

with TBox information – “upward saturation”:
⇒ for each ABox axiom C(i) ∈ A, for all

D ∈ concept_ancestors(C, TBox): put D(i)
into “ABox”: A := A ∪ {D(i)}

⇒ same for role relationships due to role
hierarchies
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Results - Setting 1
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Results - Setting 2
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Results - Setting 3
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Evaluation
• Using complete ABox querying we have to stop

at approx. 10.000 LUBM individuals
• Initial ABox consistency test kills Racer
• If completeness is sacrificed, we can easily load

and process more than 150.000 individuals
• All but Q8 and Q9 can be answered in fractions

of a second
• Only one tuple is missed (for Q12)

⇒ not severely incomplete

⇒ in this scale, answering time is quite okay!
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Thanks

for your

attention!
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