
nRQL Tutorial

Systems & Co. KG

Blumenau 50
22089 Hamburg Germany

www.racer-systems.com

nRQL Tutorial – p.1/55

Overview of Tutorial
• The nRQL Query Language

• Introductory examples - why nRQL?
• Syntax (query atoms, variables, . . .)
• Querying OWL Documents
• Semantics, . . .

• The nRQL Query Processing Engine
• Incremental Query Processing
• Configurable Completeness
• Simple Rules
• Query Reasoning, Optimization, . . .

• Querying Large OWL KBs
• The Lehigh University Benchmark (LUBM)

nRQL Tutorial – p.2/55

Motivating Simple Example

PSfrag replacements

Alice

Betty

CharlesBetty

age = 80

has_mother

has_child

mother(alice), age(alice) = 80 ,

has_mother(betty , alice),

has_mother(charles , alice),

mother(betty), mother(betty)

• How do we retrieve pairs of siblings (e.g.,
{(betty, charles)})?

• Not expressible as DL instance retrieval query!

	 Solution 1: write a search program
⊕ Solution 2: use nRQL:

> (retrieve (?x ?y)

(and (has-child ?z ?x)

(has-child ?z ?y)))
nRQL Tutorial – p.3/55

Motivating Simple Example (2)

PSfrag replacements

Alice

Betty

CharlesBetty

age = 80

has_mother

has_child

mother(alice), age(alice) = 80 ,

has_mother(betty , alice),

has_mother(charles , alice),

mother(betty), mother(betty)

• How do we retrieve pairs of siblings (e.g.,
{(betty, charles)})?

• Not expressible as DL instance retrieval query!

	 Solution 1: write a search program
⊕ Solution 2: use nRQL:

> (((?X CHARLES) (?Y BETTY))

((?X BETTY) (?Y CHARLES)))

nRQL Tutorial – p.4/55

nRQL Language – Overview
• Compositional syntax and semantics
• Compound/complex queries build from query

atoms, using boolean connectors
• Query atoms contain objects = variables and/or

individuals
• Syntax for variables: ?x, $?x
• Syntax for individuals: betty, . . .
• Queries have a head and a body
(retrieve <head> <body>)

• <head> might also contain special projection
operators . . .

• . . . or generalized ABox assertions (nRQL rules)
nRQL Tutorial – p.5/55

Example KB
;;; Role Declarations

(define-primitive-role has-ancestor

:inverse has-descendant :transitive t)

(define-primitive-role has-parent

:inverse has-child

:domain person :range person)

(define-primitive-attribute has-mother

:parent has-parent)

(define-primitive-attribute has-father

:parent has-parent)

(define-concrete-domain-attribute age :type cardinal)
nRQL Tutorial – p.6/55

Example KB (2)
;;; Concept Axioms

(disjoint man woman)

(implies man person)

(implies woman person)

(implies person (or man woman))

(implies person (and human (an age)))

(equivalent mother

(and woman

(some has-child person)))

(equivalent grandmother

(and mother

(some has-child mother)))

nRQL Tutorial – p.7/55

Example KB (3)
;;; The ABox

(instance alice mother)

(instance betty mother)

(related betty alice has-mother)

(related charles alice has-mother)

(constrained alice alice-age age)

(constraints (= alice-age 80))

(instance charles man)

(instance james (not woman))

nRQL Tutorial – p.8/55

nRQL Query Atoms
• Concept Query Atoms

• With variables in head and body
? (retrieve (?x) (?x woman))
> (((?X ALICE)) ((?X BETTY)))

• With variables in body and empty head
? (retrieve () (?x woman))

> T

• With individuals in body

? (retrieve () (betty woman))

> T

nRQL Tutorial – p.9/55

nRQL Query Atoms (2)
• Role Query Atoms

• With variables

? (retrieve (?x ?y)

(?x ?y has-child))
> (((?X ALICE) (?Y BETTY))

((?X ALICE) (?Y CHARLES)))

• With variables and individuals
? (retrieve (?x)

(alice ?x has-child))
> (((?X BETTY)) (?X CHARLES)))

nRQL Tutorial – p.10/55

nRQL Query Atoms (3)
• Constraint Query Atoms

• Querying the Concrete Domain part of an
ABox

• Who has parents of same age?
• We add (related charles james has-father),

(constrained james james-age age),
(constraints (= james-age 80))

? (retrieve (?x)

(?x ?x (constraint

(has-father age)

(has-mother age) =))

> (((?X CHARLES)))

nRQL Tutorial – p.11/55

nRQL Query Atoms (4)
• Constraint Query Atoms (2)

• Who has a father that is at least 40 years
older?

• We add (constrained charles charles-age

age), (constraints (= charles-age age 38))

? (retrieve (?x)

(?x ?x (constraint

(has-father age) age

(< (+ 40 age-2) age-1))))

> (((?X CHARLES)))

• nRQL also supports role chains ended by
attributes, e.g.
• (has-child has-father age)

nRQL Tutorial – p.12/55

Head Projection Operators
• How to retrieve values from the CD, e.g. the age

of Alice?
• Projection operators to fillers of CD attributes or

OWL datatype properties

? (retrieve (?x (AGE ?x))

(?x (and grandmother (an age))))

> (((?X ALICE) ((AGE ?X) (ALICE-AGE))))

• Projection to told values of the CD

? (retrieve (?x (TOLD-VALUE (AGE ?x)))

(?x (and grandmother (an age))))

> (((?X ALICE) ((:TOLD-VALUE (AGE ?X))
(80)))) nRQL Tutorial – p.13/55

nRQL Variables
• nRQL employs the active domain assumption

(ADA): variables must always be bound to ABox
individuals

• nRQL offers two kinds of variables

? (retrieve (?x ?y) (and (?x man) (?y man)))

> (((?X JAMES) (?Y CHARLES))

((?X CHARLES) (?Y JAMES)))

• RQL employs the unique name assumption
(UNA) for variables

• The UNA can be turned off:
? (retrieve ($?x $?y)

(and ($?x man) ($?y man)))

> (...(($?X JAMES) ($?Y JAMES))

nRQL Tutorial – p.14/55

nRQL Query Atoms (5)
• Other atoms

• Bind a variable to an individual with
same-as

? (retrieve (?x)

(same-as ?x betty))

> (((?X BETTY)))

• Check for the existence of role successors:
? (retrieve (?x)

(?x (has-known-successor has-father)))

> (((?X CHARLES)))

nRQL Tutorial – p.15/55

nRQL Peculiarities
• The meaning of queries with individuals in head

? (retrieve (betty)

(betty woman))

> ((($?BETTY BETTY)))

• Explanation: query is rewritten into

(AND (SAME-AS $?BETTY BETTY)

($?BETTY WOMAN))

• $?BETTY is a variable that does not obey the
unique name assumption for variables

• (SAME-AS $?BETTY BETTY) enforces binding
of $?BETTY to BETTY

nRQL Tutorial – p.16/55

Complex nRQL Queries
• Compound nRQL queries are defined inductively

• Every query atom ai is a body.
• If a1 ...an are query bodies, then the

following expressions are also bodies
• (neg ai)
• (and a1 ...an)
• (union a1 ...an)
• (project-to (objects-in-ai) ai)

• Each variable creates a new axis in an
n-dimensional tuple space

⇒ Variable names matter

nRQL Tutorial – p.17/55

Complex nRQL Queries (2)
• More on union queries:

? (retrieve (?x)

(union (?x woman) (?y man))) =

(retrieve (?x)

(union (and (?x woman) (?y top))

(and (?x top) (?y man)))) =

(retrieve (?x) (union (?x woman)

(?x top))) =

(retrieve (?x) (?x top))

> (((?X BETTY)) ((?X ALICE))

((?X CHARLES)) ((?X JAMES)))

• Can be tricky!

nRQL Tutorial – p.18/55

nRQL Peculiarities (2)
• “Negation as Failure (NAF)” with neg:

? (retrieve (?x) (neg (?x woman)))

> ((?X CHARLES) (?X JAMES))

• In this example,
(retrieve (?x) (?x (not woman)))
yields the same answer, but not in general
? (retrieve (?x) (neg (?x foobar)))
> (((?X CHARLES)) ((?X JAMES))

((?X BETTY)) ((?X ALICE)))

? (retrieve (?x) (?x (not foobar)))
> NIL

• Also for role query atoms
(retrieve (?x ?y) (neg (?x ?y has-child)))

nRQL Tutorial – p.19/55

nRQL Peculiarities (3)
• “Negation as Failure (NAF)” (2)

• “NAF” for atoms with individuals can be
tricky
(retrieve (betty)

(neg (betty woman)))

=

(retrieve ($?betty)

(neg (and ($?betty woman)

(same-as $?betty betty))))

=

(retrieve ($?betty)

(UNION (neg ($?betty woman))

(neg (same-as $?betty betty))))

(due to DeMorgan’s Law)
nRQL Tutorial – p.20/55

nRQL Peculiarities (4)
• DL-like “true” negation:

• Different from “NAF” negation
• For which individuals can Racer prove they

are not woman?
? (retrieve (?x) (?x (not woman)))

> (((?X CHARLES)) ((?X JAMES)))

• For which pairs of individuals can Racer
prove they are not in the has-father
relationship?

? (retrieve (?x ?y)
(?x ?y (not has-father)))

> (((?X CHARLES) (?Y ALICE))

((?X CHARLES) (?Y BETTY)))
nRQL Tutorial – p.21/55

nRQL Peculiarities (5)
• “Pseudo-nominals” for concept query atoms:

• treat atomic concept BETTYNOM as
pseudo-nominal, referring to individual betty

• (retrieve (?x)

(?x (some has-child BETTYNOM)))

• Defined queries:
• (defquery mother

(?x ?y)

(and (?x woman)

(?x ?y has-child)))

(retrieve (?x ?child)

(?x ?child mother))

nRQL Tutorial – p.22/55

nRQL Peculiarities (6)
• The projection operator project-to for query

bodies - why is it needed?
• Use the previously defined query mother to

retrieve woman with known children:
? (retrieve (?x ?x) (?x ?y mother))

> (((?X ALICE) (?Y CHARLES))

(((?X ALICE) (?Y BETTY))))

• If we are just interested in the bindings of ?X,
we can also supply NIL as a parameter to the
defined query mother:

? (retrieve (?x) (?x nil mother))

> (((?X ALICE)))

nRQL Tutorial – p.23/55

nRQL Peculiarities (7)
• The projection operator project-to for query

bodies - why is it needed? (2)
• How do we retrieve the complement of the

previous query?
• For atoms, this is what NAF achieves!
• Thus we try:

? (retrieve (?x)

(NEG (?x nil mother)))

> (((?X CHARLES)) ((?X JAMES))

((?X ALICE)) ((?X BETTY)))

• What went wrong?

nRQL Tutorial – p.24/55

nRQL Peculiarities (8)
• The projection operator project-to for query

bodies - why is it needed? (3)

• (retrieve (?x)

(neg (?x nil mother)))

= (neg (and (?x woman)

(?x ?y-ano has-child)))

= (union (neg (?x woman))

(neg (?x ?y-ano has-child)))

= (union (and (neg (?x woman))

(?y-ano top))

(neg (?x ?y-ano has-child)))

≈ (?x top)

nRQL Tutorial – p.25/55

nRQL Peculiarities (9)
• The projection operator project-to for query

bodies - why is it needed? (4)
• The “problem” is that neg preserves the arity:

the complement set returned by neg has the
same arity as the argument set

• Solution: first project to ?x, and then build
the complement:

? (retrieve (?x)

(neg (project-to (?x)

(?x nil mother))))

> (((?X CHARLES)) ((?X JAMES))

((?X BETTY)))

nRQL Tutorial – p.26/55

Querying OWL KBs
• Support for querying OWL datatype properties:

<owl:Class rdf:ID="Person">

<rdfs:label>person</rdfs:label>

</owl:Class>

<owl:DatatypeProperty rdf:ID="age">

<rdfs:domain rdf:resource="#Person" />

<rdfs:range rdf:resource=

"http://www.w3.org/2001/XMLSchema#integer" />

</owl:DatatypeProperty>

<Person rdf:about="http://www.test.com/michael">

<age>34</age>

<Person>

nRQL Tutorial – p.27/55

Querying OWL KBs (2)
• Support for querying OWL datatype properties

(2):
? (retrieve

(?x

(datatype-fillers

(|http://www.test.com/test.owl#age| ?x)))

(?x (some |http://www.test.com/test.owl#age|

(and (min 30) (max 35)))))

> (((?X |http://www.test.com/michael|)

((:TOLD-VALUE

(|http://www.test.com/test.owl#age| ?X)) (34))))

• Extended Racer concept syntax (expressions like
(and (min 30) (max 35)) only recognized by
nRQL)

nRQL Tutorial – p.28/55

Querying OWL KBs (3)
• Support for retrieval of values of OWL

annotation properties from OWL documents

<owl:DatatypeProperty rdf:ID="annot1">

<rdfs:range rdf:resource=

"http://www.w3.org/2001/XMLSchema#string"/>

<rdf:type rdf:resource=

"http://www.w3.org/2002/07/owl#

AnnotationProperty"/>

</owl:DatatypeProperty>

• A special head projection operator
annotations is provided by nRQL

• Similar to querying for datatype properties

nRQL Tutorial – p.29/55

nRQL - Syntax
Let a, b ∈ O; C be an ALCQHIR+(D−) concept expression, R a nRQL role

expression (a nRQL role expression is either a ALCQHIR+(D−) role

expression, or a negated ALCQHIR+(D−) role expression); P one of the

concrete domain expressions offered by Racer; and f, g be so-called attributes

(whose range is defined to be one of the available concrete domains offered by

Racer). Then, the set of nRQL atoms is given as follows:

• Unary concept query atoms: C(a)

• Binary role query atoms: R(a, b)

• Binary constraint query atoms: P (f(a), g(b))

• Binary same-as atoms: same_as(a, i)

• Unary has-known-successor atoms: has_known_successor(a, R)

• Negated atoms: If A is a nRQL atom, then so is \(A), a so-called

negation as failure atom or simply negated atom.

nRQL Tutorial – p.30/55

nRQL - Syntax (2)
A nRQL Query has a head and a body. Query bodies are defined inductively

as follows:

• Each nRQL atom A is a body; and

• If b1 . . . bn are bodies, then the following are also bodies:

• b1 ∧ · · · ∧ bn, b1 ∨ · · · ∨ bn, \(bi)

We use the syntax body(a1, . . . , an) to indicate that a1, . . . , an are all the

object names (ai ∈ O) mentioned in body. A nRQL Query is then an

expression of the form

ans(ai1 , . . . , aim
)← body(a1, . . . , an),

The expression ans(ai1 , . . . , aim
) is also called the head, and (i1, . . . , im) is

an index vector with ij ∈ 1 . . . n. A conjunctive nRQL query is a query which

does not contain any ∨ and \ operators.

nRQL Tutorial – p.31/55

nRQL - Semantics
Let K = (T ,A) be an ALCQHIR+(D−) knowledge base.

A positive ground query atom A is logically entailed (or implied) by K iff

every model I of K is also a model of A. In this case we write K |= A.

Moreover, if I is a model of K (A) we write I |= K (I |= A). We therefore

have to specify when I |= A holds. In the following, if the atom A contains

individuals i, j, it will always be the case that i, j ∈ inds(A). From this it

follows that iI ∈ ∆I and jI ∈ ∆I , for any I = (∆I , ·I) with I |= K:

• If A = C(i), then I |= A iff iI ∈ CI .

• If A = R(i, j), then I |= A iff (iI , jI) ∈ RI .

• If A = P (f(i), g(j)), then I |= A iff (fI(iI), gI(jI)) ∈ P I .

• If A = same_as(i, i), then I |= A.

• If A = same_as(i, j), then I 6|= A.

• If A = has_known_successor(i, R), then I |= A iff for some

j ∈ inds(A): I |= R(i, j).
nRQL Tutorial – p.32/55

nRQL - Semantics (2)
Let ans(ai1 , . . . , aim)← body(a1, . . . , an) be a nRQL query q

such that body is in NNF. Let β(ai) =def xai
if ai ∈ I, and ai

otherwise; i.e., if ai is an individual we replace it with its

representative unique variable which we denote by xai
. Let K be

the knowledge base to be queried, and A be its ABox. The

answer set of the query q is then the following set of tuples:

{ (ji1 , . . . , jim) | ∃j1, . . . , jn ∈ inds(A),∀m,n,m 6= n : jm 6= jn,

K |=NF α(body)[β(a1)←j1,...,β(an)←jn] }

Finally, we state that {()} =def TRUE and {} =def FALSE.

nRQL Tutorial – p.33/55

Features of the nRQL Engine
• Cost-based optimizer
• Compilation of queries possible (similar to LISP

implementations of Prolog)
• Different query processing modes

• Set-at-a-time mode (“Get all tuples”)
• Tuple-at-a-time mode (“Get next tuple”)
• Uses LISP processes
⇒ more than one active (running) query

possible
• Lazy: compute next tuple if requested
• Eager: precompute next tuple(s)

nRQL Tutorial – p.34/55

Features of the nRQL Engine (2)
• Cost-based optimizer
• Compilation of queries possible (similar to LISP

implementations of Prolog)
• Different query processing modes
• Degree of completeness configurable (next slide)
• Non-recursive defined queries (macro queries)
• Simple rule engine

nRQL Tutorial – p.35/55

Features of the nRQL Engine (3)
• Degree of completeness configurable

• Told information (very incomplete)
• Told information + exploited TBox

information (much more complete)
• Complete Racer ABox Retrieval (expensive!)

• 3×#{set_at_a_time,tuple_at_a_time} = 6

• Variations: realize ABox / classify TBox (or not)
• 7th tuple-at-a-time mode: “two-phase processing”

• Phase 1: deliver cheap tuples (incomplete)
• Warn user; then, if next tuple requested, start
• Phase 2: use full ABox reasoning to deliver

remaining tuples (complete)
nRQL Tutorial – p.36/55

Incremental Query Answering

TBox: ABox :

person v > spouse(doris)

man v person spouse(betty)

woman v person man(adam)

spouse
.
= woman u woman(eve)

(∃married_to.man) maried_to(eve, adam)

• (retrieve (?x) (?x spouse))

⇒ (:QUERY-1 :RUNNING)

• (get-next-tuple :query-1)

⇒ ((?X DORIS))
nRQL Tutorial – p.37/55

Incremental Query Answering

TBox: ABox :

person v > spouse(doris)

man v person spouse(betty)

woman v person man(adam)

spouse
.
= woman u woman(eve)

(∃married_to.man) maried_to(eve, adam)

• (retrieve (?x) (?x spouse))

⇒ (:QUERY-1 :RUNNING)

• (get-next-tuple :query-1)

⇒ ((?X BETTY))
nRQL Tutorial – p.38/55

Incremental Query Answering

TBox: ABox :

person v > spouse(doris)

man v person spouse(betty)

woman v person man(adam)

spouse
.
= woman u woman(eve)

(∃married_to.man) maried_to(eve, adam)

• (retrieve (?x) (?x spouse))

⇒ (:QUERY-1 :RUNNING)

• (get-next-tuple :query-1)

⇒ :WARNING-EXPENSIVE-PHASE-TWO-STARTS
nRQL Tutorial – p.39/55

Incremental Query Answering

TBox: ABox :

person v > spouse(doris)

man v person spouse(betty)

woman v person man(adam)

spouse
.
= woman u woman(eve)

(∃married_to.man) maried_to(eve, adam)

• (retrieve (?x) (?x spouse))

⇒ (:QUERY-1 :RUNNING)

• (get-next-tuple :query-1)

⇒ ((?X EVE))
nRQL Tutorial – p.40/55

Incremental Query Answering

TBox: ABox :

person v > spouse(doris)

man v person spouse(betty)

woman v person man(adam)

spouse
.
= woman u woman(eve)

(∃married_to.man) maried_to(eve, adam)

• (retrieve (?x) (?x spouse))

⇒ (:QUERY-1 :RUNNING)

• (get-next-tuple :query-1)

⇒ :EXHAUSTED
nRQL Tutorial – p.41/55

Incremental Query Answering

TBox: ABox :

person v > spouse(doris)

man v person spouse(betty)

woman v person man(adam)

spouse
.
= woman u woman(eve)

(∃married_to.man) maried_to(eve, adam)

• (retrieve (?x) (?x spouse))

⇒ (:QUERY-1 :RUNNING)

• (get-answer :query-1)

⇒ (((?X DORIS)) ((?X BETTY)) ((?X EVE)))
nRQL Tutorial – p.42/55

Features of the nRQL Engine (5)
• Reasoning with Queries

• Incomplete for full nRQL, but still useful
• Complete for restricted nRQL
• Query consistency check
• Query entailment check (subsumption)
⇒ maintenance of a “Query repository” lattice

(similar to a TBox)
⇒ use cached tuples of queries in repository for

optimization purposes (“materialized views”)
• Semantic optimization: query “realization”

(similar to ABox realization)
⇒ add implied conjuncts to enhance

informdness of backtracking search
nRQL Tutorial – p.43/55

Features of the nRQL Engine (6)
• Defined queries (simple Macro-mechanism)

• (defquery mother

(?x ?y)

(and (?x woman)

(?x ?y has-child)))

(defquery mother-with-male-child

(?x ?child)

(and (:substitute

(mother ?x ?child))

(?child man)))

nRQL Tutorial – p.44/55

Features of the nRQL Engine (7)
• Simple rule mechanism

• (defrule

(and (?x woman) (?y man) (?x ?y married))

(neg (?x (:has-known-successor has-child)))

((instance (new-ind child-of ?x ?y) human)

(instance ?x mother)

(instance ?y father)

(related (new-ind child-of ?x ?y) ?x

has-mother)

(related (new-ind child-of ?x ?y) ?y

has-father)))

⇒ Rule antecedence is a query body;
consequence is a list of generalized ABox
assertions (also operators like new-ind)

nRQL Tutorial – p.45/55

Features of the nRQL Engine (8)
• Complex TBox queries

• What are the child concepts of the concept
woman?

> (tbox-retrieve (?x ?y)

(and (?x woman)

(?x ?y has-child)))

> (((?X WOMAN) (?Y SISTER))

((?X WOMAN) (?Y AUNT))

((?X WOMAN) (?Y *BOTTOM*))

((?X WOMAN) (?Y MOTHER))

((?X WOMAN) (?Y GRANDMOTHER)))

• . . . most of the present nRQL features have been
requested by users

• . . . for more nRQL peculiarities: see manual
nRQL Tutorial – p.46/55

Querying Large OWL KBs
• Lehigh University Benchmark for benchmarking

semantic web repositories
• See http://www.lehigh.edu/˜yug2/Research/

SemanticWeb/LUBM/LUBM.htm

• Modeling of a university
• OWL (DAML+OIL) classes for
departments, various kinds of professors,
students, . . .

• roles like worksFor, subOrganization
(transitive),

• Datatype properties telephone, age, . . .
• Benchmark generator generates “ABoxes”
• 14 benchmarking queries

nRQL Tutorial – p.47/55

The LUBM (2)
Query 9: (retrieve

(?x ?y ?z)

(and (?x Student)

(?y Faculty)

(?z Course)

(?x ?y advisor)

(?x ?z takesCourse)

(?y ?z teacherOf)))

“Retrieve all triples <?x,?y,?z> such that ?x is (bound

to) a student undertaking a course ?z whose teacher ?y

(from the faculty) happens to be his/her advisor”

nRQL Tutorial – p.48/55

The LUBM (3)
Query 12: (retrieve

(?x ?y www.University0.edu)

(and (?x chair)

(?y Department)

(?x ?y memberOf)

(?y www.University0.edu

subOrganizationOf)))

Cite LUBM: “The benchmark data do not produce any in-

stances of class Chair. Instead, each Department individual

is linked to the chair professor of that department by pro-

perty headOf. Hence this query requires realization, i.e., in-

ference that that professor is an instance of class Chair be-

cause he or she is the head of a department.”
nRQL Tutorial – p.49/55

Benchmarking Racer + nRQL
• We ran LUBM queries in 3 settings:
• Setting 1: complete ABox querying using an

unrealized ABox
• Setting 2: complete ABox reasoning using a

realized ABox
• Setting 3: “told information querying” enhanced

with TBox information – “upward saturation”:
⇒ for each ABox axiom C(i) ∈ A, for all

D ∈ concept_ancestors(C, TBox): put D(i)
into “ABox”: A := A ∪ {D(i)}

⇒ same for role relationships due to role
hierarchies

nRQL Tutorial – p.50/55

Results - Setting 1

0.01

0.1

1

10

100

1000

10000

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

S
ec

on
ds

No. of Individuals

Runtime Performance of LUBM Queries 1-13 (Setting 1, Logarithmic Scale, Unrealized ABox)

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10
Q11
Q12
Q13

nRQL Tutorial – p.51/55

Results - Setting 2

0.01

0.1

1

10

100

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

S
ec

on
ds

No. of Individuals

Runtime Performance of LUBM Queries 1-13 (Setting 2, Logarithmic Scale, Realized ABox)

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10
Q11
Q12
Q13

nRQL Tutorial – p.52/55

Results - Setting 3

nRQL Tutorial – p.53/55

Evaluation
• Using complete ABox querying we have to stop

at approx. 10.000 LUBM individuals
• Initial ABox consistency test kills Racer
• If completeness is sacrificed, we can easily load

and process more than 150.000 individuals
• All but Q8 and Q9 can be answered in fractions

of a second
• Only one tuple is missed (for Q12)

⇒ not severely incomplete

⇒ in this scale, answering time is quite okay!

nRQL Tutorial – p.54/55

Thanks

for your

attention!

nRQL Tutorial – p.55/55

	Overview of Tutorial
	Motivating Simple Example
	Motivating Simple Example (2)
	nRQL Language -- Overview
	Example KB
	Example KB (2)
	Example KB (3)
	nRQL Query Atoms
	nRQL Query Atoms (2)
	nRQL Query Atoms (3)
	nRQL Query Atoms (4)
	Head Projection Operators
	nRQL Variables
	nRQL Query Atoms (5)
	nRQL Peculiarities
	Complex nRQL Queries
	Complex nRQL Queries (2)
	nRQL Peculiarities (2)
	nRQL Peculiarities (3)
	nRQL Peculiarities (4)
	nRQL Peculiarities (5)
	nRQL Peculiarities (6)
	nRQL Peculiarities (7)
	nRQL Peculiarities (8)
	nRQL Peculiarities (9)
	Querying OWL KBs
	Querying OWL KBs (2)
	Querying OWL KBs (3)
	nRQL - Syntax
	nRQL - Syntax (2)
	nRQL - Semantics
	nRQL - Semantics (2)
	Features of the nRQL Engine
	Features of the nRQL Engine (2)
	Features of the nRQL Engine (3)
	Incremental Query Answering
	Incremental Query Answering
	Incremental Query Answering
	Incremental Query Answering
	Incremental Query Answering
	Incremental Query Answering
	Features of the nRQL Engine (5)
	Features of the nRQL Engine (6)
	Features of the nRQL Engine (7)
	Features of the nRQL Engine (8)
	Querying Large OWL KBs
	The LUBM (2)
	The LUBM (3)
	Benchmarking Racer + nRQL
	Results - Setting 1
	Results - Setting 2
	Results - Setting 3
	Evaluation
	

