
Design Principles & Realization
Techniques for User Friendly,

Interactive and Scalable
Ontology Browsing and

Inspection Tools

Ralf Möller, Michael Wessel
Racer Systems GmbH & Co. KG

OWLED 07, June 6, 2007

Motivation – DLS OBITs
• Many ontology tools primarily focus on

authoring or visualization
• OBIT Editor Ontology Displayer

– different requirements per se, but
– browsing and inspection (also) requires

(graphical) visualization and querying
– authoring functionality is a nice add on

• (W3C) standards are a necessity, but
proprietary DL system functionality
must be offered by an OBIT as well

• -> Reusable ideas behind RacerPorter

Motivation – Criticism (1)
• Today, most ontology tools ...

– focus on XML syntax (which was
invented for machines, not people)

• hard to read, (almost) impossible to write
• visualization and visual editing becomes

unavoidable, but visual editing has drawbacks

– don't offer textual interactive
communication with reasoners

• ad hoc queries and commands are needed
• problematic due to XML again

– > interactions mostly widget-based
• either not general enough or too complicated
• -> textual interactions needed

Motivation – Criticism (2)
• Plugin architectures are fine, but ...

– plugins often don't know of each other
• no coherent perspective and usage
• no or bad information flow between plugins
• for complex ontology inspection tasks, results

of several queries have to be combined!

• Editors: too much emphasis on visual
editing (caused by XML)
– low bandwidth (experienced KRSS users

are much faster textually, abstract OWL?)
– no interactive and rapid editing possible

• Tools have scalability problems

OBIT Requirements (1)
• Based on the analysis / criticism
• To achieve high bandwidth textual

interaction with a reasoner ...
– add a shell with command and argument

completion, command history, redo, ...
– > enables complex, semantic ad hoc

KRSS (and SPARQL) queries

• Visual ontology browsing & navigation
– different visualizations (tree vs. graph,

depth limit, graph/tree roots)
– widget- / gadget-based interactions

OBIT Requirements (2)
• Visualize different aspects of a DLS

– Tbox, Abox, role hierarchy, queries, ...
– different aspects shall be visualized using

different views or perspectives, but
interrelated and coherently

– how to realize the information flow?
– how to incorporate the shell and widget-

based interactions and results produced by
them into the information flow?

• DL system specific functionality
– RacerPro: nRQL query managment, server

persistency facility, ...

RacerPorter
• Influenced by RICE © Ronald Cornet
• First released with RacerPro 1.8.0 in

July 2005, has many users
• Designed according to requirements
• Tabbed interface

– different tabs represent different aspects,
– or the same aspects, but with different

visualization modalities

• Revised extensively for next release
– to solve scalability problems (cyc.owl)
– many new features (SPARQL evaluation)

RacerPorter - GUI

Information Flow in Porter
• Tabs show interrelated information

– e.g., the taxonomy tab can only show the
descendants of the concepts which have
been selected in the list of concepts tab

– notion of current objects and state required

• (KRSS) commands can be executed
– with the push of a button (-> current object)
– via a mouse gesture (browse and click)
– typed into the shell

• Commands require arguments and
produce results

The Clipboard Metaphor

i1
i2
...

alice
betty
eve
...

sister
mother

...

Command composition:
– sel.­inds:=all­individuals(cur­abox)

– show­list(sel.­inds)

– cur.­ind:=select­w­mouse(sel.­inds)

– sel.­concepts:=direct­types(cur.­ind)

– show­taxonomy­fr­roots(sel.­concepts)

Focus Control & Navigation
• The clipboard is also for focus control

– in general, there is one focus per tab
– focus on current or selected objects
– navigation history, VCR navigation buttons

• reestablish previous focus effortless
• -> very complex navigation history required

• “Drill down“-like browsing
– if mouse click changes cur.­concept and
show­taxonomy­fr­roots(cur.­concept)
is requested and redrawn automatically

– automatic redrawing can be problematic

Other Features
• Emacs-compatible editor with buffer

and expression evaluation mechanism
– also linked with the shell
– KRSS, OWL, SPARQL

• Other new features:
– query result inspector
– support for controlling (starting, stopping,

setting options of) RacerPro servers
– multiple sessions in parallel
– much better OWL support (abbreviates

XML namespaces using the #! prefix)

– mostly asynchronous (non blocking) GUI

Lessons Learned
• Use uniform and system wide

metaphors and mechanisms
• A good metaphor can address more

than one problem
– e.g., information flow and focus control

• Expect that your graph drawers will fail
– Cancel & Retry mechanisms are needed,

e.g., focus on certain nodes and retry with
different display and/or focus options

• Expect large results (don't put
1.000.000 individuals in the shell
without asking the user, ...)

Lessons Learned (2)
• Socket-based communication has

problems
– strings can become too long
– heavyweight caches are needed

• Don't block the interface if possible
– avoid the looks like dead syndrome
– use threads (+ cancel becomes possible)

• Check your data structures for
scalabilty

• Give control (regarding display focus
and display update options) to the user

Future Work
• Internalization issues

– unicode / japanese characters in KRSS

• Explanation facilities
• Abortable individual RacerPro requests

– maintain “process browser“-like list view of
currently active requests

• Better / different Abox visualizations
– currently, unraveling is used
– no cycles can be displayed

• Some graphical authoring?

Thank You!

If you are interested - see our demo
in the Posters & Demos session!

