
Fachbereich Informatik der Universität Hamburg

Vogt-Kölln-Str. 30
�

D-22527 Hamburg / Germany

University of Hamburg - Computer Science Department

Mitteilung Nr. 301/01 • Memo No. 301/01

Decidable and Undecidable Extensions
of ALC with

Composition-Based Role Inclusion
Axioms

Michael Wessel

Arbeitsbereich KOGS

FBI-HH-M-301/01

December 2000

Decidable and Undecidable Extensions
of ALC with Composition-Based

Role Inclusion Axioms

Michael Wessel

University of Hamburg, Computer Science Department,
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

Abstract

This paper continues our investigation on the extension of the standard
description logic ALC with role axioms of the form S ◦T v R1t· · ·tRn.
We consider the concept satisfiability problem of ALC w.r.t. a set of role
axioms of the proposed form. A set of these role axioms is called a role
box. The original motivation for this kind of role axioms comes from
foreseen applications in the field of qualitative spatial reasoning with de-
scription logics. In this paper, we define the logics ALCRA	 , ALCRA,
and ALCRASG . Basically, both ALCRA	 and ALCRA allow arbitrary role
boxes containing axioms of the general form S ◦ T v R1 t · · · t Rn. In
contrast to ALCRA	 , ALCRA requires additionally that all roles have to
be interpreted as disjoint. This requirement is also originally motivated
by qualitative spatial reasoning applications with ALCRA. Recently it
turned out that ALCRA	 is undecidable. In fact, already ALURA	 with
role boxes containing axioms of the form R◦S v T is undecidable. A very
similar result has also been obtained independently in a branch of normal
multimodal logics, called grammar logics. Since role disjointness is a very
severe restriction it is currently still unknown whether ALCRA might be
decidable or not. In this paper we go back one step before ALCRA and dis-
cuss a common fragment of ALCRA and ALCRA	 , called ALCRASG. Like
in ALCRA, ALCRASG requires role disjointness, but the set of admissible

role boxes is further pruned. It turned out that associativity of role boxes

is an important requirement – exploiting associativity we were able to
show the decidability and EXPTIME-completeness of ALCRASG . Surpris-
ingly, satisfiability of ALCRASG-concepts w.r.t. admissible role boxes can
be reduced to concept satisfiability w.r.t. general TBoxes in ALC. We also
show that the further augmentation of ALCRASG with unqualified number
restrictions, yielding the language ALCNRASG, is again undecidable.

1

1 Introduction and Motivation

Since the famous “Subsumption in KL-ONE is undecidable”-result by Schmidt-
Schauß ([14]) who identified the so-called role value maps as a primary source
of undecidability in the seminal description-logic system KL-ONE, role inclu-
sion expressions containing the composition operator have not regained much
attention in the DL community again (please refer to [2] for a more gentle and
self-contained introduction of description logics). A role value map is a concept-
expression of the form

R1 ◦R2 ◦ · · · ◦Rn v S1 ◦ S2 ◦ · · · ◦ Sm,

whose extension (assuming the usual extensional, Tarski-style semantics) is given
by the set

{ x ∈ ∆I | ∀y : <x, y> ∈ RI
1 ◦ . . . ◦RI

n ⇒ <x, y> ∈ SI
1 ◦ . . . ◦ SI

m }.

Even though it was always clear that role value maps are expressive and elegant
modeling constructs, only a very few restricted variants have been examined.
For example, Molitor (see [9]) has shown that a certain fragment of ALC with
role value maps of the special form R1◦R2◦· · ·◦Rn v S1◦S2◦· · ·◦Sn – note that
the same number of roles appear on both sides of the inclusion – is decidable,
by exploiting a certain “level structure” in the models. In our opinion, there
is still a gap in the description logic theory. As pointed out by Sattler in [12],
these restricted variants of role value maps still need to be investigated, since
they might be decidable and very useful for knowledge representation purposes.

In this paper, we continue our research on ALC extended with composition-based
role inclusion axioms of the form S◦T v R1t· · ·tRn (see [16],[15]) and identify
a decidable fragment. A role axiom S ◦ T v R1 t · · · t Rn is satisfied by an
interpretation I if and only if SI ◦ T I ⊆ RI

1 ∪ RI
2 ∪ · · · ∪ RI

n holds. The most
obvious consequence is the loss of the tree model property. Even worse, the log-
ics we have considered don’t have the finite model property. On one hand, our
investigation can also be seen as an attempt towards contributing to the iden-
tification of decidable variants of role value maps. Our role axioms are not role
value maps per se, since, for example, role value maps might appear negated if
the considered base-description logic offers a full negation operator. But there is
still an interesting correspondence with role value maps: if we restrict ourselves
to deterministic composition-based role inclusion axioms (a composition-based
role axiom is called deterministic iff it contains no disjunctions of roles on its
right hand side) we might say, laxly speaking, that non-negated (positive) role
value maps are “local” deterministic composition-based role inclusion axioms, or

2

conversely, that deterministic composition-based role-axioms are “global” (pos-
itive) role value maps.1

On the other hand, the proposed kind of role axioms arises naturally when
trying to address qualitative spatial reasoning tasks within description logic
frameworks, which was the original motivation for considering these kinds of
role axioms. Due to the problems encountered in our previous work (see [16],
[15]), the primary objective of this paper is to get a better map of the borderline
area between decidable and undecidable extensions of ALC with composition-
based role inclusion axioms.

Certain well-known description logic constructs can be “emulated” with the
help of role axioms having the form S ◦ T v R1 t · · · t Rn. For example,
a transitively closed role R corresponds to an axiom R ◦ R v R. This is the
R+ “operator” of ALCR+ (see [10]). Simple role inclusion axioms of the form
R v S (the H operator) can be emulated with R ◦ Id v S in the presence of
the identity role Id, having the fixed semantics of the identity relation. Also
the concept satisfiability problem of the language ALCR⊕, offering so-called
transitive orbits (see [10]), can be reduced to concept satisfiability in ALCRA
(ALCRA) w.r.t. a set of appropriate role axioms (see [15]). Since these are all
well-known decidable description logics, it was always clear that certain “trivial”
classes of role boxes could be found, such that the resulting logic would be
decidable (see the discussion in [15]). However, it remained to show that there
are any non-obvious classes of role boxes not corresponding to previously known
decidable description logics for which this is also the case.

In this paper we identify the fragment ALCRASG, offering admissible role boxes.
Admissible role boxes (see below for an exact definition) are associative and con-
tain only deterministic role axioms (no role axiom has disjunctions on its right
hand side). The decidability result is not immediate, since ALCRASG does not
have the finite model property. In previous work it turned out that ALCRA	 and
even ALURA	 with role boxes solely containing axioms of the form R ◦S v T is
undecidable. A very similar undecidability result has also been obtained inde-
pendently in a branch of normal multimodal logics, called grammar logics (see
below for a discussion). Since role disjointness is a very severe restriction it
is currently still unknown whether ALCRA might be decidable or not. With
ALCRASG we go back on step behind ALCRA. Like in ALCRA, ALCRASG re-
quires role disjointness, but the set of admissible role boxes is further pruned,
compared to ALCRA. It turned out that associativity of role boxes is an impor-
tant requirement – exploiting associativity we were able to show the decidability
of ALCRASG. We also show EXPTIME-completeness of ALCRASG. Surprisingly,

1In the former case we have
{x ∈ ∆I | ∀y : <x, y> ∈ RI

1
◦ . . . ◦ RI

n
⇒ <x, y> ∈ SI

1
◦ . . . ◦ SI

m
} ⊆ ∆I , and in the latter

{x ∈ ∆I | ∀y : <x, y> ∈ RI
1
◦ . . . ◦ RI

n
⇒ <x, y> ∈ SI

1
◦ . . . ◦ SI

m
} = ∆I .

3

it turns out that satisfiability of ALCRASG-concepts w.r.t. admissible role boxes
can be reduced to concept satisfiability w.r.t. general TBoxes in ALC. We like
to mention that ALCRASG, even though clearly a very restricted language, is
at least as expressive as ALCR+ and ALCR⊕ (see [10]). Therefore, the given
reduction works also for ALCR+ and ALCR⊕.

The structure of this paper is a follows: we will first define the syntax and
semantics of the languages ALCRA	 , ALCRA, and ALCRASG. Certain auxiliary
definitions and propositions as well as already known undecidability results and
facts from [15] are recalled. We will then briefly sketch the relationship to
grammar logics. The next chapter, which contains a tableaux-based decision
procedure for ALCRASG and the proof of EXPTIME-completeness, is the main
contribution of this paper. We then show that a slight extension of ALCRASG,
namely ALCRASG extended with unqualified number restrictions (code letter
N) yielding the logic ALCNRASG, is undecidable again. Finally, we conclude by
discussing the impact of the insights gained from ALCRASG on future work.

2 Syntax and Semantics

In the following we will define the syntax and semantics of the three considered
languages ALCRA, ALCRA	, and ALCRASG. We start with the set of well-formed
concept expressions (concepts for short):

Definition 1 (Concept Expressions) Let NC be a set of concept names, and
let NR be a set of role names (roles for short), such that NC ∩ NR = ∅. The set
of concept expressions (or concepts for short) is defined inductively:

1. Every concept name C ∈ NC is a concept.

2. If C and D are concepts, and R ∈ NR is a role, then the following ex-
pressions are concepts as well: (¬C), (C u D), (C t D), (∃R.C), and
(∀R.C).

The set of concepts is the same as for the language ALC. If a concept starts
with “(”, we call it a compound concept, otherwise a concept name or atomic
concept. Brackets may be omitted for the sake of readability if the concept is
still uniquely parsable. For example, instead of ((C uD) u E) we simply write
CuDuE etc., similarly for t (u and t are considered as being left-associative).
Generally, if C is a compound concept, the brackets of C = (. . .) may not be
omitted within ∃R.C and ∀R.C. If C is a concept name and we write ∃R.CuD,
with this convention this means (∃R.C) u D and not ∃R.(C u D). We may
also omit the brackets when nesting ∃- and ∀-concepts: e.g. ∃R.∃R.∃R.C u D

4

means ((∃R.(∃R.(∃R.C))) u D). If C is not a concept name we have to write
∃R.∃R.∃R.(. . .) u D to mean (∃R.(∃R.(∃R.(C u D)))). We use the following
abbreviations: if R1, . . . , Rn are roles, and C is a concept, then we define
(∀R1 t · · · t Rn.C) =def (∀R1.C) u · · · u (∀Rn.C) and ∃R1 t · · · t Rn.C =def

(∃R1.C) t · · · t (∃Rn.C). Additionally, for some CN ∈ NC we define > =def

CN t ¬CN and ⊥ =def CN u ¬CN (therefore, >I = ∆I , ⊥I = ∅). Before we
can proceed, we need some auxiliary definitions. The set of roles being used
within a concept C is defined:

Definition 2 (Used Roles, roles(C))

roles(C) =def







∅ if C ∈ NC
roles(D) if C = (¬D)
roles(D) ∪ roles(E) if C = (D u E)

or C = (D t E)
{R} ∪ roles(D) if C = (∃R.D)

or C = (∀R.D)

For example, roles(((∀R.(∃S.C)) u ∃T.D)) = {R, S, T}.
The set of subconcepts of a concept C is defined in the obvious way:

Definition 3 (Subconcepts of C, sub(C))

sub(C) =def {C} ∪







∅ if C ∈ NC
sub(D) if C = (¬D)

or C = (∃R.D)
or C = (∀R.D)

sub(D) ∪ sub(E) if C = (D u E)
or C = (D t E)

For example, sub((C u (∀R.D))) = {(C u (∀R.D)), C, (∀R.D), D}. Obviously,
|sub(C)| ≤ |C|, if |C| denotes the length of the string expressing C.

As already noted, we are investigating the satisfiability of ALC concepts w.r.t.
a set of role axioms of the form S ◦ T v R1 t · · · t Rn. More formally, the
syntax of these role axioms and of the considered role boxes containing these
axioms is as follows. The following definitions and notions might appear to be
complicated and artificial at a first sight, but the reasons for introducing them
will become clear subsequently. As already noted, the primary objective of this
paper is not to introduce a useful new description logic of utmost utility, but
to investigate different kinds of restricted role boxes that ensure decidability.
Even though some of the subsequent restrictions on role boxes are very strong
and artificial we believe that some of the restrictions can be relaxed in order to

5

define more and more useful description logics in the future, by exploiting some
of the insights gained by this investigation:2

Definition 4 (Role Axioms, Role Box, Admissible Role Box) If
S, T, R1, . . . , Rn ∈ NR, then the expression S ◦ T v R1 t · · · t Rn, n ≥ 1, is
called a role axiom. If ra = S ◦ T v R1 t · · · tRn, then pre(ra) =def (S, T) and
con(ra) =def {R1, . . . , Rn}.
If n = 1, then ra is called a deterministic role axiom. In this case we also write
T = con(ra) instead of T ∈ con(ra).

A finite set � of role axioms is called a role box.

Let roles(ra) =def {S, T, R1, . . . , Rn}, and roles(�) =def

⋃

ra∈ � roles(ra).

A role box � is called deterministic, iff it contains only deterministic role
axioms.

A role box � is called functional, iff ∀ra1, ra2 ∈ � : pre(ra1) = pre(ra2) ⇒
ra1 = ra2. We can then use the function ra(S, T) = ra to refer to the unique
role axiom ra with pre(ra) = (S, T) and define con(S, T) =def con(ra(S, T)).

A role box � is called complete, iff ∀R, S ∈ roles(�) : ∃ra ∈ � : pre(ra) =
(R, S).

Let � be a functional role box, C be a concept, and R? ∈ NR, but R? /∈
roles(�) ∪ roles(C). Then, the completion of � w.r.t. the concept C is defined
as the role box

� (C) =def � ∪ {R ◦ S v tT∈({R?}∪roles(C)∪roles(�))T |
¬(∃ra ∈ � : pre(ra) = (R, S)), R, S ∈ ({R?} ∪ roles(C) ∪ roles(�)) }.

Obviously, � (C) is a complete and functional role box. Please note that, even
if � is already complete w.r.t. C such that ∀R, S ∈ roles(�) ∪ roles(C) : ∃ra ∈

� : pre(ra) = (R, S), we would still have � (C) 6= � , due to the addition of role
axioms ra ∈ � (C) \ � with R? ∈ pre(ra).

The role box � is called admissible iff it is deterministic, functional, complete,
and associative: ∀R, S, T : con(con(R, S), T) = con(R, con(S, T)).

The role box � is called admissible for the concept C iff � is admissible and
additionally, roles(C) ⊆ roles(�).

2Almost all expressive description logics were also build in a step-by-step fashion, e.g., after
ALCR+ had been introduced, ALCHR+ was defined, and so on.

6

According to the classes of allowed role boxes, we define ALCRA	, ALCRA	 and
ALCRASG as follows:

• In ALCRA	 we allow all role boxes.

• In ALCRA we allow only functional role boxes. The following holds: if �
is a functional role box, then (C, �) is satisfiable iff (C, � (C)) is, where

� (C) is the completion of � w.r.t. C (the proof is pretty obvious and left
out here for the sake of brevity). For the semantics, we require that all
roles must be interpreted as disjoint, see below.3

• In ALCRASG we allow only role boxes that are admissible (see above)
w.r.t. the considered concept C. We are studying the concept satisfiability
problem of (C, �). Like in ALCRA, we require that all roles must be
interpreted as disjoint, see below. An admissible role box can be seen as
defining the operation-table of a Semi-Group (therefore the suffix SG).
For example, if we consider the operation-table of “+” modulo 4 on the
natural numbers

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

and interpret “+′′ as “◦′′, and assign for each number i a unique role
name Ri, we get an admissible role box. Then, (∃R1.∃R2.C) u ∀R3.¬C is
unsatisfiable w.r.t. this role box.

We like to mention that ALCRASG, even though clearly a very restricted
language, is a least as expressive as ALCR+ and ALCR⊕ .

3Please note that, due to the disjointness requirement, the restriction to functional role
boxes is not really a restriction, since non-functional role boxes, e.g. with {R◦S v T1, R◦S v
T2} ⊆ � and T1 6= T2, would not have a model anyway, if RI ◦ SI 6= ∅.

7

In order to demonstrate the consequences of disjointness for roles, please con-
sider

� = {R◦S v AtB, S◦T v XtY,A◦T v U,B◦T v V,R◦X v U,R◦Y v V }.

Then,

(∃R.((∃S.∃T.>) u ∀Y.⊥) u ∀A.⊥, � (C))

is unsatisfiable, since ∀A.⊥ forces to choose B ∈ con(R, S), and ∀Y.⊥ forces to
choose X ∈ con(S, T). Due to B ◦ T v V and R ◦X v U there must be a non-
empty intersection between U and V . The unsatisfiability is caused by a subtle
interplay between the role box and the concept. Please observe that this role box
is “associative” in a more general sense (since (R◦S)◦T = {U, V } = R◦(S◦T)),
but not admissible in the sense defined here. Summing up, this example is
satisfiable in ALCRA	 , but unsatisfiable in ALCRA. Since the role box is not
admissible, the example is not expressible in ALCRASG.

Additionally, a set of concept inclusion axioms (GCIs) can be specified. A set
of these axioms is called a general (or free) TBox:

Definition 5 (Generalized Concept Inclusion Axiom, General TBox) If
C and D are ALC-concepts, then the expression C v̇ D is called a generalized
concept inclusion axiom, or GCI for short. A finite set of GCI’s is called a general
(or free) TBox, � . We use C

.
= D ∈ � as a shorthand for {C v̇D,D v̇ C} ⊆ � .

We define sub(�) =def {G | E v̇ F ∈ � , G ∈ sub(E) ∪ sub(F) }, and roles(�) =def

{R | G ∈ sub(�), R ∈ roles(G) }.

The semantics of a concept is specified by giving a Tarski-style interpretation I
that has to satisfy the following conditions:

Definition 6 (Interpretation) An interpretation I =def (∆I , ·I) consists of
a non-empty set ∆I , called the domain of I, and an interpretation function ·I
that maps every concept name to a subset of ∆I, and every role name to a
subset of ∆I × ∆I .

In case of ALCRA and ALCRASG, we additionally require that for all roles R, S ∈
NR, R 6= S: RI ∩ SI = ∅. All roles are interpreted as disjoint then.

The following functions on I will be used: The universal relation of I is defined
as UR(I) =def

⋃

R∈NR
RI, and the universal relation w.r.t. a set of role names

R as UR(I,R) =def

⋃

R∈RR
I.

The skeleton of I is defined as SKEL(I) =def

{<x, z> ∈ UR(I) | 6 ∃y ∈ ∆I : x 6= y, y 6= z, <x, y> ∈ UR(I), <y, z> ∈ UR(I) }.

8

If <i, j> ∈ SKEL(I), the edge is called a direct edge, otherwise an indirect edge.

If <i, j> ∈ UR(I), the edge is called an incoming edge for j.

Given an interpretation ∆I , every (possibly compound) concept C can be uniquely
interpreted (resp. “evaluated”) by using the following definitions (we write XI

instead of ·I(X)):

(¬C)I =def ∆I \ CI

(C uD)I =def CI ∩DI

(C tD)I =def CI ∪DI

(∃R.C)I =def { i ∈ ∆I | ∃j ∈ CI : <i, j> ∈ RI }
(∀R.C)I =def { i ∈ ∆I | ∀j : <i, j> ∈ RI ⇒ j ∈ CI }

It is therefore sufficient to provide the interpretations for the concept names and
roles, since the extension CI of every concept C is uniquely determined then.

In the following we specify under which conditions a given interpretation is a
model of a syntactic entity (we also say an interpretation satisfies a syntactic
entity):

Definition 7 (The Model Relationship) An interpretation I is a model of
a concept C, written I |= C, iff CI 6= ∅.
An interpretation I is a model of a role axiom S ◦ T v R1 t · · · t Rn, written
I |= S ◦ T v R1 t · · · t Rn, iff SI ◦ T I ⊆ RI

1 ∪ · · · ∪RI
n.

An interpretation I is a model of a role box � , written I |= � , iff for all role
axioms ra ∈ � : I |= ra.

An interpretation I is a model of a GCI C v̇ D, written I |= C v̇ D, iff
CI ⊆ DI .

An interpretation I is a model of a TBox � , written I |= � , iff for all GCIs
g ∈ � : I |= g.

An interpretation I is a model of (C, �), written I |= (C, �), iff I |= C and
I |= � .

An interpretation I is a model of (C, �), written I |= (C, �), iff I |= C and
I |= � .

An interpretation I is a model of (C, � , �), written I |= (C, � , �), iff I |= C,
I |= � and I |= � .

An important relationship between concepts is the subsumption relationship,
which is a partial ordering on concepts w.r.t. their specificity:

9

Definition 8 (Subsumption Relationship) A concept D subsumes a con-
cept C, C v D (w.r.t. to � and/or �), iff CI ⊆ DI holds for all interpretations
I (that are also models of � and/or � , respectively).

We like to mention that the three proposed logics are expressive enough to allow
for the so-called internalization of general TBoxes.

Since a full negation operator if provided, the subsumption problem can be
reduced to the concept satisfiability problem: C v D iff Cu¬D is unsatisfiable.

It should be noticed that a satisfiability tester for any of the three proposed
logics would also be able to determine satisfiability resp. subsumption w.r.t.
general TBoxes (see below; internalization of � can be used).

For the following proofs we need some auxiliary propositions which are obviously
true and deserve no proofs:

Proposition 1 If I |= (C, �), then for every interpretation I ′ = (∆I , ·I′

) with
DI′

= DI for all concept names D ∈ sub(C) ∩ NC and RI′

= RI for all role
names R ∈ roles(C, �): I ′ |= (C, �).

Proposition 2 (C, �) is satisfiable iff (NNF(C), �) is satisfiable. NNF(C)
returns the negation normal form of C, in which the negation sign appears only
in front of atomic concept names. The NNF can be obtained by “pushing the
negation sign inwards”, e.g. by exhaustively applying the rules ¬(¬C1) → C1,
¬(C1 u C2) → ¬C1 t ¬C2, ¬(C1 t C2) → ¬C1 u ¬C2, ¬∀R.C1 → ∃R.¬C1 and
¬∃R.C1 → ∀R.¬C1. In the following we assume w.l.o.g. that C is in NNF.

Proposition 3 Neither ALCRA	, ALCRA, nor ALCRASG have the finite model
property, i.e. there are pairs (C, �) that have no finite models.

Proof 1 As a counter-example to a finite model property assumption in ALCRA,
please consider

(∃R.∃R.>) u (∀S.∃R.>)

w.r.t.

{R ◦R v S,R ◦ S v S, S ◦R v S, S ◦ S v S},

which has no finite model (see [16],[15] for a proof). Since this is clearly also
an admissible role-box for the considered concept term, this also shows that
ALCRASG does not have the finite model property. Concerning ALCRA	 , the
proposition follows indirectly, since ALCRA	 is undecidable (see [15]). It is well-
known that a description logic is decidable, if it has the finite model property

10

and can be reduced to first-order predicate logic formulas. Since the latter is
true, the former must be false, because ALCRA	 would be decidable otherwise.

�

3 The Relationship to Grammar Logics

Recently it turned out that there is an interesting correspondence of ALCRA	

with a special class of normal multimodal logics called inclusion modal logics, or
grammar logics (see [4],[3]). The correspondence has been pointed out by Demri
([4]). We will only briefly sketch the basic idea of inclusion modal logics, see
[3] for a thorough discussion. Demri also provides an undecidability proof for
ALCRA	 , based on the original proof of Baldoni who showed that context-free
grammar logics are undecidable, but the ALCRA	 undecidability result in [15]
has been found independently from Demri’s and Baldoni’s proofs and without
any knowledge of the correspondence. The proof is given by a reduction from
the (undecidable) non-empty intersection problem of a special class of context-
free grammars which are similar to context-free grammars in Chomsky Normal
Form.4

The original motivation for the introduction of grammar logics was to simu-
late the behavior of formal grammars by means of modal logic. Grammar log-
ics are characterized by a set of modal inclusion axiom schemas of the form
[t1][t2] . . . [tn]ψ ⇒ [s1][s2] . . . [sm]ψ. The intended idea was that each production
rule t1t2 . . . tn → s1s2 . . . sm of a formal grammar gives rise to one modal inclu-
sion axiom schema of the form [t1][t2] . . . [tn]ψ ⇒ [s1][s2] . . . [sm]ψ (please note
that ⇒ means implication, whereas → means “derives in one step”). In [3] it
is shown that a set of inclusion axiom schemas characterizes a special class of
frames FA, called inclusion frames, in which for each inclusion axiom schema an
appropriate inclusion relationship between the accessibility relations Ri holds;
as usual, Ri is the accessibility relation corresponding to the modality [i]. It is
shown that each axiom schema [t1][t2] . . . [tn]ψ ⇒ [s1][s2] . . . [sm]ψ characterizes
the class of inclusion frames FA where Rs1

◦Rs2
◦· · ·◦Rsm

⊆ Rt1 ◦Rt2 ◦· · ·◦Rtn

holds; similar as, for example, the modal logic axiom schema T = [a]ψ ⇒ ψ
characterizes the class of frames where Ra is reflexive (see [5]).5

In description logic terminology, the accessibility relations correspond to inter-

4The non-empty intersection problem for two grammars G1 and G2 is to decide whether
L(G

1
) ∩ L(G

2
) = ∅.

5In order to evaluate the truth-value of a modal logic formula, a Kripke interpretation is
needed. Such a Kripke interpretation consists of a frame and a valuation function. The frame
provides a set of worlds and, for each modality i, an accessibility relation Ri. The valuation

function determines for each world and proposition whether this proposition holds at this
world or not.

11

preted roles (e.g. the accessibility relation RR corresponds to RI). If an ap-
propriate class of inclusion frames FA is considered, an inclusion axiom schema
of the form [T]ψ ⇒ [R][S]ψ corresponds to a role axiom of the form R ◦ S v
T . Appropriate means that RR ◦ RS ⊆ RT has to hold. As an example,
w.r.t. the class of Kripke interpretations that are based on such appropriate
frames FA, the formula (〈R〉〈S〉p) ∧ [T]¬p is unsatisfiable. The same holds for
((∃R.∃S.p) u ∀T.¬p, {R ◦ S v T}), since the role axiom enforces the appropri-
ate “inclusion property” RI◦SI ⊆ T I. Considering the modal logic formula, one
has to observe that there are indeed Kripke interpretations where this formula
is satisfiable; i.e. a broader class of models than in the ALCRA	 equivalent is
admitted. However, these Kripke interpretations are not based on appropriate
inclusion frames FA, where RR ◦ RS ⊆ RT holds.

By analyzing various types of grammars, certain decidability and undecidability
results concerning satisfiability (validity) of formulas w.r.t. Kripke interpreta-
tions that are based on appropriate inclusion frames have been found: it is
already shown in [3] that the validity problem for the class of context-free inclu-
sion modal logics is undecidable. It should be noted that ALCRA	 even admits
axioms of the form S ◦ T v R1 t · · · t Rn which correspond to modal axiom
schemas of the form ([R1]ψ) ∧ ([R2]ψ) ∧ · · · ∧ ([Rn]ψ) ⇒ [S][T]ψ,6 and these
axiom schemas are not in the class of inclusion modal logics. However, in the
undecidability proof of ALCRA	 it is shown that already ALURA	 with deter-
ministic role boxes is undecidable. Therefore, this undecidable fragment can
indeed be understood as an inclusion modal logic and one could claim that the
undecidability of ALCRA	 is already an obvious consequence from the work in
[3]. However, the correspondence was unknown until Demri’s paper (see [4]).

4 ALCRASG is EXPTIME-Complete

In the following, we design a decision procedure for ALCRASG: given a concept C
and a role box � that is admissible for C (recall that a role box is admissible for a
concept C iff it is deterministic, functional, complete, associative and roles(C) ⊆
roles(�)) as input to the algorithm SAT, the algorithm decides whether there
is a model I of (C, �): I |= (C, �). We adopt and adapt the proof-techniques
firstly used by Horrocks, Sattler et al. (e.g., see [7, 8]).

In a similar way as for other description logics, the decision procedure is given by
means of a non-deterministic tableaux algorithm that constructs a so-called finite
completion tree. Soundness of this algorithm is proven by showing that a so-
called tableau can be constructed from a complete and clash-free completion tree

6Thanks to Stéphane Demri

12

that has been generated by the algorithm. Completeness is proven by showing
how to construct a clash-free completion tree from a given tableau. Before we
can proceed with the algorithm, we therefore need to define the auxiliary data
structure tableau, which will turn out to be an appropriate abstraction of a
special class of models.

At a first sight it might not make sense to define a tableaux algorithm for such
a restricted description logic like ALCRASG (again, recall that it is at least as
expressive as ALCR+). However, the calculus is presented in the form given here
for a number of reasons:

1. It is very similar to the calculus which has been given for ALCRA in [16].
The basic ideas are identical. Therefore, defining the ALCRASG calculus
in this way might yield new insights on the decidability status of ALCRA.

2. The given calculus should be extendible. We are planning to investigate
different (less restricted) classes of role boxes with the same calculus by
making only small changes to the blocking condition and/or the so-called
∃∀-rule (see below).

3. For the same reason, the calculus and the definition of tableaus are slightly
more complicated than needed. This has also the additional advantage
that some properties can be proven more easily. Hopefully, this allows for
an adaptation of the framework if a less-restricted class of role boxes is
considered, without having to redesign everything.

4. We wanted to demonstrate that the basic ideas behind the ALCR+ calcu-
lus (see [10]) can be further stretched, applying also to more general logics
like ALCRASG. In fact, the ALCRASG calculus might be seen as a general-
ization of some of the ideas present in the ALCR+ calculus (“propagating”
constraints of the form “∀R.C”, where R is a transitively closed role).

5. The given (non-deterministic) tableaux calculus is not optimal in terms
of computational complexity. As shown below, ALCRASG is EXPTIME-
complete, but the calculus is not an EXPTIME-decision procedure. There-
fore, in order to prove the upper-bound complexity of ALCRASG, a different
method was needed. We give an EXPTIME-reduction to ALC-satisfiability
w.r.t. general TBoxes. Therefore, an arbitrary ALC-reasoner that can
handle GCIs could be used to decide ALCRASG-satisfiability. However, the
reduction was designed to show EXPTIME-completeness and would likely
not be efficient when used as an ALCRASG-decision procedure. A starting-
point for an ALCRASG-reasoner would therefore be the given tableaux cal-
culus, since it will be much more efficient in the average case and might
also be augmentable with special optimization techniques.

13

4.1 The Tableau

Basically, a tableau is a possibly infinite tree whose edges E are labeled with role
names, and whose nodes are labeled with constraints enforced on these nodes
(see [8]). The node labeling function is called LN , and we write LN (x) to refer
to the label of node x. The elements of LN (x) are called constraints. Since
edges are labeled with role names, we refer to the set of edges corresponding to
a given role R ∈ NR as ER.

A tableau for (C, �) is just an other representation of a special model I of (C, �)
(please note that C is already in NNF, see Proposition 2). We call these models
tree skeleton models.

Let I be the tree skeleton model corresponding to some given tableau. Then,
SKEL(I) corresponds to the labeled tree of this tableau. If a node y in the
tableau is an R-successor of the node x due to some constraint ∃R . . . enforced
on node x, ∃R . . . ∈ LN (x), then w.r.t. I we have <x, y> ∈ RI ∩ SKEL(I); i.e.
<x, y> is a direct R-edge. However, the indirect edges which might be present
in I due to role axioms cannot be represented in the tableau in this way, since
a tableau is a labeled tree. For example, if R ◦ S v T , then a model I with
<x0, x1> ∈ RI , <x1, x2> ∈ SI must satisfy <x0, x2> ∈ T I. Therefore, every
(direct or indirect) incoming edge for a node x in the model is represented in
the tableau by a special annotated all constraint of the form (∀U.D)S,w ∈ LN (x),
where S represents the type of the incoming edge, and w is a word of role names,
denoting a path in the tree, leading from the individual from which the edge
originates to x. In our example we would have (∀ . . .)T,RS ∈ LN (x2) due to
<x0, x2> ∈ T I, <x0, x1> ∈ ER, <x1, x2> ∈ ES, and (∀ . . .)S,S ∈ LN (x2) due
to <x1, x2> ∈ SI , <x1, x2> ∈ ES. Assume that ∀U.D ∈ LN (x0). Then, the
presence of the constraint (∀U.D)T,RS ∈ LN (x2) is ensured (see below). Since
x2 is an indirect T -successor of x0 and not a U -successor, D /∈ LN (x2). If we
additionally had ∀T.D ∈ LN (x0), then also (∀T.D)T,RS ∈ LN (x2), and D ∈
LN (x2). Whenever a constraint (∀U.D)T,w ∈ LN (x) with U = T is encountered,
D ∈ LN (x) is ensured, since the qualification is applicable to the node x. Since
the indirect edges are represented by constraints of the form (∀U.D)T,w, it is
necessary to ensure the presence of them. This is achieved by adding a “dummy
constraint” of the form ∀R?.> for some R? ∈ NR to the label of each node in
the tableau.

In order to facilitate the subsequent definitions, the following auxiliary data
structure is defined:

Definition 9 (Concept Tree) Let C be a concept and � be an admissible
role box for C. A concept tree for (C, �) is a tuple (N ,LN , E ,LE), where N
is a set of nodes and E ⊆ N × N is a set of edges. The graph (N , E) is a

14

(possibly infinite) tree. The (total) labeling function LE : E → roles(�) as-
sociates edges with role names. For a role R ∈ roles(�), the set of R-edges is
ER =def {<x, y> | (<x, y>,R) ∈ LE }. Additionally, LN is a (total) node label-
ing function: LN : N → sub(C) ∪ {∀R?.>} ∪

{ (∀R.C1)S,w | ∀R.C1 ∈ sub(C) or ∀R.C1 = ∀R?.>,
R, S ∈ roles(�), w ∈ roles(�)+ }.

The elements in the domain of LN are also called constraints.. If <x, y> ∈ E ,
y is called a successor of x, and x is called a predecessor of y. If <x, y> ∈
E+, x is called an ancestor of y, and y is called a descendant of x. Let
w ancestor(y, w) =def x iff w = R1R2 . . . Rn, where w ∈ roles(�)+, <x, x1> ∈
ER1

, <x1, x2> ∈ ER2
, . . . , <xn−1, y> ∈ ERn

. Please note that the w ancestor is
uniquely defined, since we have a tree.

A tableau can then be defined as follows:

Definition 10 (Tableau) A tableau T for (C, �) is a concept tree for which
the following additional conditions hold:

1. There is some node x0 ∈ N with C ∈ LN (x0).

2. For all x, y ∈ N , for all Ci ∈ sub(C), and for all (∀Ri.Ci)Si,w ∈ L with
R,Ri, S, Si ∈ roles(�), w ∈ roles(�)+, and for some R? ∈ roles(�), we
have

(a) if C1 ∈ LN (x), then (¬C1) /∈ LN (x),

(b) if (C1 u C2) ∈ LN (x), then C1 ∈ LN (x) and C2 ∈ LN (x),

(c) if (C1 t C2) ∈ LN (x), then C1 ∈ LN (x) or C2 ∈ LN (x),

(d) if (∃R.C1) ∈ LN (x), then there is some y such that <x, y> ∈ ER and
C1 ∈ LN (y),

(e) if (∀R.C1)R,w ∈ LN (x), then C1 ∈ LN (x),

(f) (∀R?.>) ∈ LN (x),

(g) (∀R.C1)S1,S2
∈ LN (y) iff S1 = S2 and there is some x with <x, y> ∈

ES1
and (∀R.C1) ∈ LN (x),

(h) (∀R.C1)S3,wS2
∈ LN (y) with |w| ≥ 1 iff there is some x with <x, y> ∈

ES2
, (∀R.C1)S1,w ∈ LN (x), and S3 = con(S1, S2).

Lemma 1 (C, �) is satisfiable iff there exists a tableau T for (C, �).

Proof 2 “⇐” If T = (N ,LN , E ,LE) is a tableau for (C, �), a tree skeleton
model I = (∆I, ·I) of (C, �) can be constructed as follows:

15

• ∆I =def N ,

• CI
1 =def { x | C1 ∈ LN (x) } for all C1 ∈ NC ∩ sub(C),

• CI
1 =def ∅ for all other concept names C1 ∈ NC \ sub(C),

• RI =def {<x, y> | w ancestor(y, w) = x, (∀S.C1)R,w ∈ LN (y) }
for all role names R ∈ roles(� (C)),

• RI =def ∅ for all other roles R ∈ NR \ roles(�).

First of all, due to Proposition 1 we can safely interpret all unmentioned
roles (those not in roles(�)) and concept names (those not in sub(C)) with
the empty set.

We show that all roles are interpreted as disjoint: assume the contrary.
Then there must be some roles R, S ∈ NR, R 6= S with RI ∩ SI 6= ∅.
Due to the definition of ·I, <x, y> ∈ RI ∩ SI with R 6= S iff x =
w ancestor(y, w), (∀S1.C1)R,w ∈ LN (y) and (∀S2.C2)S,w ∈ LN (y). Please
note that S1, S2, C1, C2, etc. do not matter here – they are just used as
place-holders. We will therefore write (∀...)R,w ∈ LN (y), (∀...)S,w ∈ LN (y).
Using induction on w we show that for each node y, (∀...)R,w ∈ LN (y) and
(∀...)S,w ∈ LN (y) implies R = S. If |w| = 1, this is an immediate conse-
quence of Condition 2g and of the fact that y has only one predecessor,
since we have a tree. For the induction step, (∀...)R,wT ∈ LN (y) and
(∀...)S,wT ∈ LN (y) iff there is some x with <x, y> ∈ ET , (∀...)R′ ,w ∈ LN (x),
(∀...)S′,w ∈ LN (x). Due to the hypothesis, R′ = S ′. But then we have
R = con(R′, T), S = con(R′, T), and since the role box is admissible and
therefore contains only deterministic role axioms it follows that R = S.

We show I |= � : assume the contrary. Then there must be some role ax-
iom ra ∈ � that ist not satisfied by I. This is the case iff there are some
x, y, z with <x, y> ∈ RI , <y, z> ∈ SI, and either <x, z> /∈ UR(I) (note
that an admissible role box is complete, and therefore, <x, z> /∈ UR(I)
cannot occur in a model of a complete role box), or <x, z> ∈ T I, but T 6=
con(ra) = con(R, S). Due to the definition of ·I, <x, y> ∈ RI , <y, z> ∈ SI,
iff x = w ancestor(y, w1), y = w ancestor(z, w2), (∀...)R,w1

∈ LN (y) and
(∀...)S,w2

∈ LN (z). Let w = w1w2. Obviously, x = w ancestor(z, w). In the
first case, <x, z> /∈ UR(I) iff (∀...)T,w /∈ LN (z), for all T ∈ NR. However,
due to Property 2f, we have ∀R?.> ∈ LN (x). Since x = w ancestor(z, w)
and ∀R?.> ∈ LN (x), an iterated exploitation of the Properties 2g and
2h shows that (∀R?.>)T,w ∈ LN (z), for some T ∈ roles(�). Contradic-
tion. In the second case, <x, z> ∈ T I iff (∀...)T,w ∈ LN (z). Again use
induction over |w|: if |w| = 2 we have w = RS and it is obviously the
case that T = con(R, S), due to Properties 2g and 2h. If |w| ≥ 3, let
w = w′U = w1w2. Now, (∀...)T,w′U ∈ LN (z) implies (∀...)T ′,w′ ∈ LN (y′),
with <y′, z> ∈ EU , T = con(T ′, U). We also have (∀...)S,w′′U ∈ LN (z),

16

where w2 = w′′U , and (∀...)V,w′′ ∈ LN (y′). Due to Property 2h, S =
con(V, U). Please observe that w′ = w1w

′′ and therefore, due to the induc-
tion hypothesis, T ′ = con(R, V). But now, due to the associativity of the
role box con(con(R, V), U) = con(R, con(V, U)). Since T ′ = con(R, V),
S = con(V, U) this means con(T ′, U) = con(R, S). Since we know that
T = con(T ′, U) we have obtained a contradiction to our assumption, since
also T = con(R, S). Summing up we have shown that I |= � .

In the following, we will show by structural induction on the concept E
that if E ∈ LN (x), then also x ∈ EI . Assuming this, from C ∈ LN (x0)
(due to Property 1 in Definition 10) it follows that x0 ∈ CI. Since CI 6= ∅,
we have I |= C.

Let E ∈ LN (x) with E ∈ sub(C):

1. If E is a concept name, then x ∈ EI by definition (since E ∈ sub(C)).

2. If E = ¬C1, then C1 ∈ NC, because C1 ∈ sub(C) and C is in NNF.
Since ¬C1 ∈ LN (x), it holds that C1 /∈ LN (x), because assuming
C1 ∈ LN (x) yields to to the conclusion that T is not a tableau, due
to Property 2a. Since C1 /∈ LN (x) we have x /∈ CI

1 , and therefore
x ∈ (¬C1)

I .

3. If E = (C1 u C2), then due to Property 2b in Definition 10 it holds
that C1 ∈ LN (x) and C2 ∈ LN (x). Therefore, from the induction
hypothesis we have x ∈ CI

1 and x ∈ CI
2 . Hence x ∈ (C1 u C2)

I.

4. If E = (C1 t C2), then due to Property 2c in Definition 10 it holds
that C1 ∈ LN (x) or C2 ∈ LN (x). Therefore, from the induction
hypothesis we have x ∈ CI

1 or x ∈ CI
2 . Hence x ∈ (C1 t C2)

I .

5. If E = (∃S.C1), then there is some y ∈ N such that <x, y> ∈ ES and
C1 ∈ LN (y), due to Property 2d in Definition 10. By the induction
hypothesis it holds that y ∈ CI

1 . Due to Property 2f, we have ∀R?.> ∈
LN (x), and Property 2g ensures (∀R?.>)S,S ∈ LN (y). By the defi-
nition of SI we finally have <x, y> ∈ SI, since x = w ancestor(y, S).
We therefore have x ∈ (∃S.C1)

I.

6. If E = (∀S.C1), then we have to show that for every y with <x, y> ∈
SI it holds that C1 ∈ LN (y). Due to the induction hypothesis C1 ∈
LN (y) implies y ∈ CI

1 , and therefore x ∈ (∀S.C1)
I if we can show this

for all y with <x, y> ∈ SI. Due to the definition of SI , <x, y> ∈ SI iff
(∀S1.C2)S,w ∈ LN (y) and w ancestor(y, w) = x. Since ∀S.C1 ∈ LN (x)
and w ancestor(y, w) = x, we have (∀S.C1)R,w ∈ LN (y), for some role
R, due to Properties 2g and 2h. We already observed (see above)
that (∀S.C1)R,w ∈ LN (y) and (∀S1.C2)S,w ∈ LN (y) implies R = S,
since the role box is deterministic. Hence (∀S.C1)S,w ∈ LN (y), and
finally C1 ∈ LN (y) due to Property 2e.

17

Summing up, we have shown that I |= (C, �), and all roles are interpreted
as disjoint.

“⇒” If I |= (C, �), I = (∆I , ·I), then a tableau T = (N ,LN , E ,LE) for (C, �)
can be constructed. Since a tableau is required to be a (possibly infinite)
tree, but a model may be an arbitrary graph, but not necessarily a tree
skeleton model, we cannot simply assign N =def ∆I . Intuitively, the
tableau is constructed by unraveling or traversing the model, collecting
the required information. Please note that this also gives a method how
to concert an arbitrary model into a tree skeleton model: first transform it
into a tableau as shown subsequently, and then transform this tableau back
into a tree skeleton model using the model construction in the “⇐”-part
of this proof, see above.

In the construction, each node x ∈ N in the tableau T corresponds to a
path in I. A path in I is inductively defined as follows:

• For some (but only one) i0 ∈ ∆I with i0 ∈ CI , [i0] is a path in I.

• If [i0, . . . , im] (possibly p = [i0]) is a path in I and im ∈ (∃R.C1)
I,

<im, in> ∈ RI with in ∈ CI
1 for some ∃R.C1 ∈ sub(C), then

[i0, . . . , im, in] is also a path in I.

Note that a path really defines “which way to go” through the model,
and the notion of “path” is therefore well-defined. However, this would
not be the case without assumed role disjointness. For example, con-
sider a model of (∃R.>) u (∃S.>) with ∆I = {i0, i1}, RI = {<x0, x1>},
SI = {<x0, x1>}. In this case, the path [x0, x1] would be ambitious, since
it is unclear whether it has been produced traversing <x0, x1> ∈ RI or
<x0, x1> ∈ SI. But due to the assumed role disjointness, such ambitious
situations can not appear. This can be shown easily using induction over
the length of the paths.

Let P(I) denote the set of paths (as defined above) in I. We can now
define T = (N ,LN , E ,LE) inductively on the length of paths (e.g., in a
breadth-first way) as follows:

• N =def P(I),

• E =def {<p, q> | p, q ∈ N ,
p = [i0, . . . , in] (possibly p = [i0]),
q = [i0, . . . , in, in+1],
<in, in+1> ∈ UR(I, roles(�)) },

18

• LE =def { (<p, q>,R) | <p, q> ∈ E ,
p = [i0, . . . , in] (possibly p = [i0]),
q = [i0, . . . , in, in+1],
<in, in+1> ∈ RI },

• For all q ∈ N , q = [i0, . . . , in]:
LN (q) =def {C1 | C1 ∈ sub(C), in ∈ CI

1 } ∪ {∀R?.>} ∪
{ (∀R.C1)S,w | p = w ancestor(q, w),

p = [i0, . . . , im] (possibly p = [i0]),
q = [i0, . . . , im, . . . , in],
<im, in> ∈ SI , S ∈ roles(�),
∀R.C1 ∈ LN (p) }.

We have to prove that T is a tableau for (C, �) by showing that the
tableau conditions are satisfied.

First of all, (N , E) is indeed a possibly infinite tree.

• Condition 1 (there is some node x0 ∈ N with C ∈ LN (x0)) is satisfied
for x0 = [i0], since [i0] ∈ N , i0 ∈ CI , and therefore, due to the
definition of LN , C ∈ LN ([i0]).

• Condition 2a (if C1 ∈ LN (x), then ¬C1 /∈ LN (x)) is obviously satis-
fied: for all p ∈ N with p = [i0, . . . , im], C1 ∈ LN (p), ¬C1 ∈ LN (p)
iff im ∈ CI

1 and im ∈ (¬C1)
I. However, then I would not be a model.

Contradiction.

• Condition 2b (if C1uC2 ∈ LN (x), then C1 ∈ LN (x) and C2 ∈ LN (x))
is obviously satisfied: let p ∈ N , p = [i0, . . . , im]. Then, C1 u C2 ∈
LN (p) iff im ∈ (C1 u C2)

I . Due to the semantics, im ∈ CI
1 and

im ∈ CI
2 . However, then also C1 ∈ LN (p) and C2 ∈ LN (p).

• Condition 2c (if C1tC2 ∈ LN (x), then C1 ∈ LN (x) or C2 ∈ LN (x)) is
obviously satisfied: let p ∈ N , p = [i0, . . . , im]. Then, C1tC2 ∈ LN (p)
iff im ∈ (C1 tC2)

I. Due to the semantics, either im ∈ CI
1 or im ∈ CI

2

(or both). However, then also C1 ∈ LN (p) or C2 ∈ LN (p).

• Condition 2d (if ∃R.C1 ∈ LN (x), then there is some y such that
<x, y> ∈ ER and C1 ∈ LN (y)) is satisfied: let p ∈ N , p = [i0, . . . , im].
Then, ∃R.C1 ∈ LN (p) iff im ∈ (∃R.C1)

I. Due to the semantics,
there is some in ∈ CI

1 and <im, in> ∈ RI . Due to the definition of
path in I, there is some path q ∈ N , with q = [i0, . . . , im, in]. Since
<im, in> ∈ RI, by the definition of LE we have <p, q> ∈ ER (resp.
(<p, q>, ER) ∈ LE). Obviously, C1 ∈ LN (q) because in ∈ CI

1 .

• Condition 2e (if (∀R.C1)R,w ∈ LN (x), then C1 ∈ LN (x)) is sat-
isfied: due to the definition of LN , (∀R.C1)R,w ∈ LN (q) iff p =

19

w ancestor(q, w), p = [i0, . . . , im] and q = [i0, . . . , im, . . . , in], <im, in> ∈
RI , ∀R.C1 ∈ LN (p). We have ∀R.C1 ∈ LN (p) iff im ∈ (∀R.C1)

I.
Since <im, in> ∈ RI , also in ∈ CI

1 , and therefore, due to the definition
of LN , C1 ∈ LN (q).

• Condition 2f (∀R?.> ∈ LN (x)) is obviously satisfied.

• Condition 2g ((∀R.C1)S1,S2
∈ LN (x) iff S1 = S2 and there is some x

with <x, y> ∈ ES1
and ∀R.C1 ∈ LN (x)) is satisfied:

“⇒” If (∀R.C1)S1,S2
∈ LN (q), then, by the definition of LN , p =

w ancestor(q, S2) and<p, q> ∈ ES2
, p = [i0, . . . , im], q = [i0, . . . , im, in],

<im, in> ∈ SI
1 , ∀R.C1 ∈ LN (p). Since <p, q> ∈ E and <im, in> ∈

SI
1 we have <p, q> ∈ ES1

, and therefore, p = w ancestor(q, S1).
Since T is a tree we have S1 = S2.

“⇐” If S1 = S2, <p, q> ∈ ES1
and ∀R.C1 ∈ LN (p), then <p, q> ∈ ES1

due to <im, in> ∈ SI
1 . By definition of LN we have (∀R.C1)S1,S2

∈
LN (q), and hence (∀R.C1)S1,S1

∈ LN (q) since S1 = S2.

• Condition 2h ((∀R.C1)S3,wS2
∈ LN (y) with |w| ≥ 1 iff there is some

x with <x, y> ∈ ES2
, (∀R.C1)S1,w ∈ LN (x), and S3 = con(S1, S2)) is

satisfied:

“⇐” If there is some p with <p, q> ∈ ES2
, (∀R.C1)S1,w ∈ LN (p), and

S3 = con(S1, S2), then it is obviously the case that |w| ≥ 1. Ad-
ditionally, because of (∀R.C1)S1,w ∈ LN (p), there must be some
o = w ancestor(p, w), with o = [i0, . . . , il], p = [i0, . . . , il, . . . , im]
such that <il, im> ∈ SI

1 , ∀R.C1 ∈ LN (o). Since <p, q> ∈ ES2
it

holds that q = [i0, . . . , il, . . . , im, in] with <im, in> ∈ SI
2 . Because

S3 = con(S1, S2) and I |= � we also have <il, in> ∈ SI
3 , due to

SI
1 ◦ SI

2 ⊆ SI
3 . But then, by the definition of LN we must also

have (∀R.C1)S3,wS2
∈ LN (q), since o = w ancestor(p, wS2) and

∀R.C1 ∈ LN (o).

“⇒” If (∀R.C1)S3,wS2
∈ LN (r), and |w| ≥ 1, then, by definition of

LN , p = w ancestor(r, wS2), p = [i0, . . . , il], r = [i0, . . . , il, . . . , im, in],
<il, in> ∈ SI

3 , ∀R.C1 ∈ LN (p). Obviously, there must also be
some q = [i0, . . . , il, . . . , im], and therefore, <il, im> ∈ SI

1 , for
some S1. Since we know that <p, q> ∈ ES2

it must be the case
that <im, in> ∈ SI

2 . Since I |= � and � is a complete role box,
and <il, in> ∈ SI

3 , it holds that SI
1 ◦ SI

2 ⊆ SI
3 , which is enforced

by S3 = con(S1, S2). Because <il, im> ∈ SI
1 , ∀R.C1 ∈ LN (p)

and p = w ancestor(q, w), we have (∀R.C1)S1,w ∈ LN (q) by the
definition of LN .

Summing up we have shown that T is a tableau for (C, �).
�

20

u-rule:
if 1. C1 u C2 ∈ LN (xi)

2. {C1, C2} 6⊆ LN (xi)
then
LN (xi) := LN (xi) ∪

{C1, C2}
t-rule:
if
1. C1 t C2 ∈ LN (xi)
2. {C1, C2} ∩ LN (xi) = ∅

then
LN (xi) := LN (xi) ∪ {D}
for some D ∈ {C1, C2}

∀-rule:
if 1. (∀R.D)R,w ∈ LN (xi)

2. D /∈ LN (xi)
then
LN (xi) := LN (xi) ∪ {D}

∃∀-rule:
if 1. ∃R.C1 ∈ LN (xi)

2. neither the u- nor the t- nor the
∀-rule is applicable to xi

3. ¬∃<xi, xj> ∈ ER : C1 ∈ LN (xj)
4. xi is not blocked

then
create a new node xj with
LE(<xi, xj>) := R,
LN (xj) := {C1, ∀R?.>} ∪

{ (∀T.D)R,R |
∀T.D ∈ LN (xi) } ∪

{ (∀T.D)con(S,R),wR |
(∀T.D)S,w ∈ LN (xi) }

Figure 1: The tableaux expansion rules

4.2 The Calculus

We are now ready to discuss the algorithm, which works on so-called completion
trees:

Definition 11 (Completion Tree) A completion tree CT for (C, �) is a finite
concept tree. A completion tree is said to contain a clash iff there is some node
x with {C,¬C} ⊆ LN (x) for some C ∈ NC. A node y ∈ N is said to be blocked
iff there is an ancestor node x of y with with x ≡ y. In this case, we say y is
blocked by x. The relation ≡ is defined as follows: x ≡ y iff ∀cx : (cx ∈ LN (x) ⇒
∃cy ∈ LN (y) : cx ≡ cy) ∧ ∀cy : (cy ∈ LN (y) ⇒ ∃cx ∈ LN (x) : cx ≡ cy), where
cx ≡ cy iff cx = (∀R.C)S,w ∧ cy = (∀R.C)S,v ∨ cx = cy.

7

The tableaux algorithm works as follows: in order to decide the satisfiability of
(C, �), the algorithm starts with the initial completion tree

CT 0 = ({x0}, {(x0, {C, ∀R?.>})}, ∅, ∅)

and exhaustively applies the non-deterministic tableaux expansion rules (see Fig-
ure 1) until either the completion tree contains a clash or none of the rules is

7In fact, instead of the used equal blocking, also subset blocking would work for ALCRASG ;
however, this has no impact on the worst-case complexity of the algorithm.

21

applicable anymore, i.e. the tree is complete.

The rules either expand the tree by generating new successor nodes due to
the presence of ∃-constraints, or expand the label of some node x by adding
constraints to it, according to the decomposition into subconcepts. If the com-
pletion rules can be applied in such a way that they construct a complete and
clash-free completion tree, (C, �) is satisfiable, otherwise (C, �) is unsatisfiable.
Due to the non-determinism this is the case if all possible computations yield
a completion tree containing a clash. The algorithm therefore behaves like a
non-deterministic Turing machine: SAT returns TRUE iff there is some suc-
cessful computation. More formally, SAT can be specified as follows (note that
apply rule is a non-deterministic procedure):

SAT(C, �) =def

CT 0 := ({x0}, {(x0, {C, ∀R?.>})}, ∅, ∅)
i := 0
WHILE (¬complete?(CT i) ∧ ¬clash?(CT i))
DO

CT i+1 := apply rule(CT i)
i := i + 1

OD

RETURN ¬clash?(CT i)

A blocking mechanism is needed to ensure the termination of the tableaux al-
gorithm, e.g. for ((∃R.C) u (∀R.∃R.C), {R ◦R v R}). Note that this concept
is also expressible in ALCR+, since R is declared as a transitively closed role.
Unlike for ALCR+, an infinite model (tableau) must be constructed if blocking
occurred. This is due to the fact that ALCRASG does not have the finite model
property (see example above).

4.3 Formal Properties of the Calculus

In the following we will prove that the algorithm always terminates, and that it
is sound and complete – the algorithm is therefore a decision procedure. Addi-
tionally, we prove EXPTIME-completeness of (C, �)-satisfiability in ALCRASG.

4.3.1 Termination

Lemma 2 (Termination) For each pair (C, �), where C is an ALCRASG con-
cept and � is a role box that is admissible for C, SAT((C, �)) terminates.

22

Proof 3 We have to show that there is no infinite sequence of rule applications.
To obtain an infinite sequence of rule applications, at least one rule must be
applied infinitely often, since we have a finite number of rules. We show that no
rule can be applied infinitely often.

Inspecting the tableaux expansion rules, it is obviously the case that for any
node x in the tree, each rule can be applied at most once. This is due to the fact
that the applicability of each rule is appropriately “guarded” by a precondition.
For example, the u-rule can only be applied to a node x if one of the conjuncts
it is going to add is missing in the label LN (x) of the node x. Additionally one
has to observe that none of the rules ever removes elements from L(x) what
could re-trigger the applicability of the rules u, t and ∀. Also, none of the
rules ever removes already created (successor) nodes, what could re-trigger the
applicability of the ∃∀-rule.

Then, in order to obtain an infinite number of rule applications, the algorithm
must create an infinite number of nodes and therefore an infinite completion
tree. Exploiting the fact that new nodes are only generated by the ∃∀-rule it is
obvious that we have a finitely branching tree whose branching factor is bounded
by |sub(C)|, since there cannot be more than |sub(C)| concepts of the form ∃R.C
in the label of each node. Then, due to König’s Lemma, in order to obtain an
infinite tree, there must be an infinite path, since the tree is finitely branching.
We show that there is no infinite path:

With respect to blocking, it suffices to view the nodes as if they were annotated
with labels from

Q = sub(C) ∪ {∀R?.>} ∪ { (∀R.C1)S | ∀R.C1 ∈ sub(C), S ∈ roles(�) },
since (∀R.C1)S,w ≡ (∀R.C1)S,v, even if w 6= v. Obviously, there are at most
n = 2|Q| different node labels. In terms of complexity, if x = |C| and y = | � |,
please note that |sub(C)| is bound by x and |roles(�)| is bound by

√
y

3
(e.g.

a minimal representation of a composition table would be set of triples; note

that the composition table is complete). Then, n ≤ (2x+x∗
√

y

3) ≤ 2cx for an
appropriate c. Considering the size of the input z = x + y as input parameter
(“combined complexity”), n ≤ (2x+x∗√y) ≤ 2z2

. Any path of a length greater
than n must therefore contain two nodes x, y with x ≡ y, and blocking occurs
(Pigeonhole Principle). Since no rule is applicable to a blocked node, there can
be no infinite path(s). Summing up we have shown that SAT always terminates.

�

4.3.2 Soundness

We will prove soundness by showing how to construct a tableau from a complete
and clash-free completion tree that has been derived by SAT. In some cases, if

23

blocking occurred during the construction of the completion tree, the constructed
tableau will be infinite. Again, an unraveling technique is used for this purpose.

Lemma 3 (Soundness) Let C be an ALCRASG concept, and � be an admis-
sible role box for C. If there is a computation such that SAT((C, �)) returns
TRUE, then (C, �) has a tableau.

Proof 4 Intuitively, the definition of a tableau T = (N ′,L′
N , E ′,L′

E) from the
complete and clash-free completion tree CT i = (N ,LN , E ,LE) that has been
constructed by a successful computation of SAT works as follows (the following
explanation is borrowed from Horrocks, Sattler et. al in [7, 8]): An individual
in N ′ corresponds to a path in the completion tree from the root node to some
node that is not blocked. To obtain infinite tableaus, these paths may by cyclic.
Instead of going to a blocked node, these paths go “back” to the blocking node,
and this for an arbitrary number of times. Thus, if blocking occurred while
constructing a tableau, we obtain an infinite tableau. Let CT i = (N ,LN , E ,LE)
be the complete and clash-free completion tree.

Paths in CT i are defined inductively as follows (we simply write CT in the
following):

1. For the root node x0 ∈ N , [x0] is a path in CT .

2. For a path [x0, . . . , xn] and a node xi ∈ N , [x0, . . . , xn, xi] is a path in CT
iff

(a) <xn, xi> ∈ E , and xi is not blocked, or

(b) <xn, xn+1> ∈ E , and xn+1 is blocked by xi (xi ≡ xn+1).

Whenever we write [x0, . . . , xn], we also include the possibility that [x0, . . . , xn] =
[x0]; and [x0, . . . , xn, xn+1] includes the possibility that [x0, . . . , xn, xn+1] = [x0, x1].

First of all, a path is a finite object. Additionally, a path p = [x0, . . . , xpt]
contains no blocked nodes, but may contain nodes that act as blocking nodes
for nodes that are blocked in the completion tree. A path may contain more
that one node acting as a blocking node (for different blocked nodes).

As already noted, an individual pathq ∈ N ′ corresponds to a path q. Given a
path q we denote the last individual from N lying on this path with xqt (for
q′s tail): q = [x0, . . . , xqt]. The corresponding individual from N ′ is pathq =
path[x0,...,xqt]. The tableau T = (N ′,L′

N , E ′,L′
E) for (C, �) is defined as follows:

• N ′ =def { pathp | p is a path in CT }

24

• E ′ =def {<pathp, pathq> | p = [x0, . . . , xpt],
q = [x0, . . . , xpt, xqt],

<xpt, xqt> ∈ E , xqt is not blocked, or
<xpt, xi> ∈ E , xi is blocked by xqt (xqt ≡ xi) }

• L′
E =def { (<pathp, pathq>,R) | p = [x0, . . . , xpt],

q = [x0, . . . , xpt, xqt],
<xpt, xqt> ∈ ER, xqt is not blocked, or
<xpt, xi> ∈ ER, xi is blocked by xqt (xqt ≡ xi) }

For all pathq ∈ N ′, L′
N (pathq) is defined inductively on the length of the denoted

paths, starting with path[x0] (e.g. by using a breadth-first traversation).

• L′
N (path[x0]) =def LN (x0)

If L′
N (pathp) with p = [x0, . . . , xpt] is already defined, and <pathp, pathq> ∈ E ′

R
for some role R, we then define L′

N (pathq) for q = [x0, . . . , xpt, xqt] as follows:

• L′
N (pathq) =def {∀R?.>} ∪

LN (xqt) ∩ sub(C) ∪
{ (∀T.D)R,R | ∀T.D ∈ LN (xpt) } ∪
{ (∀T.D)con(S,R),wR | (∀T.D)S,w ∈ L′

N (pathp) }

Lemma 4 Let CT = (N ,LN , E ,LE) be the clash-free and complete completion
tree constructed by SAT, and let T = (N ′,L′

N , E ′,L′
E) be defined as above.

Then, for all pathp ∈ N ′: pathp ≡ xpt.

Proof 5 This can be easily shown using induction, starting with path[x0]. The
key-observation is that an admissible role box must be deterministic.

�

Now it can be shown that T = (N ′,L′
N , E ′,L′

E) is a tableau for (C, �).

1. First of all, the tableau is a possibly infinite concept tree.

2. Condition 1 is satisfied, since C ∈ LN (x0) for the root node x0 of the
completion tree CT . Since the root node cannot be blocked there is an
individual path[x0] ∈ N ′. Due to Lemma 4, C ∈ L′

N (path[x0]).

3. Condition 2f is satisfied. ∀R?.> ∈ LN (x0) since the SAT algorithm started
with CT 0 = ({x0}, {(x0, {C, ∀R?.}>}), ∅, ∅), and for the other nodes, ∀R?.> ∈
LN (xi) due to the ∃∀-rule. Due to Lemma 4, ∀R?.> ∈ L′

N (pathp) for all
pathp ∈ N ′.

25

4. Due to Lemma 4, Conditions 2a, 2b, 2c and 2e are trivially satisfied, since
pathp ≡ xpt, and xpt ∈ N is a node in a clash-free and complete completion
tree. For example, consider Property 2b: if C1uC2 ∈ L′

N (pathp), then C1 ∈
L′

N (pathp), C2 ∈ L′
N (pathp). Because the completion tree is complete,

the u-rule is not applicable to xpt. This shows that C1 ∈ LN (xpt) and
C2 ∈ LN (xpt). Since pathp ≡ xpt the same holds for L′

N (pathp).

5. Condition 2d (if ∃R.C1 ∈ L′
N (pathp), then there is some pathq ∈ N ′

such that <pathp, pathq> ∈ E ′
R and C1 ∈ L′

N (pathq)) is satisfied. Since
∃R.C1 ∈ L′

N (pathp), it must be the case that ∃R.C1 ∈ LN (xpt). Note that
xpt is not blocked, by the definition of “path in CT ”. Therefore, the ∃∀-
rule has created an R successor xi, with <xpt, xi> ∈ ER and C1 ∈ LN (xi).
There are two possibilities:

(a) xi is not blocked. In this case, due to the definition of E ′
R, we have

xqt = xi, and <pathp, pathq> ∈ E ′
R. Therefore, C1 ∈ L′

N (pathq), since
C1 ∈ LN (xqt).

(b) xi is blocked. In this case, instead of going to the R successor xi in
the completion tree, the path q is obtained from p by “going back”
to the blocking node xqt, xqt ≡ xi. However, by the definition of E ′

R,
we have again <pathp, pathq> ∈ E ′

R. By definition of L′
N and the

blocking condition it holds that C1 ∈ L′
N (pathq), since C1 ∈ LN (xqt).

6. Condition 2g (if (∀R.C1)S1,S2
∈ L′

N (pathq) iff S1 = S2 and there is some
pathp with <pathp, pathq> ∈ E ′

S1 and (∀R.C1) ∈ L′
N (pathp)) is satisfied:

“⇒” If (∀R.C1)S1,S2
∈ L′

N (pathq), then by definition of L′
N , <pathp, pathq> ∈

E ′
S1

, S1 = S2 and ∀R.C1 ∈ LN (xpt). Because of pathp ≡ xpt we also
have (∀R.C1) ∈ L′

N (pathp).

“⇐” If there is some pathp with <pathp, pathq> ∈ E ′
S1

and (∀R.C1) ∈
L′

N (pathp), and S1 = S2, then also (∀R.C1)S1,S2
∈ L′

N (pathq), be-
cause (∀R.C1) ∈ LN (xpt), and by definition of L′

N we have (∀R.C1)S1,S1
∈

L′
N (pathq).

7. Condition 2h (if (∀R.C1)S3,wS2
∈ L′

N (pathq) with |w| ≥ 1 iff there is
some pathp with <pathp, pathq> ∈ E ′

S2, (∀R.C1)S1,w ∈ L′
N (pathp), and

S3 = con(S1, S2)) is satisfied by definition of L′
N , which is obvious.

�

4.3.3 Completeness

We show how to construct a complete and clash-free completion tree CT i from
a given tableau T . Intuitively, instead of doing a “blind search”, the application

26

of the tableau rules is now guided by the information in the tableau T . For
example, when the t-rule is to be applied to a node x in the completion tree
CT and has the choice whether to add, for example, C1 or C2 to the label of this
node, the node label of the corresponding node in the tableau T is used to decide
whether C1 or C2 should be added. Note that we cannot make wrong decisions,
since otherwise T would not be a tableau. However, the question is how to find
the corresponding node in T containing the required information.

For this purpose, a mapping function π : N ′ → N is used to associate
nodes in the completion tree (N ′) with nodes in the tableau (N). Now, the
non-deterministic t-rule is always applied in a way such that for all x′ ∈ N ′:
L′

N (x′) ⊆ LN (π(x′)) (note that x = π(x′), x ∈ N). To achieve this, the t-rule is
replaced by the t′-rule, which “looks up” the required information using π. π is
constructed incrementally by the modified ∃∀′ rule, which replaces the ∃∀-rule.
These modified rules are shown in Figure 2. Using this technique, we can show
completeness of the calculus (resp. of the procedure SAT):

t′-rule:
if 1. C1 t C2 ∈ L′

N (x′i)
2. {C1, C2} ∩ L′

N (x′i) = ∅
then L′

N (x′i) := L′
N (x′i) ∪ {D}

for some D ∈ {C1, C2} ∩ LN (π(x′i))

∃∀′-rule:
if 1. ∃R.C1 ∈ L′

N (x′i)
2. neither the u- nor the t′- nor the

∀-rule is applicable to x′i
3. ¬∃<x′i, x′j> ∈ E ′

R : C1 ∈ L′
N (x′j)

4. x′i is not blocked

then create a new node x′j with
π(x′j) =def xj for
some <π(x′i), xj> ∈ ER with C1 ∈ LN (xj) and let
L′

E(<x
′
i, x

′
j>) := R,

L′
N (x′j) := {C1, ∀R?.>} ∪

{ (∀T.D)R,R |
∀T.D ∈ L′

N (x′i) } ∪
{ (∀T.D)con(S,R),wR |

(∀T.D)S,w ∈ L′
N (x′i) }

Figure 2: The modified tableau expansion rules for ALCRASG

Lemma 5 (Completeness) Let C be an ALCRASG concept, and � be an ad-
missible role box for C, and let T be a tableau for (C, �). Then, SAT(C, �)

27

returns TRUE – there is a successful computation yielding a complete and clash-
free completion tree CT i.

Proof 6 If there is a successful computation SAT(C, �), then the tableaux ex-
pansion rules can be applied in such a way to

CT 0 = ({x0}, {(x0, {C, ∀R?.>})}, ∅, ∅)

that a complete and clash-free completion tree CT i is created. We show how to
construct CT i using the information in the tableaux T = (N ,LN , E ,LE). We
will use the modified tableaux expansion rules {u,t′, ∀, ∃∀′}. It is easy to see
that, if the completion tree CT i was generated using the modified expansion
rules, then CT i could have also been constructed using the (original) expansion
rules in the first place. A successful computation of SAT using the modified
expansion rules implies the existence of a successful computation of SAT using
the original expansion rules, therefore proving the Lemma.

We still need to argue formally that the completion tree that has been con-
structed with the modified expansion rules is clash free. Obviously, the tableau
is “clash-free” – there is no node x with C1,¬C1 ⊆ LN (x) for some C1 ∈ NC.
We therefore show L′

N (x′) ⊆ LN (π(x′)) for all nodes x′ ∈ N ′, using induction
over the sequence of completion trees that is generated during the construction
of CT i and π:

• We start with CT 0 = ({x′0}, {(x′0, {C, ∀R?.>})}, ∅, ∅) and π(x′0) =def x0.
Note that x0 ∈ N is the root node of the tableau. Due to Tableaux
Condition 2f we have L′

N (x′) ⊆ LN (π(x′)).

• For the induction step, let CT ′ be the completion tree that has been gen-
erated by the application of some rule to CT . According to the different
rules, we can distinguish four cases:

– If CT ′ has is derived from CT by an application of the u-rule to
some node x′ ∈ N ′ with C1 u C2 ∈ L′

N (x′), then both C1 and C2

are added to L′
N (x′), yielding CT ′. Due to the induction hypothesis

L′
N (x′) ⊆ LN (π(x′)) holds for CT . But since T is a tableau we already

have {C1, C2} ⊆ LN (π(x′)) and therefore still L′
N (x′) ⊆ LN (π(x′))

after the rule application.

– If the t′-rule can be applied to x′ in CT with C1 t C2 ∈ L′
N (x′),

then also C1 ∈ LN (π(x′)) or C2 ∈ LN (π(x′)) due to the induction
hypothesis. In the former case, the t′-rule adds C1 (and not C2), and
in latter it adds C2 (and not C1) to L′

N . Since the “correct” disjunct
is added, we have L′

N (x′) ⊆ LN (π(x′)) in CT ′.

28

– If the ∀-rule can be applied to x′ in CT , then (∀R.C)R,w ∈ L′
N (x′).

Due to the induction hypothesis we also have (∀R.C)R,w ∈ LN (π(x′)),
and since T is a tableau, C ∈ LN (π(x′)). C is added by the ∀-rule
to L′

N (x′). Therefore, we still have L′
N (x′) ⊆ LN (π(x′)).

– Assume the ∃∀′-rule can be applied to x′ in CT due to ∃R.C1 ∈
L′

N (x′). Due to the induction hypothesis we also have ∃R.C1 ∈
LN (π(x′)) and therefore, there is some node y ∈ N with C1 ∈ LN (y)
and <π(x′), y> ∈ ER, due to tableaux Condition 2d. The ∃∀′-rule
does not change the label of x′, but creates a new node y′ with
L′

N (y′) := {C1, ∀R?.>} ∪ { (∀T.D)R,R | ∀T.D ∈ L′
N (x′) } ∪

{ (∀T.D)con(S,R),wR | (∀T.D)S,w ∈ L′
N (x′) } and assigns π(y′) =def y

for some appropriate y. Due to the induction hypothesis,
{ (∀T.D)S,w | (∀T.D)S,w ∈ L′

N (x′) } ⊆ LN (x),
{ ∀T.D | ∀T.D ∈ L′

N (x) } ⊆ LN (x). According to the tableaux Con-
ditions 2e, 2d, 2g and 2h, not only {C1, ∀R?.>} ⊆ LN (y), but also
L′

N (y′) ⊆ LN (π(y′)). This is ensured by the fact that the role box and
therefore the ∃∀′-rule is deterministic; i.e. L′

N (y′) is solely determined
by L′

N (x′), and this holds for T as well.
�

The following theorem summarizes Lemma 2, Lemma 3 and Lemma 5:

Theorem 1 SAT is a decision procedure for (C, �)-satisfiability in ALCRASG
(provided C is an ALCRASG concept and � is an admissible role box for C).

4.3.4 Computational Complexity

In the following, we consider the computational complexity of (C, �)-satisfiability
in ALCRASG.

Theorem 2 (C, �)-satisfiability in ALCRASG is EXPTIME-complete.

Proof 7 Lower Complexity Bound: EXPTIME-hardness It is well-known
that satisfiability of ALC concepts w.r.t. general TBoxes containing GCIs
(see above) is EXPTIME-complete (see [13]).

Using a technique called internalization (see [1], [6]), we can easily show
EXPTIME-hardness of ALCRASG.

Internalization for ALCRASG works as follows: given an arbitrary ALC
concept C and a general TBox � , we fix some role S ∈ NR that does
neither appear in C nor in � (S /∈ roles(C)∪⋃

DvE∈ � (roles(D)∪ roles(E))).
Let C ′ =def C uM � u ∀(tR∈roles(C∪{S})R).M � , M � =def uDvE∈ � ¬D t E
and � =def {R1 ◦R2 v S | R1, R2 ∈ roles(C ′) }. Please note that S is the

29

fixed role. The concept M � is the so-called meta-constraint corresponding
to the TBox � , and � is obviously an admissible role box for C ′.

We show the following: the ALC concept C is satisfiable w.r.t. the TBox
� iff C ′ is satisfiable w.r.t. the role box � .

“⇒” If I |= (C, �), then we construct I ′ such that I ′ |= (C ′, �). Without
loss of generality we may assume that I has the form of a (possibly)
infinite tree.8 If I = (∆I , ·I), we then define I ′ = (∆I′

, ·I′

) with
∆I′

=def ∆I , and for all concept names D ∈ sub(C), DI′

=def D
I,

and all role names R ∈ roles(C), RI′

=def R
I. Additionally, we set

SI′

=def (UR(I, roles(C))+ \ SKEL(I, roles(C))). Due to I |= � ,
for each GCI D v E ∈ � : DI ⊆ EI . Obviously, then also x ∈
((¬D) t E)I for each x ∈ ∆I and every D v E ∈ � , and therefore,
x ∈MI

� for all x ∈ ∆I . If x0 ∈ CI, then also x0 ∈ (C uM �)I
′

. Now,
for each xi ∈ ∆I with x0 6= xi either <x0, xi> ∈ UR(I, roles(C)) and
therefore, <x0, xi> ∈ ∀(tR∈roles(C)R).MI′

� , or <x0, xi> ∈ SI′

. Since
xi ∈MI′

� , this shows that x0 ∈ ∀(tR∈roles(C)∪{S}R).MI′

� , and therefore,
x0 ∈ C ′I. Due to the definition of SI′

and since our model has the
form of a tree, I ′ |= � and all roles are still interpreted as disjoint.
This shows that I ′ |= (C ′, �).

“⇐” If I ′ |= (C ′, �), then I can be constructed such that I |= (C, �).
Without loss of generality we may assume that SKEL(I ′, roles(C ′))
has the form of a possibly infinite tree – I ′ is a tree skeleton model.
We simply define ∆I =def ∆I′ ∩MI′

� and for all concept names D ∈
sub(C): DI =def D

I′

, and for all role names R ∈ roles(C): RI =def

RI′

. It is obvious that I |= (C, �).

Upper Complexity Bound: Membership in EXPTIME We show that sat-
isfiability of (C, �) in ALCRASG can be reduced to satisfiability of C in
ALC w.r.t. a certain general TBox � . This TBox � is extracted from C
and � . (C, �) will be equi-satisfiable to (C, �), which is proven in the
subsequent Lemma (see below). The basic idea of the TBox � is to handle
universal value restrictions ∀R.C correctly by “propagating” annotated
atomic marker concepts of the form (∀R.D)S to successors individuals,
simulating the propagation of (∀R.D)S,w-constraints as done by the ∃∀-
rule of the tableaux calculus. Therefore, also indirect R-successors will
be elements of DI. The TBox � (which will be cyclical in most cases) is
defined as follows:

8Please recall that ALC looses the finite tree model property if general TBoxes are taken
into account. There are either cyclical models, or infinite tree models, and this can be shown
easily using an unraveling construction like the ones given above.

30

��� := { ∀R.D v ∀R.D | ∀R.D ∈ sub(C) } ∪
{ ∀R.D v ∀(tS∈roles(C)∪roles(�)S).(∀R.D)S | ∀R.D ∈ sub(C) }

��� := ��� ∪ { (∀R.D)R v D | (∀R.D)R ∈ sub(���) }
i := 1
WHILE ��� 6= ��� − �
DO

i := i + 1
��� := ��� − � ∪ { (∀R.D)S v

∀(tT∈roles(C)∪roles(�)T).(∀R.D)con(S,T) | (∀R.D)S ∈ sub(��� − �) }
OD

It is obvious that the TBox � can be computed in polynomial time and
therefore, satisfiability of (C, �) is clearly in EXPTIME, since satisfiability
of ALC with general TBoxes is in EXPTIME.

�

A few words regarding the construction of � seem to be appropriate: All concepts
of the form · · · are concept names from NC. Such a concept name might
be (partly) computed, e.g. if we write (∀R.D)con(S,T) and con(S, T) = U , then
(∀R.D)con(S,T) = (∀R.D)U . The following example will make the transformation
more transparent: if

C = (∃S.(¬D t ∃R.∃R.∃R.¬D)) u (∀S.(D u ∀R.D)),

� = {R ◦R v R, S ◦R v R,R ◦ S v R, S ◦ S v R},
then the resulting TBox � will be

� = { ∀S.(D u ∀R.D) v ∀S.(D u ∀R.D),
∀R.D v ∀R.D,
(∀R.D)R v D,
(∀S.(D u ∀R.D))S v (D u ∀R.D),
∀S.(D u ∀R.D) v ∀S.(∀S.(D u ∀R.D))S ,
∀S.(D u ∀R.D) v ∀R.(∀S.(D u ∀R.D))R ,
∀R.D v ∀S.(∀R.D)S ,
∀R.D v ∀R.(∀R.D)R ,
(∀S.(D u ∀R.D))S v ∀S.(∀S.(D u ∀R.D))R ,
(∀S.(D u ∀R.D))S v ∀R.(∀S.(D u ∀R.D))R ,
(∀S.(D u ∀R.D))R v ∀S.(∀S.(D u ∀R.D))R ,
(∀S.(D u ∀R.D))R v ∀R.(∀S.(D u ∀R.D))R ,
(∀R.D)S v ∀S.(∀R.D)R ,
(∀R.D)S v ∀R.(∀R.D)R ,
(∀R.D)R v ∀S.(∀R.D)R ,
(∀R.D)R v ∀R.(∀R.D)R }.

31

The following Lemma closes the gap in the previous proof of EXPTIME-completeness
of ALCRASG:

Lemma 6 Let C be in NNF, and � be an admissible role box for � , and let �
be the TBox as defined above. Then, (C, �) is satisfiable iff (C, �) is.

Proof 8 ⇐ Let I |= (C, �) be a tree skeleton model. SKEL(I) has the form
of a possibly infinite tree (according to the Proof of Lemma 1 there is
always such a model if (C, �) is satisfiable at all), I = (∆I , ·I). We can
then define I ′ = (∆I, ·I′

) such that I ′ |= (C, �):

• RI′

=def R
I ∩ SKEL(I), for all roles R ∈ roles(C),

• DI′

=def D
I , for all concept names D ∈ sub(C) ∩ NC,

• ∀R.DI′

=def (∀R.D)I , for all ∀R.D ∈ sub(C),

• (∀R.D)S
I′

=def { x | ∃y : <x, y> ∈ SI, x ∈ (∀R.D)I },
for all (∀R.D)S ∈ sub(�), and S ∈ roles(�) ∪ roles(C)
(please note that roles(�) = roles(�)),

• ∅, for all other not mentioned concept and role names.

Because I |= C and I is a tree skeleton model, it is still the case that
I ′ |= C. We can safely interpret the irrelevant concept and role names
with the empty set, due to Proposition 1. Even though the interpretation
of the roles has been changed by discarding the “indirect” edges in the
interpretations, it is still the case that the existential value restrictions
which occur in C are interpreted correctly: for all ∃R.D ∈ sub(C), if
x ∈ (∃R.D)I , then also x ∈ (∃R.D)I

′

, since I is a tree skeleton model.
For the other types of subconcepts this is also obvious. Therefore, I ′ |= C.

We also have to show that I ′ |= � . According to the transformation, there
are four types of GCIs, and we show that each GCI is satisfied by I ′:

• ∀R.D v ∀R.D : obvious by the definition of I ′.

• ∀R.D v ∀(tS∈roles(C)∪roles(�)S).(∀R.D)S : suppose there is some indi-

vidual x ∈ ∆I with x ∈ (∀R.DI′

), but
x /∈ (∀(tS∈roles(C)∪roles(�)S).(∀R.D)S)I

′

. Then there must be some
individual y, with <x, y> ∈ T I′

, T ∈ roles(C) ∪ roles(�), with y /∈
(∀R.D)T

I′

. According to the definition of T I′

, also <x, y> ∈ T I . But

since x ∈ ∀R.DI′

we have by construction of I ′ also x ∈ (∀R.D)I

and therefore y ∈ (∀R.D)T
I′

, contradicting the assumption.

• (∀R.D)R v D: if y ∈ (∀R.D)R
I′

, then there is some x with <x, y> ∈
RI , and x ∈ (∀R.D)I . Since I |= C, it must be the case that y ∈ DI.

32

• (∀R.D)S v ∀(tT∈roles(C)∪roles(�)T).(∀R.D)con(S,T) : suppose there is

some node x ∈ ∆I with x ∈ (∀R.D)S
I
, but

x /∈ (∀(tT∈roles(C)∪roles(�)T).(∀R.D)con(S,T))
I . Then there must be

some individual y, with <x, y> ∈ T I′

, T ∈ roles(C) ∪ roles(�), with

y /∈ (∀R.D)con(S,T)
I′

. However, due to x ∈ (∀R.D)S
I

there is some
w ∈ (∀R.D)I , <w, x> ∈ SI . Since � is admissible for C, there must
be some role axiom ra with con(ra) = con(S, T). Due to I |= � ,

<w, y> ∈ (con(S, T))I, which shows that y ∈ (∀R.D)con(S,T)
I′

by
definition of I ′, contradicting the assumption.

⇒ Let I |= (C, �) be a possibly infinite tree model. Again we emphasize that
there is no loss of generality by considering only this class of models. We
then define I ′ such that that I ′ |= (C, �). I ′ is a tree skeleton model. If
I = (∆I, ·I), then I ′ = (∆I , ·I′

) is defined as follows:

• DI′

=def D
I, for all concept names D ∈ NC ∩ sub(C)

• RI′

=def R
I , for all role names R ∈ NR ∩ roles(C)

• while I ′ 6|= � do

for each R ◦ S v T ∈ � do

T I′

:= T I′ ∪RI′ ◦ SI′

od

od

• ∅, for all other not mentioned concept and role names.

It is obvious by definition of ·I′

that I ′ |= � .

However, since the interpretations of the relevant roles have been extended
(RI ⊆ RI′

; if RI′

has been set to ∅, then R is irrelevant) it is not obvious
that the universal value restrictions are still interpreted correctly – for all
other subconcepts of C it is obvious that they are still interpreted correctly.

If x ∈ (∀R.D)I , then we have to show that still x ∈ (∀R.D)I
′

. Assume that
x ∈ (∀R.D)I, but x /∈ (∀R.D)I

′

. Then, there must be some y ∈ ∆I , with
<x, y> ∈ RI′

, <x, y> /∈ RI, and y /∈ DI′

, y /∈ DI, since otherwise already
x /∈ (∀R.D)I. We have to show that y ∈ DI: let w be the path in the
tree model connecting x and y, w = R1R2 . . . Rn, and call the nodes lying
on the path xi, with x = x0, y = xn, <x0, x1> ∈ RI

1 , <x1, x2> ∈ RI
2 , . . . ,

<xn−1, xn> ∈ RI
n. Since I |= � , x0 ∈ (∀R.D)I and ∀R.D v ∀R.D ∈ � ,

also x0 ∈ (∀R.D)I . Since x0 ∈ (∀R.D)I and
∀R.D v ∀(tS∈roles(C)∪roles(�)S).(∀R.D)S ∈ � with <x0, x1> ∈ RI

1 , also

x1 ∈ (∀R.D)R1
I
. From x1 ∈ (∀R.D)R1

I
and <x1, x2> ∈ RI

2 we conclude

that x2 ∈ (∀R.D)con(R1,R2)
I
, due to

33

(∀R.D)S v ∀(tT∈roles(C)∪roles(�)T).(∀R.D)con(S,T) ∈ � . An iterative appli-

cation of this GCI finally gives y = xn ∈ (∀R.D)R
I
. Due to (∀R.D)R v

D ∈ � we have y ∈ DI. Please note that we really know that y ∈
(∀R.D)R

I
and not only y ∈ (∀R.D)S

I
, for some role S – if <x, y> ∈ RI′

and w is the path connecting x and y, then due to the associativity of
the role box, every composition possibility yields the same role, in this
case R. By which sequence of composition possibilities <x, y> ∈ RI′

has been obtained is irrelevant. For example, if w = R1R2R3, we know
that y ∈ (∀R.D)R

I
, since the result of con(con(R1, R2), R3) must be R,

no matter how <x, y> ∈ RI′

has been obtained in the while loop (e.g.,
it might have been obtained by (con(R2, R3))

I′

:= RI
2 ◦ RI

3 followed by
RI′

= (con(R1, con(R2, R3)))
I′

:= RI
1 ◦ (con(R2, R3))

I′

). This shows that
I ′ |= C, and summing up we have shown that I ′ |= (C, �).

�

5 ALCNRASG is Undecidable

Since ALCRASG is decidable, the question arises naturally whether further exten-
sions of ALCRASG, e.g. by inverse roles (I) or unqualified number restrictions
(N), still remain decidable. We show that even if only unqualified number
restrictions (which are usually an easy and unproblematic extension of DLs)
are added to ALCRASG, the resulting logic ALCNRASG is undecidable again.
Obviously, since ALCRA is a sub-logic of ALCRASG, ALCNRASG is undecid-
able as well; and the same obviously also holds for qualified number restrictions
(ALCQRASG, ALCQRA). The proof is very similar to the ones given by Sattler
in [11], where it is shown that the languages ALC+N (◦,t), ALCN (◦,t, −1),
ALCN (◦,u) and ALC+N (◦) are all undecidable.

To obtain ALCNRASG, the syntax of concept terms is extended by incorporating
the constructor called N , with the following additional concept formation rule:

• If R ∈ NR is a role and n ∈ IN ∪ {0}, then the expressions
(≥ R n) and (≤ R n) are concepts as well.

The operators roles and sub are appropriately modified, e.g. roles((≥ R n)) =
{R}, etc. Still, for a role box � that is admissible for a concept C, roles(C) ⊆
roles(�) must hold, but with the modified definition of the operator roles.

The semantics is defined in the obvious way:

• (≥ R n)I =def { i ∈ ∆I | #(RI ∩ ({i} × ∆I)) ≥ n }

• (≤ R n)I =def { i ∈ ∆I | #(RI ∩ ({i} × ∆I)) ≤ n } .

34

The undecidability proof of ALCNRASG is given by a reduction from the so-called
domino problem:

Definition 12 (Domino System) A domino system DOM is a triple (D,H,V),
where D = {d1, . . . , dn} is a non-empty set of so-called domino types, V ⊆ D×D
is the vertical matching relation, and H ⊆ D × D is the horizontal matching
relation.

A solution of a domino system is a function f : IN × IN → D (in the following
we assume that 0 ∈ IN) such that the matching relationships of the domino
types are respected, i.e. for all (i, j) ∈ IN × IN: (f(i, j), f(i+ 1, j)) ∈ H and
(f(i, j), f(i, j + 1)) ∈ V.

It is an undecidable problem whether a domino system has a solution; i.e., f

is a non-recursive (uncomputable) function. Given an arbitrary domino system
DOM we construct an ALCNRASG concept C and a role box � that is admis-
sible for C such that (C, �) is satisfiable iff DOM has a solution. The role box

� corresponds to the following composition table:

◦ RX RY RZ RU

RX RU RZ RU RU

RY RZ RU RU RU

RZ RU RU RU RU

RU RU RU RU RU

Therefore, � =def {RX ◦ RX v RU , RX ◦ RY v RZ , . . .}. Obviously, � is
associative. Let DOM = (D,H,V) and further assume, that D ⊆ NC. Now,
the concept C can be defined:

C =def X u (∀RX .X) u (∀RY .X) u (∀RZ .X) u (∀RU .X), where

X =def M u (≥ RX 1) u (≥ RY 1) u
(≤ RX 1) u (≤ RY 1) u (≤ RZ 1), and

M =def tDi∈D(Di u (uDj∈D,Di 6=Dj
¬Dj)) u

uDi∈D(Di ⇒ (∀RX .(t(Di,Dj)∈HDj) u
∀RY .(t(Di ,Dj)∈VDj)))

Obviously, � is an admissible role box for C.

Lemma 7 (C, �) is satisfiable iff the domino system DOM = (D,H,V) has
a solution.

35

Proof 9 “⇒” Let I |= (C,R), with x0,0 ∈ CI . Using I we construct a solution
f of DOM as follows:

• f(m,n) =def D iff <x0,0, xm,n> ∈ (RI
X)m ◦ (RI

Y)n, for some m,n ∈
IN ∪ {0} and xm,n ∈ DI for some D ∈ D.

Please note that (RI)n =def R
I ◦RI ◦ . . . ◦RI

︸ ︷︷ ︸

n times

, and

(RI)0 =def {<x, x> | x ∈ ∆I }. Hence <x0,0, x0,0> ∈ (RI
X)0 ◦ (RI

Y)0.

We have to show that

1. f is well-defined; i.e. that f really defines a total function f : IN×IN →
D, and that

2. f is indeed a solution to the domino problem; i.e. that the matching
conditions (f(m,n), f(m+ 1, n)) ∈ H and (f(m,n), f(m,n+ 1)) ∈ V
are satisfied for all (m,n) ∈ IN × IN.

To show 1, we observe that x0,0 ∈ XI, also x0,0 ∈ MI , and therefore,
x0,0 ∈ DI for exactly one D ∈ D (see definition of M , first conjunct). Due
to <x0,0, x0,0> ∈ (RI

X)0◦(RI
Y)0 for m = 0, n = 0 we have f(0, 0) = D. Now,

since x0,0 ∈ ((= RX 1)u(= RY 1))I there is exactly one successor x1,0 with
<x0,0, x1,0> ∈ RI

X and exactly one successor x0,1 with <x0,0, x0,1> ∈ RI
Y .

Note that it is important that these successors are uniquely defined, since
f would be ambiguous otherwise. Due to x0,0 ∈ ((∀RX .X) u (∀RY .X))I

we have x1,0, x0,1 ∈ XI. We conclude that also x1,0 ∈ DI
i and x0,1 ∈

DI
j , for exactly one Di resp. Dj. Since <x0,0, x1,0> ∈ (RI

X)1 ◦ (RI
Y)0 and

<x0,0, x0,1> ∈ (RI
X)0 ◦ (RI

Y)1 this shows that f(1, 0) = Di and f(0, 1) = Dj

are well-defined. Again, due to x1,0, x0,1 ∈ XI, both have exactly one RX

and one RY successor. Since {RX ◦RY v RZ , RY ◦ RX v RZ} ⊆ � these
successors are also RZ-successors of x0,0, and since x0,0 ∈ (≤ RZ 1)I the
(RI

X)1 ◦ (RI
Y)1-successor of x0,0 coincides with its RI

Y ◦ RI
X -successor, for

n = 1, m = 1. Because x0,0 ∈ (∀RZ .X)I we have x1,1 ∈ XI , x1,1 ∈MI and
finally x1,1 ∈ DI, for exactly one D. This shows that f(1, 1) = D is well-
defined. Again, due to {x1,0, x0,1, x1,1} ⊆ XI , all have exactly one RX and
RY successor. Due to {RZ ◦RX v RU , RZ ◦RY v RU , RX ◦RX v RU , RY ◦
RY v RU} ⊆ � , these successors are RU -successors of x0,0, and therefore
they are members of XI as well, because x0,0 ∈ (∀RU .X)I. Again, due
to {RU ◦ RX v RU , RU ◦ RY v RU} ⊆ � , their successors will also RU -
successor of x0,0, etc. Summing up, if <x0,0, xm,n> ∈ (RI

X)m ◦ (RI
Y)n, then

also <x0,0, xm,n> ∈ (RI
Y)n ◦ (RI

X)m, and <x0,0, xm,n> ∈ RI
i for exactly one

Ri ∈ {RX , RY , RZ, RU}, which shows that for all individuals reachable via
<x0,0, xm,n> ∈ (RI

X)m ◦ (RI
Y)n, xm,n ∈ XI holds. Therefore, f(m,n) is

well-defined.

36

To show 2, it suffices to observe that all individuals that are reachable
from <x0,0, xm,n> ∈ (RI

X)m ◦ (RI
Y)n, for some m,n ∈ IN ∪ {0}, xm,n ∈ XI

holds, and therefore also xm,n ∈ MI . The second conjunct of M (Di ⇒
(∀RX .(t(Di,Dj)∈HDj) u ∀RY .(t(Di,Dj)∈VDj))) obviously enforces that the
horizontal and vertical matching conditions are satisfied, and (as already
noted) the first condition ensures that xm,n ∈ DI

i , for some Di ∈ D.

Summing up we have shown that f (as constructed above) is a solution to
DOM.

“⇐” Let f be a solution of DOM = (D,H,V). Using f we construct an in-
finite interpretation I = (∆I , ·I) such that I |= (C, �) and all roles are
interpreted as disjoint:

• ∆I =def { xi,j | (i, j) ∈ IN × IN }
• DI =def { xi,j | f(i, j) = D } for all D ∈ DOM
• RI

X =def { (xi,j, xi+1,j) | (i, j) ∈ IN × IN }
• RI

Y =def { (xi,j, xi,j+1) | (i, j) ∈ IN × IN }
• RI

Z =def { (xi,j, xi+1,j+1) | (i, j) ∈ IN × IN }
• RI

U =def (∆I × ∆I) \ ({ (i, i) | i ∈ ∆I } ∪RI
X ∪ RI

Y ∪RI
Z)

First of all its is obviously the case that all roles are interpreted as disjoint.
It is also easy to check that I |= � , i.e. RI

X ◦ RI
Y ⊆ RI

Z , RI
Y ◦ RI

X ⊆ RI
Z ,

etc. We show that I |= C, due to x0,0 ∈ CI. We first prove that MI =
∆I (recall that M =def tDi∈D(Di u (uDj∈D,Di 6=Dj

¬Dj)) u (uDi∈D(Di ⇒
(∀RX .(t(Di,Dj)∈HDj) u ∀RY .(t(Di,Dj)∈VDj))))). Suppose that xx,y /∈ MI .
Then, either xx,y /∈ (tDi∈D(Di u (uDj∈D,Di 6=Dj

¬Dj)))
I or

xx,y /∈ (uDi∈D(Di ⇒ (∀RX .(t(Di,Dj)∈HDj) u ∀RY .(t(Di,Dj)∈VDj))))
I . In

the first case, the contradiction is derived immediately, since f is a total
function that maps elements from IN × IN to D. In the second case, the
contradiction is due to the fact that f is a solution of DOM: if xx,y ∈ DI

i

for some Di ∈ D, then f(x, y) = Di, and due to the matching conditions
also (Di, f(x+ 1, y)) ∈ H and (Di, f(x, y + 1)) ∈ V. If f(x + 1, y) = Dj

and f(x, y + 1) = Dk, then (Di, Dj) ∈ H, (Di, Dk) ∈ V and by con-
struction of ·I also xx+1,y ∈ DI

j and xx,y+1 ∈ DI
k . But since {xx+1,y} =

{ xx′,y′ | <xx,y, xx′,y′> ∈ RI
X } and {xx,y+1} = { xx′,y′ | <xx,y, xx′,y′> ∈ RI

Y }
(by definition of ·I) we have xx,y ∈ ((∀RX .Dj)u (∀RY .Dk))

I and therefore
xx,y ∈ (∀RX .(t(Di,Dj)∈HDj) u ∀RY .(t(Di,Dj)∈VDj))

I. Contradiction. This
shows that ∆I = MI . Now it is easy to see that also ∆I = XI: for all
xx,y ∈ ∆I we even have xx,y ∈ (Mu(= RX 1)u(= RY 1)u(= RZ 1))I (obvi-
ously, (= R 1) is an abbreviation for (≤ R 1)u(≥ R 1)), due to {xx+1,y} =
{ xx′,y′ | <xx,y, xx′,y′> ∈ RI

X } , {xx,y+1} = { xx′,y′ | <xx,y, xx′,y′> ∈ RI
Y } ,

37

and {xx+1,y+1} = { xx′,y′ | <xx,y, xx′,y′> ∈ RI
Z }. But then it is also clear

that xx,y ∈ (X u (∀RX .X) u (∀RY .X) u (∀RZ .X) u (∀RU .X))I and hence
x0,0 ∈ CI.

�

Summing up we have shown that ALCNRASG is undecidable, and therefore also
ALCNRA, as well as other super-logics like ALCQRASG, ALCQRA, etc. (Q for
qualified number restrictions). Of course, it does not make sense to consider
the languages ALCHRASG and ALCHRA, since role hierarchies (operator H)
provide an immediate contradiction to the assumed roles disjointness. Obviously
it also doesn’t make sense to consider ALCHRA	, since ALCRA	 is already
undecidable.

However, it might be possible that the language ALCIRASG is still decidable.
This has to be investigated in the future.

6 Summary, Discussion and Future Work

We have identified the language ALCRASG as a decidable fragment both of
ALCRA and ALCRA	 . Due to the admissibility of role boxes it is impossible
to enforce non-empty role intersections in ALCRASG. Please note that this does
not hold for ALCRA:

Please observe that

(∃R.((∃S.∃T.>) u ∀Y.⊥) u ∀A.⊥, � (C))

w.r.t.

{R ◦ S v A tB, S ◦ T v X t Y,A ◦ T v U,B ◦ T v V,R ◦X v U,R ◦ Y v V }

enforces a non-empty intersection between U and V . This example is therefore
satisfiable in ALCRA	 , but not in ALCRA. Obviously, any (C, �) which is
satisfiable in ALCRA is also satisfiable in ALCRA	, but the converse does not
hold, as the given example demonstrates.

In [16], we have proposed a tableaux calculus for ALCRA which is similar to the
one given here, but we were unable to prove soundness, completeness and termi-
nation. Like for ALCRASG, a complete role box � was needed for this calculus
(see [16], [15] for a discussion). Comparing the ALCRA tableaux calculus with
the ALCRASG calculus, one can see that a major source of non-determinism is ab-
sent in the latter. A major difference is that the ∃∀-rule was non-deterministic in
the ALCRA calculus, see Figure 3. The different choices for the labels of LN (xj)
correspond to the different composition-possibilities caused by the disjunctions

38

∃∀-rule for ALCRA:
if 1. ∃R.C1 ∈ LN (xi)

2. neither the u- nor the t- nor the
∀-rule is applicable to xi

3. ¬∃<xi, xj> ∈ ER : C1 ∈ LN (xj)
4. xi is not blocked

then create a new node xj with
LE(<xi, xj>) := R, LN (xj) := L,

where W = { (w, S) |
(∀T.D)S,w ∈ LN (xi) },

and L is some set that can
non-deterministically be constructed by:

for all (w, S) ∈ W:
choose some U ∈ con(S,R):

C(w) = { (∀T.D)U,wR |
(∀T.D)S,w ∈ LN (xi) }

L = {C1} ∪ {∀R?.>} ∪
⋃

(w,S)∈W C(w) ∪
{ (∀T.D)R,R | ∀T.D ∈ LN (xi) }

Figure 3: The ∃∀-rule for ALCRA

on the right-hand side of the role axioms S ◦ T v R1 t · · · tRn. However, non-
deterministic role axioms are not allowed in admissible ALCRASG role boxes,
and therefore, this source of complexity resp. non-determinism is absent.

When constructing the completion tree with the ALCRA calculus, an additional
clash-trigger was needed. In the previous example which enforces a non-empty
intersection between U and V , a so-called role-box clash would be detected. In
order to be able to detect such clashes, this clash-trigger had to be “path global”.
In fact, the clash-trigger had to consider the labels of all individual lying on
one path and check whether there are some edges R, S, T corresponding to a
situation where <x, y> ∈ RI, <y, z> ∈ SI , <x, z> ∈ T I, but T /∈ con(R, S). Of
course, this corresponds to a violation of the disjointness requirement.

The problem with the ALCRA calculus was the lack of an appropriate blocking
condition (see the fourth precondition of the ∃∀-rule in Figure 3). When con-
structing the infinite tableau by “unraveling” the blocked completion tree, the
blocking condition has to ensure that each path can be extended infinitely with-
out producing a violation of the disjointness requirement at some time in the
unraveling process. This infinite unraveling of the completion tree is unproblem-
atic in ALCRASG, due to the associativity, and ensures that no new composition
possibilities can arise that might violate the disjointness requirement at some

39

point during the unraveling. This problem is unsolved for ALCRA and might
very well be undecidable. More precisely, the question is: under which circum-
stances is it possible to infinitely continue a path in the completion tree such
that the same “pattern” of role combinations reproduces itself? Having identi-
fied the major differences between ALCRA and ALCRASG, we have gained new
insights that might be fruitful when reconsidering ALCRA again, since it is still
left open whether ALCRA might be decidable or not.

Having identified the major differences between ALCRA and ALCRASG, we have
gained new insights that might be fruitful when reconsidering ALCRA again,
since it is still left open whether ALCRA might be decidable or not. We have
shown that ALCNRASG (and therefore also ALCNRA) is again undecidable.
Therefore, extending ALCRASG is not an easy task. For example, whether in-
verse roles can be incorporated into the language (yielding ALCIRASG) is an
open question.

Unfortunately, the proposed admissibility criterion for role boxes is very strong,
singling out a lot of useful role boxes as invalid. However, we believe that
admissible role boxes can be constructed, e.g. for spatial reasoning tasks like in
[15]. For example, if one considers the relational composition table of the RCC8
calculus (in fact, the underlying structure is even a relation algebra), then this
composition table is associative, but in a more general sense, since disjunctions
appear on the right hand side of role axioms. An other promising idea might be
to gives names to disjunctions of base relations and “expand” the composition
table such that no disjunctions appear any longer. A role axiom of the form
S ◦ T v R1 t · · · t Rnwould be substituted by S ◦ T v R1R2 . . .Rn , where the
new role name R1R2 . . .Rn ∈ NR represents the disjunction of the listed roles,
and the composition table would be augmented by additional role axioms, such
that the overall structure is maintained. Of course, a role name must be given
to every possible disjunction, yielding an exponential blow up in the number of
roles. Even though the composition table would be exponentially larger than the
original one, it might probably be associative and useful for spatial reasoning.
These transformations and applications of ALCRASG have to be worked out in
the future.

For the further exploration of ALC in combination with role boxes it seems that
one key is to consider certain kinds of role boxes such that the mathematical
properties of the underlying structures can be exploited. It might also be possible
to exploit automata-based techniques (e.g. Büchi-automata on infinite trees).

40

7 Acknowledgments

We would like to thank Stéphane Demri, Harald Ganzinger, Volker Haarslev,
Carsten Lutz, Ralf Möller and Bernd Neumann for valuable discussions on the
topics covered in this paper. I am especially grateful to Stéphane Demri who
helped me understand the relationships to grammar logics.

References

[1] F. Baader. Augmenting concept languages by transitive closure of roles: An
alternative to terminological cycles. In Twelfth International Conference
on Artificial Intelligence, Darling Harbour, Sydney, Australia, Aug. 24-30,
1991, pages 446–451, August 1991.

[2] F. Baader. Logic-based knowledge representation. In M.J. Wooldridge
and M. Veloso, editors, Artificial Intelligence Today, Recent Trends and
Developments, number 1600 in Lecture Notes in Computer Science, pages
13–41. Springer Verlag, 1999.

[3] M. Baldoni. Normal Multimodal Logics: Automated Deduction and Logic
Programming. PhD thesis, Università degli Studi di Torino, 1998.

[4] S. Demri. The Complexity of Regularity in Grammar Logics and Related
Modal Logics. Submitted, October 2000.

[5] M. Fitting. Basic Modal Logic. In D.M. Gabbay, C.J. Hogger, and J.A.
Robinson, editors, Handbook of Logic in Artifical Intelligence, volume 1,
pages 368–449. Oxford University Press, 1993.

[6] I. Horrocks. Optimising Tableaux Decision Procedures for Description Log-
ics. PhD thesis, University of Manchester, 1997.

[7] I. Horrocks and U. Sattler. A description logic with transitive and inverse
roles and role hierarchies. Journal of Logic and Computation, 9(3):385–410,
1999.

[8] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive
description logics. In Proceedings of the 6th International Conference on
Logic for Programming and Automated Reasoning (LPAR’99), 1999.

[9] R. Molitor. Konsistenz von Wissensbasen in Beschreibungslogiken mit Rol-
lenoperatoren. Diplomarbeit, RWTH Aachen, Germany, 1997.

41

[10] U. Sattler. A concept language extended with different kinds of transitive
roles. In G. Görz and S. Hölldobler, editors, 20. Deutsche Jahrestagung für
Künstliche Intelligenz, number 1137 in Lecture Notes in Artificial Intelli-
gence, pages 333–345. Springer Verlag, Berlin, 1996.

[11] U. Sattler. Terminological knowledge representation systems in a process
engineering application. PhD thesis, LuFG Theoretical Computer Science,
RWTH-Aachen, 1998.

[12] U. Sattler. Description logics for the representation of aggregated objects. In
W.Horn, editor, Proceedings of the 14th European Conference on Artificial
Intelligence. IOS Press, Amsterdam, 2000.

[13] K. Schild. A correspondence theory for terminological logics: Preliminary
report. In Twelfth International Conference on Artificial Intelligence, Dar-
ling Harbour, Sydney, Australia, Aug. 24-30, 1991, pages 466–471, August
1991.

[14] M. Schmidt-Schauß. Subsumption in KL-ONE is Undecidable. In Princi-
ple of Knowledge Representation and Reasoning – Proceedings of the First
International Conference KR ’89, 1989.

[15] M. Wessel. Obstacles on the way to spatial reasoning with description logics
– undecidability of ALCRA	 . Technical Report FBI–HH–M–297/00, Univer-
sity of Hamburg, Computer Science Department, October 2000. Available
at http://kogs-www.informatik.uni-hamburg.de/~mwessel/report4.{ps.gz | pdf}.

[16] M. Wessel, V. Haarslev, and R. Möller. ALCRA – ALC with Role Axioms.
In F. Baader and U. Sattler, editors, Proceedings of the International Work-
shop in Description Logics 2000 (DL2000), number 33 in CEUR-WS, pages
21–30, Aachen, Germany, August 2000. RWTH Aachen. Proceedings online
available from http://SunSITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/Vol-33/.

42

