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Michael Wessel

University of Hamburg, Computer Science Department,
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1 Introduction and Motivation

In this report we introduce a family of description logics (DLs) suitable for qualitative
spatial representation and reasoning tasks. We demonstrate the usefulness of the pro-
posed DLs for representing and reasoning about qualitative spatial phenomena with
an example from the realm of deductive Geographic Information Systems (GIS). The
main contribution of this report is the presentation of some preliminary complexity
results regarding the complexity of the satisfiability problem in the considered ex-
tended DLs. We show three of the considered logics to be decidable; for the others
we give coarse lower complexity bounds. We also outline the relationships to modal
logics and give a sound and complete axiomatization of the proposed DLs in hybrid
modal logics.

The report is aimed to give a “state-of-the-art” description of what we know about
the considered issues, in terms of a progress report. Please read further to see what
the considered issues are. We think that the obtained new results should be preserved
in this report to provide a basis for future research on these topics, even though the
results are still somewhat preliminary yet.

The report is structured as follows: first we give a short informal introduction into
the basics of description logic. Readers familiar with DLs can safely skip this intro-
duction. Then we informally introduce the main ideas of DL-based qualitative spatial
reasoning and pinpoint some requirements that a DL must fulfill in order to be useful
for qualitative spatial reasoning tasks. The core assumptions of the approach are pre-
sented. We outline the relationships to our previous work, as well as the theoretical
contribution of this paper. We then define the considered DLs ALCIRCC1 , ALCIRCC2 ,
ALCIRCC3 , ALCIRCC5 and ALCIRCC8 , their syntax and semantics, and state some
obvious consequences from these definitions. In the next chapter we illustrate the
usefulness of ALCIRCC5 in a deductive geographic information system scenario by
means of reasoning with an ontology containing spatio-thematic geographic concepts.

†The author was supported by the DFG project “Description Logics and Spatial Reasoning” (DLS),
under grant NE 279/8-1.

1



The main contribution of this report are the preliminary theoretical results presented
in the then following section (see also [27]). In terms of a state-of-the-art report we
fix what we know and what we don’t know yet about the logics in the ALCIRCC

family. We show decidability of three of the considered DLs (ALCIRCC1 , ALCIRCC2 ,
and ALCIRCC3 ), and give coarse lower complexity bounds for the remaining logics
(ALCIRCC5 and ALCIRCC8 ), whose decidability status is unknown. We then fix the
relationships to modal logics and give a sound and complete axiomatization of the
ALCIRCC family in hybrid modal logics. We make some remarks on finite model rea-
soning and discuss some problems and ideas related to this. Finally, future work is
outlined.

1.1 Description Logics in General - a Short Introduction

Description logics (DLs), also called concept languages, are nowadays an accepted
standard for decidable knowledge representation frameworks (see [1]). As the term
description logics indicates, these representation languages offer the ability to describe
(resp. model) concepts from an application domain, in a logic-based representation
language. A concept might be anything we have a notion of. In order to represent
such a concept in a DL, this notion must be somehow definable in a formal, logic-
based way. DLs offer a simple and variable-free concept description language with a
simple syntax. Since DLs are based on formal logic, not only their syntax, but also
their semantics as well as the offered inference services are well defined. However,
their most prominent feature is their decidability. This means that the core inference
problems in these logics (for example, the satisfiability problem) are decidable. Even
though there are many undecidable knowledge representation frameworks that are
actually used in applications (e.g., languages like PROLOG, implemented variants of
full first-order predicate logic, etc.), the common understanding in the DL community
is that practical knowledge representation systems should be based on decidable logics.

However, the developer of a DL-based system should also try to fulfill the needs in
expressivity that users demand, if possible without loosing decidability. The trade-off
between expressivity (“What can be said?”) vs. decidability in every formal system
is well-known. A broad family of DLs offering a wide range of expressive model-
ing constructs exists, and many sound, complete and terminating calculi for solving
the basic decision problems in these languages are known ([4, 3]). Highly-optimized
implementations of these calculi are known, turning description logics into efficient
DL-based knowledge representation systems in the average case. Systems like RACER

and FACT) can form the KR&R backbone for demanding applications that require a
substantial amount of inferencing power (i.e., need to perform logical deduction) in
order to solve the application problems.

Generally, a DL concept language offers concepts and roles. Concepts are defined
inductively with the help of other concepts and roles. Sometimes, also roles can be
defined from other roles, or somehow set into relation with other roles. As a rule
of thumb, concepts correspond to first-order formula with one free variable - in its
simplest form (in the case of an atomic concept, also called concept name), a concept
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is just a unary predicate symbol with a free variable, whereas roles correspond to first-
order formulas with two free variables - in its simplest form, a role is just a binary
predicate symbol (also called a role name or role symbol). Let us illustrate this with an
example: the concept “father” might be defined/described as a “male human who has
a child.” “Male, human” and “father” correspond to unary predicates, whereas the
relation “has child” gives rise to a binary predicate symbol. We can use the standard
DL ALC (see [25]) to model this concept:1

father =def human umale u (∃has child.>) u (∀has child.human).

Note that father is just a syntactic name for the concept expression humanumaleu
(∃has child.>) u (∀has child.human). The concept “>” is the so-called “Top con-
cept” representing the entire universe of discourse, ∆I . Note that ∃has child.> ∧
∀has child.human actually implies ∃has child.human.

The translation of father into a first-order predicate logic (FOPL) formula would yield
father [x] =def male(x) ∧ human(x) ∧ ∃y : has child(x, y) ∧ >(y) ∧

∀y : has child(x, y)→ human(y).

Please note that x is the free variable, and that the existential and universal quantifiers
are always used in a certain guarded way; i.e., binary predicate symbols (role names)
are used as guards.

A “father having only sons” could now be defined as
father having only sons =def father u ∀has child.male.

Note that father must be syntactically replaced by the concept given above. The
translation into FOPL of father having only sons would yield

father having only sons[x ] =def father (x) ∧ ∀y : has child(x, y)→ male(y).

Sometimes, also inverse roles are needed:
happy child =def human u ∀has parent.(rich u nice person).

We know that the role has parent should be the converse (inverse) of the role
has child , and vice versa. To enforce the corresponding relationship between the
interpretations of has parent and has child , we could use a closed FOPL statement
of the form

∀x, y : has child(x, y)↔ has parent (y, x).

Extending ALC with inverse roles would yield the logic ALCI (where I indicates the
presence of inverse roles).

Despite the fact that the translation of a DL into FOPL is not the most natural
translation available (DL concepts are more closely related to modal logic formulas,
see below) we have chosen to do so since FOPL can somehow be seen as a “lingua
franca” and therefore offers a commonly accessible starting point.

The central inference problem in any logic is the satisfiability problem; in case of a DL,

1The standard DL ALC offers full concept negation, conjunction, disjunction, as well a as certain
restricted kind of “guarded” existential and universal quantification over roles. For the given example,
ALC is more than sufficient - even smaller DLs, e.g. ALE, would be sufficient to model the example
concepts given here. Concepts in ALC are equivalent to formulas in a certain modal logic which is
called multi-modal K(n).
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the concept satisfiability problem - given a concept C, is there an interpretation I that
makes C true, i.e. can there be an individual i such that C(x) holds if we interpret x
as i? Such an interpretation is also called a model, and we say that C is satisfied by
I, written I |= C. The individuals i can be seen as a witness of the satisfiability of
C: CI 6= ∅ due to i ∈ CI . If there can be no such i, then C is called unsatisfiable.
Given a model I of C, the set of individuals CI ⊆ ∆I is called the extension of C.

DLs also offer so-called terminologies or TBoxes. TBoxes are used to model the vocab-
ulary of the application domain. Such a conceptualization of an application domain is
also called an ontology. In its most general form, a TBox is simply a set of universally
quantified closed implication statements of the form ∀x : C1[x] → D1[x], where C1

and D1 are FOPL translations of concepts (having a free variable x). In DL syntax,
a terminology is written as a set of inclusion statements (also called TBox axioms) of
the form {C1v̇D1, . . . , Cnv̇Dn}. Informally, a TBox {C1v̇D1, . . . , Cnv̇Dn} enforces
that the extensions of the Ci’s must be subsets of the extensions of Di’s, in any model
I, such that for each i we have CI

i ⊆ DI
i . In this case, I is called a model of the

TBox - it satisfies the TBox and therefore all its axioms. The TBox axiom C ≡̇D is
just a shorthand for {Cv̇D,Dv̇C}. Don’t confuse C≡̇D with C =def D: the former
enforces a semantic constraint on the models, namely CI = DI for all models of the
TBox, whereas the latter has to be understood as a meta-logical macro definition on a
syntactical level with the meaning of “whenever you encounter C, replace it with D”.
However, certain classes of TBoxes can indeed be understood as sets of macro defini-
tions, see below. Concept satisfiability w.r.t. a terminology then means satisfiability
of this concept by a model that also satisfies the TBox (such that all TBox axioms
are satisfied).

Returning to our example, we could use a TBox to state that a
“man” is a “male human”, and vice versa. This gives us the TBox

{manv̇human umale, human umalev̇man.}
Note that, without this TBox, the concept manu¬human would be satisfiable, since
the extensions of man and human would not be set into relation somehow. But the
TBox enforces that manI = (humanI ∩ maleI), and therefore (man u ¬human)I

whose interpretation is manI ∩ (∆I \ humanI) is empty for every interpretation I,
demonstrating the required unsatisfiability (note that ∆I is the entire interpretation
domain).

A TBox is called simple if the following restrictions are satisfied: the Ci’s must be
concepts names, each concept name must appear at most once on the left hand sides
of the axioms, and there are no cyclic definitions in the TBox. In this case, the
concept expressions on the right hand sides of the TBox axioms can then be seen as
the definitions of the concept names on their left hand sides. An axiom of the form
Civ̇Di is called a primitive concept definition (giving necessary conditions for concept
membership), whereas Ci≡̇Di is called a concept definition (providing sufficient and
necessary conditions for concept membership). Basically, primitive concept defini-
tions like Civ̇Di are taken as abbreviations for true concept definitions Ci≡̇Di uD?

i ,
where D?

i is a freshly created atomic concept that doesn’t appear elsewhere in the
TBox, representing the primitive part of the concept. A simple TBox is also called
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an unfoldable TBox, since each defined concept name can be expanded by recursively
replacing its defined concepts with their definitions until only concept names remain
in the expression. Basically, this can be understood as a macro expansion process, very
similar to the ones found in programming languages like LISP. For simple TBoxes,
the semantical (“C≡̇D”) and the syntactical notions (“C =def D”) coincide, but this
is not the case for general TBoxes: if the Ci and Di in the TBox axioms can be
arbitrary concepts, then the DL admits so-called general TBoxes, and the TBox ax-
ioms are called GCIs – general concept inclusion axioms. General TBoxes are the
most expressive ones, but have the drawback that they can (in general) no longer be
understood as sets of concept definitions.

Concept names that are defined (used) in the TBox can be inserted automatically
into a subsumption hierarchy, called the taxonomy, which is a lattice-like directed
acyclic graph (DAG). In order to do so, the subsumption problem must be solved:
decide whether a concept D is more general than a concept C. In this case, for all
interpretations I, CI ⊆ DI holds. Considering the example it is clear that father v
man and father v human should hold. Since father =def man u . . . we see that
father v human holds either due to the presence of manv̇human in the TBox, or
due to the (syntactic) definition of man. However, most of the computed subsumption
relationships will not be explicitly modeled in such a way. It is one of the advantages a
DL-based system has to offer that the taxonomy is actually computed by the system,
and not modeled by the user. The concepts man , human are called subsumers of
father , and father is called a subsumee of man and human . father would be called
a direct subsumee of man ; and man a direct subsumer of father . The corresponding
closed FOPL formulas, e.g. ∀x : father(x) → man(x), can also be seen as logical
consequences of the theory of the knowledge base. A DL-based system computes the
most specific (direct) subsumers and subsumees for each concept name from a TBox.
The Top-element in this (not necessarily complete!) “lattice” is denoted by > (>I =
∆I), and the Bottom-element by ⊥ (⊥I = {}).

Moreover, in order to represent knowledge concerning a certain specific state of the
world, the so-called assertional Box, or ABox, offers the ability to represent knowledge
concerning individual objects and their interrelationships. For example, to say that
“John” is a father, and that “Jim” is his child, we would use two ABox axioms - a so-
called concept membership assertion of the form john : father, as well as a role mem-
bership assertion of the form (john, jim) : has child. The resulting ABox would be

{john : father, (john, jim) : has child}.

In its simplest form, an ABox is simply a set of concept and role membership as-
sertions. Depending on the DL, there might be other types of ABox axioms avail-
able. From a FOPL perspective, john and jim would be constant symbols, and
the example ABox would be equivalent to the closed FOPL formula father(john) ∧
has child(john, jim).

There are various inference problems centered around the ABox:

• The ABox satisfiability problem (possibly w.r.t. a TBox): given an ABox (and
probably also a TBox), check whether this ABox is satisfiable, e.g. is {john :
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father u ¬∃has child.>} consistent?

• The instance checking problem: check whether a certain individual in an
ABox is an instance of a specific concept (probably w.r.t. a TBox); e.g.
can “Jim” be shown to be an instance of human if we have the ABox
{john : father, (john, jim) : has child} and the TBox {fatherv̇man u
(∀has child.human) . . .}?

• The instance retrieval problem: given an ABox and a concept (possibly defined
in a TBox), return the set of all ABox individuals that can be shown to be
instances of that concept; e.g. return the set of all fathers that are mentioned
in the ABox.

• The instance realization problem: given an ABox individual and a TBox, com-
pute the individual’s most specific concept names from the TBox of which it is
an instance of; e.g. for the ABox {john : father ∧ ∀has child.(male u human)}
this would be father having only sons for john.

In the rest of the paper we will not use ABoxes extensively. But they are surely
important components of a DL-based system and therefore deserved some attention
here. Actually, there are various other services and inference problems that a DL-
based knowledge representation system might offer. In fact, we only sketched the most
important standard inference services. However, we want to close our short informal
introduction on DLs here and ask the reader to refer to some of the much more
elaborate available introductions e.g. the introductory chapters in the “Description
Logic Handbook” ([1]). We barely scratched the surface here. However, we wanted to
provide some basic background knowledge on DLs here in order to make the report
more self-contained and accessible.

1.2 Description Logics for Qualitative Spatial Reasoning?

The previous examples illustrated the usage of DLs with the help of common-sense-
like concepts like “father”, “son”, etc. But the long-term goal of this research is to
create a description logic which supports the modeling of qualitative spatial concepts.
In order to model them adequately with a DL, it turns out that special expressiveness
is needed. For the previous examples we used the standard DL ALCI. Unfortunately,
the expressiveness of ALCI is insufficient for qualitative spatial reasoning tasks.

A qualitative spatial concept may be any spatial notion (of a spatial object, scene,
configuration, . . . ) we have which can sufficiently be described using a qualitative
vocabulary. A qualitative spatial description abstracts away from most of the present
spatial aspects of the considered object (scene, configuration, . . . ) and focuses on
certain selected qualitative aspects which are considered as being relevant for the given
representation and reasoning task. For example, instead of specifying the exact size
of a certain spatial object in terms of measured physical units, it might be sufficient
to say that the object is just “big” or “small”. From our point of view, quantitative
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vs. qualitative is mainly a matter of the granularity or coarseness of the available
description vocabulary.

Generally, a qualitative description makes only as many distinctions as necessary to
solve a specific application problem. This might not only reduce the amount of stor-
age needed for the representation, but also the time complexity of the reasoning tasks.
Moreover, qualitative spatial descriptions can be communicated more easily to humans
since they are closer to human language. However, formalizing these - often vague -
notions can be very hard. Different calculi are available for reasoning about different
spatial aspects (form, orientation, size, configuration, . . . ). A whole research commu-
nity develops qualitative spatial description languages and reasoning calculi for these.
The field is called Qualitative Spatial Reasoning (QSR).

In this work, we focus on qualitative spatial concepts making use of binary qualitative
spatial relationships of relative locations. Informally, we may assume that the consid-
ered qualitative spatial relationships are available as roles in a DL now. For example,
we might want to say that two objects are overlapping, disjoint from each other, that
one is contained within the other, and the like. We then want to define concepts like
the concept of a “German lake” as being the set of all lakes which are contained within
the country Germany. Here we have the notion of spatial containment. We might also
want to define the concept of a “city at a lake”, the notion of a “neighbor city”, etc.
Notions of adjacency, overlap, separateness etc. might crop up. In oder to capture
the inherent properties of these qualitative spatial relationships (describing relative
locations) as roles in a DL, we need very special expressiveness in a DL.

To give a more concrete example, suppose we want to define a global integrity constraint
in a geographic information system that states that countries never contain other
countries.2 This could be achieved with a TBox statement of the form

countryv̇∀contains.¬country.

Suppose that the ABox now contains
{germany : country, x123 : country,
(germany, hamburg) : contains, (hamburg, x123) : contains}.

Obviously, the modeled world is inconsistent, since hamburg contains a country x123.
An inherent property of the containment relationship is its transitivity which means
that (germany, x123) : contains should hold. Even though this is not explicitly
modeled in the ABox, it should be a logical consequence:

{(germany, hamburg) : contains, (hamburg, x123) : contains} |=
{(germany, x123) : contains}

The inconsistency due to the violation of countryv̇∀contains.¬country should surely
be detected. This simple example shows that inherent properties of qualitative spatial
relationships must be adequately captured. For the containment relationship, at least
transitivity must be taken for granted. Other requirements might crop up as well –
for example, the containment relationship should also be irreflexive and asymmetric -
contains should be interpreted as a strict partial order (SPO).

2We are aware of certain exceptions from this “rule of thumb”.
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Figure 1: A spatial scene (left) and its corresponding complete edge-colored graph,
describing the scene qualitatively (right). Edges are labeled with RCC8 relationships.
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Figure 2: RCC8 Relationships, f.l.t.r.: Equal, Disconnected, Externally Connected,
Partial Overlap, Tangential Proper Part, Non-Tangential Proper Part. To be read as
EQ(A,B), etc. All but TPP and NTPP are self-inverse. The inverses of TPP and
NTPP are TPPI and NTPPI .

Suppose we want to describe the pairwise relative positions of objects in a concrete
two-dimensional configuration in a qualitative way. Figure 1 gives an illustration of
a a concrete scene of three two-dimensional objects, as well as a qualitative spatial
description of the pairwise relative object positions in this scene. Each node in this
complete graph (a complete graph with n nodes is also called a Kn) represents a scene
object, and between any two nodes, exactly one so-called base-relation holds. This
is called the JEPD-property of the base relationships: they are jointly exhaustive and
pairwise disjoint. Obviously, a pair of objects can never be overlapping as well as
adjacent, etc. This pairwise disjointness of relationships gives rise to the requirement
that disjoint roles should be available as a modeling construct in a DL supporting
qualitative spatial reasoning.

Some well-known and popular sets of qualitative spatial relationships are given by the
so-called RCC-family of spatial reasoning calculi (see [22] for the origins, and [9] for an
extensive survey). In the case of RCC8, we can distinguish eight base-relationships,
see Figure 2. A coarser version called RCC5 is derived from RCC8 by collapsing the
TPPI and NTPPI (TPP and NTPP) relationships into the RCC5 relationship PP ,
which is just an other name for the relationship spatially inside (resp. PPI , also simply
called spatially contains), as well as joining EC and DC into DR. It even makes sense
to define RCC3, RCC2, and RCC1, offering coarser and coarser qualitative spatial
description vocabulary. As already noted, the granularity resp. descriptive power of
these frameworks is determined by the coarseness of their basic description language
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Figure 3: Illustration of the composition table entry for EC(a, b) ◦ EC(b, c).

inventory, in this case, by the coarseness of the RCC base-relationships.

A central role in many qualitative reasoning calculi is played by the so-called composi-
tion table. This table is used to solve the following basic inference problem: given the
qualitative relationship between an object a and another object b, e.g. S(a, b), and the
qualitative relationship between b and yet another object c, e.g. T (b, c), then what are
the possible relationships between a and c? This question is answered by a lookup in
the composition table, which just lists the possible relationships for S ◦ T (see below
for the RCC composition tables). If we look up contains ◦ contains, we should again
get contains as the entry in the table, since contains is transitive. Generally, the
entries in the composition table are disjunctions of base-relationships. For example,
if we only know that a is adjacent to b, and b is adjacent to c, then the composition
table tells us that the possible base-relationship between a and c must be one of the
ones illustrated in Fig. 3. We assign the following semantics to a composition table
entry: in FOPL axiomatics, each composition table entry represents a closed formulae
of the form ∀x, y, z : S(x, y) ∧ T (y, z) → (R1(x, z) ∨ . . . ∨ Rn(x, z)). Thus, the core
idea is the following: in order to equip a DL with some kind of composition table-based
qualitative reasoning capabilities, we need to supply (at least) role axioms of the form

∀x, y, z : S(x, y) ∧ T (y, z)→ (R1(x, z) ∨ . . . ∨Rn(x, z)),

or simply S◦T v R1t· · ·tRn in DL-syntax. A set of these role axioms if called a role
box. A role axiom of the form S ◦ T v R1 t · · · tRn enforces SI ◦ T I ⊆ RI

1 ∪ · · · ∪RI
n

on the models I. Returning to the previous example regarding contains , the role
axiom should read contains ◦ contains v contains. Its FOPL translation ∀x, y, z :
contains(x, y) ∧ contains(y, z) → contains(x, z) states that contains is transitively
closed, which is what we want here: containsI ◦ containsI ⊆ containsI . As already
noted, the name of the RCC5 relationship for contains is PPI (proper part inverse; its
inverse is called PP ). The role box derived from the RCC5 composition table would,
among others, contain the role axioms PP ◦ PP v PP and PPI ◦ PPI v PPI.

We want to emphasize the use of qualitative spatial relationships as roles in a
DL - we want to quantify over roles corresponding to spatial relationships, like in
∀contains.¬country (∀PPI.¬country). We believe that this is a first-order require-
ment for the qualitative spatial reasoning applications we are trying to realize; please
see the subsequent deductive GIS example. Currently, only the logic ALCRP(S 2)
offers support for this kind of reasoning (see [15], [21], [20], [14]), but unfortunately
somehow suffers from a severe syntax-restriction in order to achieve decidability.
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1.3 Relationship to Previous Work

In previous work we investigated concept satisfiability of ALC extended with arbitrary
role boxes containing role axioms of the form S ◦ T v R1 t · · · tRn. More formally,
a role axiom of the form S ◦ T v R1 t · · · tRn enforces SI ◦ T I ⊆ RI

1 ∪ · · · ∪RI
n on

the models I. We did not require that the roles should be interpreted disjointly, and
the resulting language was called ALCRA	 (see [30]). Unfortunately, we have shown
that concept satisfiability in ALCRA	 (and even in smaller sub-languages) becomes
undecidable. However, certain classes of so-called admissible role boxes satisfying ad-
ditional conditions were shown to be decidable (e.g. the logic we called ALCRASG,
see [28]). Since role disjointness becomes an important requirement if one considers
spatial reasoning applications, we investigated the logic ALCRA (see [29]), globally en-
forcing role disjointness on all roles, more formally: R,S ∈ NR, R 6= S: RI ∩ SI = ∅.
Unfortunately, ALCRA turned out to be undecidable as well (see [26], note that the
ALCRA	 proof could not be adapted to show undecidability of ALCRA. Obviously,
since ALCRA is already undecidable, if extension by inverse roles, called ALCIRA, is
undecidable as well.

However, undecidability arises in the general case. It was left open what happens
if only certain classes of role boxes are considered, especially the role boxes which
are obtained from translating the RCC composition tables. Analogously, the syntax-
restriction criterion of ALCRP(S2) is the same as for ALCRP(D), and it was left
open whether a more relaxed criterion could be defined for ALCRP(S 2), which is
an instantiation of ALCRP(D). Depending on the exploited RCC composition ta-
ble, we will call the special ALCIRA specializations ALCIRCC8 , ALCIRCC5 , and so
on. Concerning ALCIRCC8 , the question whether it might be decidable was basically
already raised by Cohn in [8], where he suggested to use a pair of modal operators�

R and � R for each available spatial base-relationship R of RCC. Subsequent work
with Bennett (see [5, 6]) then focused on encoding of RCC relations and networks
in (propositional) modal and intuitionistic logic. However, they did not investigate
quantification over RCC relationships, as originally proposed by Cohn in [8] (e.g., it
is impossible to express concepts like ∀contains.¬country in these logics).

It should be noted that the role axioms of the proposed form have a general-purpose
status, and from this point of view, have a similar epistemic status like “u”, “∃”
and “∀”, etc. To demonstrate the general-purpose status of S ◦ T v R1 t · · · t Rn,
simply consider the role has niece – axioms of the form has brother◦has daughter v
has niece as well as has sister ◦ has daughter v has niece provide the most natural
description of these role interrelationships. However, despite this general purpose
status, our main motivation for the investigation was to support qualitative spatial
reasoning in the described way (see also [19]).
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2 The ALCIRCC Family

The considered family of ALCIRCC logics is defined as follows:

Definition 1 (Syntax of ALCIRCC) LetNC andNR be two disjoint sets of symbols,
called concept names (also called atomic concepts) and role names (also called atomic
roles or simply roles).

The syntax is defined inductively, and is borrowed from ALC (ALCI):

• Every concept name C ∈ NC is a concept.

• If R is a role from NR, and C and D are concepts, then also ¬C, C uD, C tD,
∃R.C and ∀R.C are concepts (also called compound concepts; ∃inv(R).C and
∀inv(R).C are also possible, however, since NR is closed under applications of
inv, it is not strictly necessary to define these as additional concepts here).

In the following, disjunctions of roles are written in curly brackets. If R =
{S1, . . . , Sn} is a disjunction of (disjunctive) roles Si, we also write ∀{S1, . . . , Sn}.C
(∃{S1, . . . , Sn}.C) as a shorthand for ∀S1.C u . . . u ∀Sn.C (∃S1.C t . . . t ∃Sn.C).

Two other important abbreviations are

• > =def C t ¬C (True or “Verum”), and

• ⊥ =def C u ¬C (False or “Falsum”),

for some arbitrary C ∈ NC.

We feel free to use various other standard boolean constructors which are easily de-
finable as abbreviations as well, e.g. (C → D) =def (¬C tD), etc.

The set of subconcepts (subexpressions) of a concept C is denoted by sub(C).

According to the different sets of roles NR corresponding to different sets of RCC
relationships, we define the following logics:

• ALCIRCC8 : NR = {DC ,EC ,PO ,EQ ,TPP ,TPPI ,NTPP ,NTPPI}.

• ALCIRCC5 : NR = {DR,PO ,EQ ,PP ,PPI}.
In ALCIRCC8 , PP and PPI are definable as
PP =def {TPP ,NTPP} and PPI =def {TPPI ,NTPPI }.

• ALCIRCC3 : NR = {DR,ONE ,EQ}.
In ALCRCC5 , ONE is definable as ONE =def {PP ,PPI ,PO}.

• ALCIRCC2 : NR = {DR,O}.
In ALCIRCC3 , O is definable as O =def {ONE ,EQ}; and finally,

• ALCIRCC1 : NR = {SR}.
In ALCIRCC2 , SR is definable as SR =def {DR,O}.
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DC EC EQ TPP NTPP TPPI NTPPI PO

POPPIPPEQDR

DR EQ ONE
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RCC8
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RCC3
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Figure 4: RCC relationships on various levels of granularity: the RCC5 relationships
are obtained from the RCC8 relationships by collapsing DC and EC into DR; TPP
and NTPP into PP , as well as TPPI and NTPPI into PPI . In RCC3, {PP ,PPI ,PO}
are collapsed into ONE (“Overlapping but not equal”), and ONE ,EQ into O in
the case of RCC2 (“Overlapping”). The coarsest version – RCC1 – has only one
relationship, called SR (for “Spatially Related”).

It is a very distinguishing feature of the ALCIRCC logics that the set of role names
NR is fixed and finite. In contrast, the ordinary ALCI syntax just states that NR is
an arbitrary countable (possibly infinite) set.

We use the function inv to refer to the corresponding converse role (e.g. PPI =
inv(PP), DR = inv(DR)). Please note that inv is total on NR; and that NR is
closed under applications of inv (for all R ∈ NR, also inv(R) ∈ NR).

These relationships shall exhibit the properties as given below. Some of these prop-
erties are consequences of the composition tables to be specified below, but others
are just presupposed. The following properties should reflect the inherent spatial
characteristics of the relationships; recall that a reflexive, symmetric and transitive
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relationship is called an equivalence relation, and that a irreflexive, asymmetric and
transitive relationship is called a strict partial order (SPO):

• RCC1:

– SR (spatially related): reflexive, symmetric, transitive

• RCC2:

– O (overlapping): reflexive, symmetric

– DR (discrete): symmetric, irreflexive

• RCC3:

– EQ (equal): reflexive, symmetric, transitive

– ONE (overlapping, but not equal): symmetric, irreflexive

– DR (discrete): symmetric, irreflexive

• RCC5:

– EQ (equal): reflexive, symmetric, transitive

– PO (partial overlapping): symmetric, irreflexive

– DR (discrete): symmetric, irreflexive

– PP (proper part): asymmetric, irreflexive, transitive

– PPI (proper part inverse): asymmetric, irreflexive, transitive

• RCC8 has eight spatial roles; they are illustrated in Fig. 2. All roles but EQ
are irreflexive, which is reflexive. All roles but TPP , TPPI , NTPP , NTPPI
are symmetric, which are asymmetric. TPP and TPPI are not transitive, but
NTPP and NTPPI are.

In contrast to RCC5, RCC8 takes the relationship of an object to the border of
an other object as a further distinguishing spatial characteristics into account.
We can now differentiate whether two objects are disjoint or whether they are
touching. Topologically speaking, in both cases their interiors do not share any
common points. However, we can distinguish the two cases by observing that the
borders of the two objects are intersecting in the touching case, which is not the
case if the two objects are really disjoint from each other. The DR-relationship
of RCC5 is therefore partioned into the relationships EC for externally connected
and DC , disconnected. Considering the border of a containing object resp. the
border of an object that has a proper part, i.e. of an object that has a PPI
successor, we can now distinguish whether the contained object touches the
border of its containing object or does not. In the former case, we say the
contained object is tangentially contained, whereas in the latter case we say it
is non-tangentially contained. The corresponding RCC8 relationships are called
TPPI and NTPPI ; they have corresponding inverse relationships TPP and
NTPP .
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This hierarchy of spatial relations is visualized in Figure 4; arrows indicate the subset
relationship (the hierarchy is similar to the one discussed in [13]). Each relation is
assumed to be exactly equal to the union of its immediate disjoint sub-relationships.
The children relationships form a partition of the (coarser) parent relationship. For
example, PP is partioned by TPP and NTPP .

The role boxes of ALCIRCC1 . . .ALCIRCC8 contain the role axioms that can be ob-
tained from the following RCC composition tables (the RCC5 and RCC8 tables are
taken from [22], [9], the others are defined by the author). For example, in the case of
RCC1 we have the (trivial) role box {SR ◦ SR v SR}, according to the composition
table entry for SR ◦ SR in the table given below, and so on for the other DLs. Please
note that “∗” always denotes the disjunction of all base-relations such that ∗ =def NR

for the appropriate set of role names NR in that logic. Below the composition tables
for RCC1, RCC2, RCC3, RCC5 and RCC8 are given:

◦ SR(a,b)

SR(b,c) *

RCC1 Table

◦ DR(a,b) O(a,b)

DR(b,c) * *

O(b,c) * *

RCC2 Table

◦ DR(a,b) ONE(a,b) EQ(a,b)

DR(b,c) *
DR
ONE

DR

ONE(b,c)
DR
ONE

* ONE

EQ(b,c) DR ONE EQ

RCC3 Table

◦ DR(a,b) PO(a,b) EQ(a,b) PPI(a,b) PP(a,b)

DR(b,c) *
DR
PO
PPI

DR
DR
PO
PPI

DR

PO(b,c)
DR
PO
PP

* PO
PO
PPI

DR
PO
PP

EQ(b,c) DR PO EQ PPI PP

PP(b,c)
DR
PO
PP

PO
PP

PP

PO
EQ
PP
PPI

PP

PPI(b,c) DR
DR
PO
PPI

PPI PPI *

RCC5 Table
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◦ DC(a,b) EC(a,b) PO(a,b) TPP(a,b) NTPP(a,b) TPPI(a,b) NTPPI(a,b) EQ(a,b)

DC(b,c) *

DC
EC
PO
TPPI
NTPPI

DC
EC
PO
TPPI
NTPPI

DC DC

DC
EC
PO
TPPI
NTPPI

DC
EC
TPPI
NTPPI

DC

EC(b,c)

DC
EC
PO
TPP
NTPP

DC
EC
PO
TPP
TPPI
EQ

DC
EC
PO
TPPI
NTPPI

DC EC DC
EC PO
TPPI
NTPPI

PO
TPPI
NTPPI

EC

PO(b,c)

DC
EC
PO
TPP
NTPP

DC
EC
PO
TPP
NTPP

*

DC
EC
PO
TPP
NTPP

DC
EC
PO
TPP
NTPP

PO
TPPI
NTPPI

PO
TPPI
NTPPI

PO

TPP(b,c)

DC
EC
PO
TPP
NTPP

EC PO
TPP
NTPP

PO
TPP
NTPP

TPP
NTPP

NTPP

PO
EQ
TPP
TPPI

PO
TPPI
NTPPI

TPP

NTPP(b,c)

DC
EC
PO
TPP
NTPP

PO
TPP
NTPP

PO
TPP
NTPP

NTPP NTPP
PO
TPP
NTPP

PO
TPPI
TPP
NTPP
NTPPI
EQ

NTPP

TPPI(b,c) DC DC EC

DC
EC
PO
TPPI
NTPPI

DC
EC
PO
TPP
TPPI
EQ

DC
EC
PO
TPP
NTPP

TPPI
NTPPI

NTPPI TPPI

NTPPI(b,c) DC DC

DC
EC
PO
TPPI
NTPPI

DC
EC
PO
TPPI
NTPPI

* NTPPI NTPPI NTPPI

EQ(b,c) DC EC PO TPP NTPP TPPI NTPPI EQ

RCC8 Table

Finally, to finish the definition of the syntax of the ALCIRCC family, we define the
notions of TBox, ABox, and Knowledge Base:

A TBox as a finite set of axioms of the form Cv̇D, where C and D are arbitrary
ALCIRCC concepts (but concepts in the same ALCIRCC language of the family). Such
an axiom is also called a general concept inclusion axiom, or GCI. We use C ≡̇D as a
shorthand for {Cv̇D,Dv̇C}.

An ABox � is a finite set of concept membership and/or role membership assertions:
if i, j are ABox individuals (from a set of ABox individuals NI) and C is an ALCIRCC

concept, and R is a role name, then i : C is a concept membership assertion (axiom),
and (i, j) : R is a role membership assertion (axiom). Given an ABox � , we refer to
the set of individuals used within � as individuals( � ).

A Knowledge Base is simply a tuple ( � , � ), where � is an ABox, and � is a TBox. �

An other important syntactic notion is the Negation Normal Form:

Definition 2 (Negation Normal Form of a Concept (NNF)) A concept C is
said to be in Negation Normal Form (NNF), if the negation operator “¬” only
appears in front of concept names. Each concept can be brought into NNF by
“pushing in” the negation sign, e.g. by exhaustively exploiting the equivalences
¬¬C ≡ C, ¬(C uD) ≡ (¬C) t (¬D), ¬(C tD) ≡ (¬C) u (¬D), ¬(∃R.C) ≡ ∀R.¬C,
¬(∀R.C) ≡ ∃R.¬C. �
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Definition 3 (Semantics of the ALCIRCC Family) An interpretation I =def

(∆I , ·I) consists of a non-empty set ∆I , called the domain of I, and an interpre-
tation function ·I , that maps every concept name C to a subset of ∆I (CI is called
the extension or interpretation of C), and every role name R from NR (of the con-
sidered member in the ALCIRCC family) to a subset of ∆I ×∆I (RI is called the
extension or interpretation of R). It is sufficient if ·I is defined only for concept names
which are actually referenced; however, ·I must be total on NR. Elements from ∆I

are called points, nodes or individuals.

A (Kripke) frame is an interpretation which only fixes the extensions of the role
names (i.e., the domain of ·I coincides with NR). A frame condition is a semantic
requirement that has to hold on the extensions of the role names. For example, a
frame condition might state that RI must be transitively closed - frames that satisfy
this frame condition would be called transitive frames. We also say that a model or
interpretation is based on a frame or based on frame from a class of frames (e.g., a
frame from the class of transitive frames). These notions are adopted from modal
logics and will be needed when we outline the relationships to modal logics.

In case we consider a non-empty ABox (or Knowledge Base), the interpretation func-
tion also has to supply a mapping from the set of ABox individual names NI into
∆I ; if we exploit the unique name assumption, this mapping has to be injective. It is
sufficient if ·I is defined solely for individual names which are actually referenced in
the considered ABox.

Whenever <i, j> ∈ RI for some role R, we call j an R-successor (or simply successor)
of i, and i an R-predecessor of j. We use these terms also if i, j ∈ individuals( � ) and
<iI , jI> ∈ RI , or if only (i, j) : R ∈ � .

Given an interpretation I, every (possibly compound) concept C can uniquely be
interpreted by using the following definitions (we write XI instead of ·I(X)):

(¬C)I =def ∆I \ CI

(C uD)I =def CI ∩DI

(C tD)I =def CI ∪DI

(∃R.C)I =def { i ∈ ∆I | ∃j ∈ CI : <i, j> ∈ RI }
(∀R.C)I =def { i ∈ ∆I | ∀j : <i, j> ∈ RI → j ∈ CI }

It is therefore sufficient to provide the interpretations for the concept names and roles,
since the extension CI of every concept C is uniquely determined then.

W.r.t. the interpretations of the role names, we require that the following frame con-
ditions must hold in (∆I , ·I):

• “One cluster” requirement: ∀x, y ∈ ∆I : <x, y> ∈
⋃

R∈NR
RI

• Converse requirement: RI = (inv(S)I)−1 iff R = inv(S)

• Role composition requirements: SI ◦T I ⊆ RI
1 ∪· · ·∪RI

n if S ◦T v R1t· · ·tRn

is an entry in the corresponding RCC composition table
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• Disjointness requirement: for all R,S ∈ NR with R 6= S: RI ∩ SI = ∅

• In case of ALCIRCC3 , ALCIRCC5 and ALCIRCC8 , we distinguish two kinds of
semantics for the EQ relation:

– The strong EQ-semantics: Id(∆I) = EQI

– The weak EQ-semantics: Id(∆I) ⊆ EQI

Id(∆I) =def {<x, x> | x ∈ ∆I } is the identity relation. It depends on the
application context which EQ-semantics is more appropriate.

• In case of ALCIRCC1 , Id(∆I) ⊆ SRI

• In case of ALCIRCC2 , Id(∆I) ⊆ OI

A model for a concept (ABox, TBox, . . . ) is an interpretation in which this concept
(ABox, TBox, . . . ) is satisfied. Depending on the syntactic item, satisfiability is
defined as follows:

• An interpretation I is a model of a concept C, written I |= C, iff C I 6= ∅.

• An interpretation I is a model of a composition-based role inclusion axiom
S ◦ T v R1 t · · · t Rn ∈ � , written I |= S ◦ T v R1 t · · · t Rn, iff SI ◦ T I ⊆
RI

1 ∪ · · · ∪RI
n.

• An interpretation I is a model of a role box � , written I |= � , iff for all role
axioms S ◦ T v R1 t · · · tRn ∈ � : I |= S ◦ T v R1 t · · · tRn.

• An interpretation I is a model of a GCI Cv̇D, written I |= Cv̇D, iff CI ⊆ DI .

• An interpretation I is a model of a TBox � , written I |= � , iff for all GCIs
Cv̇D ∈ � : I |= Cv̇D.

• An interpretation I is a model of a concept membership assertion i : C, written
I |= i : C, iff iI ∈ CI .

• An interpretation I is a model of a role membership assertion (i, j) : R, written
I |= (i, j) : R, iff <iI , jI> ∈ RI .

• An interpretation I is a model of an ABox � , written I |= � , iff for all ABox
axioms axiom ∈ � : I |= axiom. �

The following basic observations are direct consequences of the semantics as given
above:

1. ALCIRCC does not have the tree model property: due to the one cluster require-
ment the models have the form of complete graphs, Kn’s (see Figure 1 for an
illustration of how a typical model looks like).
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2. PP (resp. PPI ) is a transitively closed role (PP I = (PPI)+), due to PP ◦PP v
PP . This is a consequence of the RCC5 composition table.

3. Since PPI ∩ PPI I = ∅ and EQI ∩ PPI = ∅, PPI is also irreflexive, as well as
antisymmetric (therefore asymmetric) - in short: a strict partial order (SPO).

4. ALCIRCC5 and ALCIRCC8 do not have the finite model property : ∃PP .> u
∀PP .∃PP .> has only infinite models. We therefore even have to deal with Kω’s
(infinite complete graphs).

5. Models need not be dense w.r.t. PP/PPI, since only PP ◦ PP v PP , but not
PP v PP ◦ PP .

6. Even though the weak EQ-semantics only requires that EQI is a superset of
the identity relation Id, it is a consequence of the frame conditions that EQI

is in fact a congruence relation for the roles (needless to say, Id is one as well).
The weak EQ-semantics can be made strong: add, for all “relevant” concept
names CN ∈ NC , the TBox axiom CN v ∀EQ.CN to the original knowledge
base (we will show later that knowledge base consistency can always be reduced
to concept satisfiability). The nodes participating in an EQ clique then have
equivalent theories which means their cliques can be collapsed into a single
reflexive node, resulting in a model under the strong EQ-semantics.

7. In each logic of the ALCIRCC family we have a universal role R∗ =def NR (the
disjunction of all roles, which refers to all other points in the model, including
the point itself). This is due to the fact that models are connected. It is well-
known that a universal role can be used to encode whole TBoxes into single
concept expressions by a process called internalization (see below).

8. Considering the strong EQ-semantics, we also have a difference role RD =def

NR \ {EQ} (referring to all other points in the model, excluding the point
itself). It is well-known that a difference role has the expressive power to allow
for the encoding of so-called nominals (nominals are concept names which are
interpreted as singletons, therefore representing a single individual in ∆I- we will
exploit nominals in order to translate an ALCIRCC ABox into a single concept
expression, see below).

So far for the immediate consequences from the semantics. Now for the reasoning
tasks:

Definition 4 (Reasoning Problems) The following reasoning problems are also
called standard DL reasoning problems. Since we do not exploit ABox reasoning in
the following, we skipped some of the standard ABox reasoning problems.

• Given a concept C, the concept satisfiability problem is to check whether C has
a model, i.e. whether there is some I such that I |= C.
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• Given two concepts C and D, the subsumption problem is to check whether
CI ⊆ DI holds for all I. The subsumption relationship between concepts is
denoted by C v D. We might also say that C entails D (C |= D): whenever
I |= C, also I |= D.

• Given a TBox � , the TBox satisfiability problem it to check whether a TBox
admits a model, i.e. whether there is some I such that I |= � .

• Given a TBox � and a concept C, the concept satisfiability problem w.r.t. a
TBox is to determine whether there is model I such that I |= � , I |= C.

• Given an ABox � , the ABox satisfiability problem is to determine whether there
is a model I such that I |= � .

• Given a Knowledge Base ( � , � ), the Knowledge Base satisfiability problem is to
determine whether there is a model I such that I |= � as well as I |= � . �

Considering the availability of the difference role RD in all super logics of ALCIRCC3

adhering to the strong EQ-semantics, we see that we can encode nominals in our DLs:

Fact 1 (Availability of “Nominals”) Let i ∈ NC be a concept name. Consider
the concept i u ∀RD.¬ i . Note that due to the strong EQ-semantics RD =def NR \
{EQ} is the so-called difference role. Inspecting the models of i u∀RD.¬ i , it becomes

obvious that i
I

must be a singleton. W.l.o.g. we may assume that i
I

= {i}, for an
i ∈ ∆I : i is a nominal. Note that the difference role RD is only definable if we employ
the strong EQ-semantics, and that at least ALCIRCC3 is needed. �

Proof 1 Let i ∈ ( i u∀RD.¬ i )I . Assume that {i, j} ⊆ i
I
, with i 6= j. Since i 6= j and

due to the strong EQ-semantics, <i, j> /∈ EQI , but <i, j> ∈ RI
∗ . Thus <i, j> ∈ RI

D,
since RD =def R∗ \{EQ}. Since i ∈ (∀RD.¬ i )I we also have j ∈ (¬ i )I , contradicting

the assumption that j ∈ i
I
.

�

Given the availability of nominals, we can do interesting things:

• We can limit the maximal cardinality of the models - suppose we are only in-
terested in models having at most n points. Let marker =def { a1 , . . . , an }
with marker ⊆ NC be a set of fresh concept names that do not yet appear
in the knowledge base K under consideration. Then, by adding a cover ax-
iom of the form > v a1 t · · · t an and a set of disjointness axioms of
the form ∀i ∈ 1 . . . n : ai v aj ∈marker\ ai

¬ aj as well as the axioms

∀i ∈ 1 . . . n : ai v ∀RD.¬ ai we will have enforced finite models of maximal
cardinality n.

• We can translate whole ABoxes into concept expressions.

• We can even translate whole knowledge bases into concept expressions.
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• For every inference task that references an ABox, we can switch to a closed
domain reasoning mode: given an ABox � referring to the individuals
{i1, i2, . . . , in} (i.e., individuals( � ) = {i1, i2, . . . , in}), we can arrange for closed
domain reasoning such that every I = (·I ,∆I) with I |= � also satisfies
{iI1 , iI2 , . . . , iIn} = ∆I . The encoding exploits nominals as well as cover axioms,
and is similar to the construction given above, see below for the details. However,
traditionally, all DL inference problems rely on the open domain assumption; in
this case, only {iI1 , iI2 , . . . , iIn} ⊆ ∆I would hold, meaning that there might be
individuals in ∆I which are not also explicitly mentioned in the ABox � . How-
ever, especially in our deductive GIS scenario, the closed domain assumption
might be very useful and is also often considered in (more traditional) database
applications of DLs.

Interestingly, all the mentioned reasoning problems can be reduced to the concept
satisfiability problem, which is the central decision problem in any logic:3 We also
show how to translate an ABox and a TBox (thus, a whole knowledge base) into a
single concept expression. We do so using nominals and internalization:

Fact 2 (Reduction to Concept Satisfiability) We show how to reduce the vari-
ous satisfiability problems to the concept satisfiability problem:

• C v D iff C u ¬D is unsatisfiable.

• The TBox � is satisfiable iff the concept
∀R∗. Cv̇D∈ � (¬C tD)

is satisfiable. This concept is also called the internalization of � . Note that
EQ ∈ R∗, and the R∗ is the universal role R∗ =def NR. The ALCIRCC family
allows for internalization of TBoxes.

• The concept E is satisfiable w.r.t. the TBox � iff the concept
E u ∀R∗. Cv̇D∈ � (¬C tD)

is satisfiable (w.r.t. the empty TBox).

• Given a knowledge base K = ( � , � ) we show how to encode K into a single
concept term CK, such that K and CK are equi-satisfiable:

Let K = ( � , � ) be a knowledge base. To construct CK from K, we proceed as
follows:

1. � ′ =def { i : i | i ∈ individuals( � ) } ∪ � , where i is fresh concept name
which does not yet appear in K.

2. � ′′ =def { (i, j) : R | (j, i) : inv(R) ∈ � ′ } ∪ � ′.

3. � ′′′ =def { (i, j) : ∗ | 6 ∃R ∈ NR : (i, j) : R ∈ � ′′ } ∪ � ′′; “*” is just a marker
symbol with ∗ /∈ NR denoting that no other edge between i, j is present.

3If the concept satisfiability problem is undecidable, then the logic is called undecidable.
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4. Select a starting individual x1 in � ′′′ and start building a closed path p in
� ′′′ by traversing the role member ship assertions / edges in � ′′ in such a
way that every individual and every edge is at least visited once; it is okay
to visit edges and nodes more than once. Obviously, such a path always
exists. Each time we traverse an edge we record the corresponding role
membership assertion axiom in the path. An assembled path looks like
this: [R1(x1, x2), R2(x2, x3), . . . Rn(xn, xn1)].

5. Given a path p, we define (in Prolog-like notation) the translate-function:

(a) concept(i) =def i u i:C∈ � ′′′ C
(b) for the empty path “[]”: translate([]) =def >

(c) for R 6= ∗: translate([R(i, j)|Rest]) =def

concept(i) u ∃R.(concept(j) u translate(Rest))

(d) for R = ∗: translate([∗(i, j)|Rest]) =def

concept(i) u ∃R∗.(concept(j) u translate(Rest))

6. � ′ =def { i v j∈individuals( � ′′′)\i ¬ j | i ∈ individuals( � ′′′) } ∪ �
7. � ′′ =def { i v ∀RD.¬ i | i ∈ individuals( � ′′′) } ∪ � ′

8. if we want closed domain reasoning, we additionally add the axiom
> v

⊔
i∈individuals( � ′′′) i to � ′′

9. Finally, “internalize” the TBox � ′′:
C � ′′ =def ∀R∗. CvD∈ � ′′ (¬C tD)

10. Using the path p from above, the final concept term is then
CK =def translate(p) u C � ′′

It is easy to show that K = ( � , � ) is satisfiable (under the closed domain as-
sumption) iff CK is satisfiable (under the closed domain assumption): given
I |= ( � , � ) we construct I ′ |= CK by assigning for all i ∈ individuals( � )

i
I′

=def {i
I}, and likewise the other way around. Note that the i ’s are in

fact nominals, one for each present ABox individual. �

We have shown that once the concept satisfiability problem is solved, one can even
decide ALCIRCC knowledge base consistency.

2.1 Does Role Disjointness Affect Concept Satisfiability?

How important ist the JEPD -property? Does it even make a difference w.r.t. concept
satisfiability to state that roles should be interpreted as disjoint? For many DLs,
role disjointness does not effect concept satisfiability. For example, it is well-known
that the DL ALC has the finite tree model property - each satisfiable ALC concept
has a model that has the form of a finite tree. This is not to say that there are
not also other models of this concept that do not have the form of finite trees (e.g.,
might be infinite, might not be trees, or even both). However, since ALC has the
finite tree model property, a role disjointness requirement doesn’t make sense and in
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Figure 5: Example model under the weakened semantics assumption.

fact wouldn’t affect satisfiability, since trees automatically satisfy the role disjointness
requirement.

However, things are different for the ALCIRCC family. Obviously, ALCIRCC models
are not trees – since the roles are jointly exhaustive, each individual is connected to
every other via at least one role. The pairwise disjoint property ensures that “at least
one role” means in fact exactly one role. The disjointness property is also responsible
for destroying the finite model property: consider the ALCIRCC5 concept

(∃PP.>) u (∀PP.∃PP.>)

Recall that PP is transitively closed. Each model of this concept must contain an
infinite chain of PP -successors, and it is easy to see that this infinite chain cannot
be collapsed into a single reflexive node, since for each model Id(∆I) ⊆ EQI holds.
Thus, a node i with <i, i> ∈ PP I would violate the role disjointness criterion, since
already <i, i> ∈ EQI holds.

Suppose for the moment that, semantically, we no longer require that PP must be
irreflexive, that roles no longer must be interpreted as disjoint, but instead we only
require that the role axioms must be satisfied such that for each S◦T v R1t· · ·tRn ∈
� , SI ◦ T I ⊆ RI

1 ∪ · · · ∪ RI
n holds, as usual. Let’s call this the weakened ALCIRCC

semantics. Obviously, a broader class of models is now considered as appropriate. For
example, (∃PP.>)u (∀PP.∃PP.>) would now not only have infinite models, but also
finite models, containing at least one reflexive point i with <i, i> ∈ PP I ∩EQI , since
the constraints on the interpretations of the roles are more relaxed, allowing a broader
class of models, as described.

Then, a natural question is: are both notions of satisfiability equivalent in the sense
that any concept that is satisfiable w.r.t. the original semantics is also satisfiable w.r.t.
the weakened ALCIRCC semantics, and vice versa? The answer is negative: consider
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the ALCIRCC5 concept

(∀DR.¬C ) u (∀PP.¬C ) u (∀PPI.¬C ) u (∀EQ.¬C ) u
(∃DR.( (∃DR.(C u (∃DR.D))) u

(∀DR.¬D) u (∀PP.¬D) u (∀PPI.¬D) u (∀EQ.¬D))u
(∀DR.¬D) u (∀PO.¬D)

The concept is unsatisfiable in ALCIRCC5 , but under the weakened ALCIRCC se-
mantics, the concept is satisfiable: an example model is given in Figure 5. Please
note that <i, i> ∈ PP I ∩ PPII , <l, l> ∈ PP I ∩ PPII , <i, l> ∈ PP I ∩ PPII ,
<l, i> ∈ PP I ∩ PPII . Obviously, the role disjointness requirement ist not fulfilled,
but the role box axioms are satisfied in this model.

It can be claimed that, from a modeling point of view, the JEPD -property and thus
the additional frame conditions are of importance, since the notion of satisfiability
would not make much sense otherwise. Obscure models (like the given one) could not
be ruled out, admitting models with nodes being proper part of themselves, etc.

3 An ALCIRCC5 Application: Reasoning in a Deductive

Geographic Information System

Let us demonstrate by means of an example that even a restricted DL such as
ALCIRCC5 can be of value to support interesting spatial reasoning applications. Imag-
ine a Geographic Information System (GIS) that does not only provide access to digital
vector and/or raster maps (a GIS is sometimes simply defined as a “collection of dig-
ital maps”), but parallely also maintains a qualitative symbolic representation of the
stored data, for example in forms of an RCC5 network.

Such a hybrid representation schema might have a number of advantages over con-
ventional schemas: on one hand, the RCC network could serve as an index to actual
stored geographic objects. Imagine a user wants to retrieve all german cities. In this
case, the RCC network could be of great value: select the node that represents Ger-
many, follow the PPI -links from there and collect all objects that are known to be
cities. Computationally, this is much faster than computing the present containment
relationsships on the fly using spatial indexing techniques. One the other hand, such a
symbolic qualitative representation is a prerequisite if one wants to support deduction
and reasoning on a logical level. For example, the consistency of the GIS could be
checked automatically. See also [21] for interesting GIS-applications of DLs.

Assume the following TBox is used to model the geographic background knowledge of
the system, as well as some specific geographic objects, like the rivers Elbe and Alster
and the city of Hamburg. These are modeled as “individual” concepts here (however,
a representation as ABox individuals would be more appropriate):
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Figure 6: Computed taxonomy of the example TBox.

country v̇ area
city v̇ area

river v̇ area
lake v̇ area

mountain v̇ area
germany v̇ country

czech republic v̇ country
local river ≡̇ (river u ¬(∃PO.country))

non local river ≡̇ (river u (∃PO.country))
river flowing into a lake ≡̇ (river u (∃PO.lake))

german river ≡̇ (river u (∃PP.germany) u (∀PO.¬country))
german city ≡̇ (city u (∀PP.country → germany))
city at river ≡̇ (city u (∃PO.river))

elbe v̇ (river u (∃PO.czech republic) u (∃PO.germany))
alster lake v̇ lake

alster v̇ (river u (∃PP.germany) u (∃PO.alster lake) u
(∀PO.¬country) u (∀PP.country → germany))

hamburg v̇ (city u (∃PO.alster ))

A DL-based GIS would automatically compute the subsumption hierarchy (tax-
onomy) as shown in Figure 6. Please note that most of the subsumption rela-
tionships in the taxonomy are not explicitly stated as TBox axioms. Their pres-
ence has been deduced by the system. For example, the system has deduced
that hamburg is in fact a german city , and also a city at a river . The lat-
ter inference is not too surprising since it is explictly stated in the TBox that

hamburgv̇(city u (∃PO.alster )),
and alster is known to be a river , but the former inference that hamburg must be a
german city is quite remarkable. The involved reasoning process goes like that:
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• We want to show that hamburg v germany city. To do this, we show that
hamburg u ¬germany city is unsatisfiable, which means that

(city u (∃PO.alster )) u ¬(city u (∀PP.country → germany))
must be unsatisfiable, which is equivalent to

(city u (∃PO.alster )) u (¬city t (∃PP.country u ¬germany)).
Since city . . . u ¬city is an obvious contradition, we only have to show that

(city u (∃PO.alster )) u (∃PP.country u ¬germany)
is unsatisfiable.

• Plugging in the definition of alster we get
(city u (∃PO. (river u (∃PP.germany) u (∃PO.alster lake) u

(∀PO.¬country) u (∀PP.country → germany))) u
(∃PP.country u ¬germany)).

Let’s call this concept X, and suppose there is a city for which the whole
expression holds, such that city ∈ XI . Due to city ∈ (∃PP.country u
¬germany)I (this is a conjunct of X) there must exist an other node, call it
country u ¬germany, such that <city, (country u ¬germany)> ∈ PP I . Due
to city ∈ (∃PO.alster)I there is yet an other node, call it alster, such that
<city, alster> ∈ POI holds. Due to <(country u ¬germany), city> ∈ PPII

and PPI ◦PO v PPI tPO, we either have <(country u ¬germany), alster> ∈
PPII or <(country u ¬germany), alster> ∈ POI . In the first case,
<alster, (country u ¬germany)> ∈ PP I yields an immediate contradiction,
since alster ∈ (∀PP.country → germany I). In the second case, we get a con-
tradiction due to alster ∈ (∀PO.¬country)I . Summing up, we have shown
that hamburg u ¬germany city is unsatisfiable, which means that hamburg v
germany city must hold.

It should be noted that the subsumption hierarchy in Figure 6 was actually computed
by a working prototype system of the deductive GIS. Unfortunately, we do not know
yet whether ALCIRCC5 is decidable (see below). Nevertheless, the underlying tableau
calculus of the prototype can be shown to be sound and complete.

4 First Results Concerning the ALCIRCC Family

In the following we survey what we have found out so far about the ALCIRCC fam-
ily. The main result of the section is the proof of decidability of ALCIRCC3 , which
also implies decidability of ALCIRCC1 and ALCIRCC3 . However, we will make some
remarks on ALCIRCC1 and ALCIRCC2 . We will also highlight the relationsships to
modal logics. Open problems are discussed.

4.1 ALCIRCC1 is Decidable

ALCIRCC1 is decidable and equivalent to the modal logic “S5” (see [7], [10]). We
might even say that it is a syntactic variant of “S5”: simply replace ∀SR.C with

�
C,
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∃SR.C with � C, “u” with “∧”, “t” with “∨”, etc.

“S5” is the well-known normal modal logic where the accessibility relation is in-
terpreted as an equivalence relation. Informally, we may say that “S5” models are
complete, undirected and reflexive graphs, with nodes being labeled by propositional
information (concept names). It is well-known that “S5” is NP-complete.

The very special structure of the models gives rise to the following characteristic
validities, which are also known as reduction principles. Let C be an arbitrary concept
resp. “S5”-formula. Then, the following equivalences hold (among others, of course):

• � C ≡
� � C (equivalently, ∃SR.C ↔ ∀SR.∃SR.C for all concepts C),

•
�

C ≡ � � C,

• � C ≡ �	� C,

•
�

C ≡
�
�

C

Please note that the validity of these axioms can be easily seen: suppose some node in
a model has a successor where “C” holds. This node would satisfy � C . Suppose this
node has other different successors as well. Take an arbitrary successor. Obviously,
this arbitrary successor can also “see” (via the accessibility relation) the successor
node where C holds: this shows that not only � p, but ��� p. Moreover, since the
other successor has been chosen arbitrarily, we have shown that

� � p holds. In a
similar way, the validity of the other axioms can be seen as well.

The reduction principles give rise to a very special normal form for “S5”-formulas.
Let us refer to the nesting depth of

�
and � modalities as modal degree. It can be

shown that every “S5” formula having a modal degree higher than one can be reduced
to an equivalent “S5” formula having degree one (see [18]). The reduction principles
allow us to discard all nested “

�
”- and “ � ”-modalities but the last one in an “S5”

formula. Each “S5” formula can therefore be brought into modal conjunctive normal
form, where each conjunct is a disjunction of the form

β ∨
�

γ1 ∨ . . . ∨
�

γn ∨ � δ1 ∨ . . . ∨ � δm,

such that all β, δi and γj are propositional formulas (see [18]). We discussed this issue
briefly because we will apply a very similar idea later on in the decidability proof of
ALCIRCC3 .

4.2 ALCIRCC2 is Decidable

ALCIRCC2 is decidable as well. The role box, without symmetrical entries, is the
following:

{DR ◦ O v DR tO,DR ◦DR v DR tO,O ◦O v DR tO}.

It is obvious that every complete and {DR,O}-colored graph satisfies the role box ax-
ioms, as long as Id(∆I) ⊆ OI holds, since we required that overlap (“O”) is reflexive.

Instead of the “S5”-reduction principles, this logic includes the characteristic validities
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• ∃O .C → ∀O.(C t ∃{O,DR}.C) u ∀DR.∃{O,DR}.C,

• ∃DR.C → ∀DR.(C t ∃{O,DR}.C) u ∀O.∃{O,DR}.C,

• ∀O.C → C,

for all concepts C.

Regarding the complexitiy of the satisfiability problem in this logic, all we can say is
that it is at least NP-hard and contained within PSPACE. Unfortunately, the standard
selection argument which is used to show membership of “S5” in NP no longer works.
Neither does encoding of the standard PSPACE-complete satisfiability problem for
Quantified Boolean Formulas (QBFs). However, NP-hardness is of course an obvious
lower complexity bound, since satisfiability of purely propositional formulas is already
an NP-complete problem.

4.3 ALCIRCC3 is Decidable

In the case of ALCIRCC3 we have to distinguish between ALCIRCC3 with the strong
EQ-semantics and ALCIRCC3 with the weak EQ-semantics: for example, ∃EQ.(C u
∃EQ.¬C) is satisfiable only under the weak EQ-semantics; under the strong semantics
we would need a node i with i = j, <i, j> ∈ EQI with i ∈ CI and j ∈ (¬C)I , which
is obviously impossible. The role box gained by translating the composition table
(without symmetric entries) is the following:

{DR ◦ ONE v DR tONE ,DR ◦ DR v DR tONE t EQ ,
ONE ◦ ONE v DR tONE t EQ ,EQ ◦ DR v DR,
EQ ◦ ONE v ONE ,EQ ◦ EQ v EQ}.

4.3.1 Weak vs. Strong EQ-Semantics

It is a consequence of the composition tables that EQI is a congruence relation for
the binary predicates, i.e. the roles (readers who are not familiar with the notion of
a congruence relation should, for example, consult [7]). If we consider the strong
EQ-semantics, it becomes clear that EQI is even a congruence relation for the unary
predicates, i.e. the concepts as well, since EQI = Id(∆I). Of course, a congruence
relation is also an equivalence relation.

First let us show that the individuals participating in an EQI equivalence class (clique)
have an identical modal point of view on the world:

Lemma 1 ((Modal) Equivalence of EQ-clique members) Let I be a model of
an arbitrary ALCIRCC3 concept C such that I |= C, and let i, j ∈ ∆I such that
<i, j> ∈ EQI . Let modal sub(C) =def { ∃R.D,∀S.E | ∃R.D,∀S.E ∈ sub(C) }.

Then, the following holds:
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• If the weak or the strong EQ-semantics is considered, for all D ∈ modal sub(C):
i ∈ DI iff j ∈ DI – that is, i and j satisfy the same set of ∃R.D- and ∀S.E-
subconcepts of C. We call i and j modally equivalent.

• If the strong EQ-semantics is considered, i and j even satisfy the same set of
subconcepts: D ∈ sub(C) i ∈ DI iff j ∈ DI – that is, i and j are not only
modally equivalent, but equivalent. This is, of course, obvious, since i = j.

Note: the stated equivalences do not only hold for concepts from sub(C). However,
in the following it will be always sufficient to consider concepts from sub(C). �

Proof 2 The latter case is trivial, and the former is easy to proof by contradiction:
Suppose <i, j> ∈ EQI and i ∈ (∃R.D)I , but j /∈ (∃R.D)I . By the semantics, i ∈
(∃R.D)I means there is some k ∈ DI such that <i, k> ∈ RI . Since I is a model of
the role box axioms, <j, i> ∈ EQI and <i, k> ∈ RI implies <j, k> ∈ RI . This shows
that j ∈ (∃R.D)I , contradicting the assumption.

Now suppose i ∈ (∀S.E)I , but j /∈ (∀S.E)I . By the semantics, there must be some
k ∈ (¬E)I with <j, k> ∈ SI . Again, due to the role box axioms, <i, j> ∈ EQI and
<j, k> ∈ SI implies <i, k> ∈ SI . However, then also i /∈ (∀S.E)I , contradicting the
assumption.

�

The weak EQ-semantics can be made “strong”: suppose D is the concept to be tested
for satisfiability under the strong EQ-semantics in ALCIRCC3 with the weak EQ-
semantics. To do so, just consider concept satisfiability w.r.t. the TBox that contains,
for all relevant concept names C ∈ sub(D) ∩NC , the axioms C v ∀EQ.C. As already
noted, TBoxes can be internalized : simply consider concept satisfiability of

D u C∈sub(D)∩NC
(∀R∗.(C → ∀EQ.C)).

Then, it is easy to see that all EQ-connected nodes in a model - they form an EQ-clique
- can be collapsed into a single node, without destroying the model property. This
is due to the fact that no propositional contradictions can appear when collapsing
the EQ-clique members into a single node, since for all “relevant” concept names
C ∈ sub(D) ∩ NC , C v ∀EQ.C holds which means that all clique members are
“propositionally” equivalent (i.e. they satisfy the same set of concept names; note
that the interpretations of the non-relevant concept names can simply be set to ∅).

Thus, even though it is sufficient to show decidability of ALCIRCC3 w.r.t. the weak
EQ-semantics since this would also show decidability of ALCIRCC3 w.r.t. to the strong
EQ-semantics, it is nevertheless instructive to try to give a more direct proof of this
fact. We will therefore show decidability of ALCIRCC3 under the strong EQ-semantics
directly (this will also turn out to be much more easy), before considering the weak
EQ-semantics.

4.3.2 ALCIRCC3 With the Strong EQ-Semantics

If we consider ALCIRCC3 with the strong EQ-semantics, then it is easy to see that
we can transform each concept C into an equi-satisfiable FO=

2 -formula; that is, first-
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order predicate logic with two variables and a special equality symbol “=” interpreted
as identity: (=)I =def Id(∆I). This is a decidable language (see, for example, [11]);
therefore, ALCIRCC3 with the strong EQ-semantics is decidable as well.

Given an ALCIRCC3 concept C, we can exploit a variant of the so-called standard
translation (also known from modal logics) to yield an equi-satisfiable FO=

2 -formula
φx(C). However, the properties of the roles must also be captured, and this is achieved
with a further universally quantified closed formula θ. The translation is easy:

φx(C) =def C(x), if C is an atomic concept
φx(¬C) =def ¬φx(C)
φx(C1 uC2) =def φx(C1) ∧ φx(C2)
φx(C1 tC2) =def φx(C1) ∨ φx(C2)
φx(∃EQ.D) =def φx(D)
φx(∀EQ.D) =def φx(D)
φx(∃R.D) =def ∃y : R(x, y) ∧ φy(D) for R 6= EQ
φx(∀R.D) =def ∀y : R(x, y)→ φy(D) for R 6= EQ,

and θ is defined as

θ =def ∀x, y : x = y ⊕DR(x, y)⊕ONE(x, y) ∧
∀x, y : DR(x, y)↔ DR(y, x) ∧
∀x, y : ONE(x, y)↔ ONE(y, x).

Note that “⊕” is XOR. The definition of φy can be obtained by swapping x and y in
φx. Using θ and φx, we define the FO=

2 -translation γ(C) of C as

γ(C) =def φx(C) ∧ θ. �
Note that the strong semantics of EQ is hard-wired into the translation, by giving
special translations for ∃EQ.D and ∀EQ.D. An alternative way would be to exploit
the fact that (=)I =def Id(∆I) and replace the EQ-role within C by “=”.

Informally, θ asserts that between any pair of different individuals from ∆I , say x
and y, either DR(x, y) or ONE(x, y) holds (and only one), that both DR and ONE
are symmetric, and irreflexive.

It is exactly the irreflexiveness of DR and ONE resp. the word “different” in the
above sentence for which we need “=” in the definition of θ. Obviously, ∀x, y :
EQ(x, y) ⊕ DR(x, y) ⊕ ONE(x, y) instead of ∀x, y : x = y ⊕DR(x, y) ⊕ ONE(x, y)
doesn’t enforce that EQ is interpreted as identity, such that EQ(x, y) iff x = y.

For example,
¬C u (∃DR.∃DR.C) u (∀{DR,O}.¬C)

should be unsatisfiable, but this would not be the case if we modified θ as sketched
above. Moreover, replacing ∀x, y : x = y ⊕ DR(x, y) ⊕ ONE(x, y) in θ with
∀x, y : DR(x, y) ⊕ ONE(x, y) doesn’t work either, since, for each node, either
<x, x> ∈ ONEI or <x, x> ∈ DRI would hold. Then, for example, the concept

29



C u (∀DR.¬C) u (∀ONE.¬C) would become unsatisfiable, but the concept is obvi-
ously satisfiable under the strong EQ-semantics in ALCIRCC3 . We therefore need “=”
for the given translation.

4.3.3 ALCIRCC3 with the Weak EQ-Semantics

In order to prove decidability of ALCIRCC3 with the weak EQ-semantics, things are
no longer so easy. Considering the weak EQ-semantics, we have to ensure that
∀x, y, z : EQ(x, z)↔ DR(x, y) ∧DR(y, z)⊕ONE(x, y) ∧ ONE(y, z)⊕EQ(x, y) ∧ EQ(y, z)

is satisfied, which means that EQ is really a congruence relation for the roles. It is
no longer possible to simply replace EQ with “=”. Even though “=” is of course also
a congruence relation and therefore a valid interpretation for EQ , it is surely not the
only one: Suppose that EQ(x, y) holds. Under the weak EQ-semantics, x and y could
very well have different propositional descriptions in ALCIRCC3 . As already noted,
∃EQ.C u∃EQ.¬C is consistent, but translating this into ∃x, y, z : x = y ∧C(y)∧ y =
z ∧ ¬C(z) obviously yields an unsatisfiable formula.

We therefore have to separate the modal and the propositional point of view of the
EQ-connected objects. This separation is achieved by introducing an additional binary
predicate EQ′. Nested occurrences of ∃EQ. . . . and ∀EQ. . . .-concepts are flattened
during the translation, similar to the “S5” modal conjunctive normal form (see above)
which has a modal degree of one (see above).

Definition 5 Let C be an ALCIRCC3 concept in negation normal norm (NNF). More-
over, we assume that each concept C occurring within ∃R.C and ∀R.C is in disjunctive
normal form (DNF), such that each conjunct in the disjunction of conjunctions is ei-
ther an atomic concept, a negated atomic concept, or a concept of the form ∃S.D or
∀S.D, where D is again in DNF and NFF, etc.

We then assume that there is a function α, which, applied to a disjunct D of the
above DNF (note that D is itself a conjunction), returns the modal part of D, and
that there is a corresponding function β which returns the propositional part of D, e.g.
if D = A1u(¬A2)u∃R.Eu∀S.F , then α(D) = {∃R.E,∀S.F} and β(D) = {A1, (¬A2)}.
We skip the easy definitions of α and β here, as well as for DNF.

The following two mutually recursive functions φx and φy do the main job (φy is
obtained from φx by swapping x and y):

φx(C) =def C(x), if C is an atomic concept
φx(¬C) =def ¬φx(C)
φx(C1 u . . . u Cn) =def φx(C1) ∧ . . . ∧ φx(Cn)
φx(C1 t . . . t Cn) =def φx(C1) ∨ . . . ∨ φx(Cn)
φx(∃EQ.C) =def (

∧
mp∈α(C) φx(mp)∧

(∃y : EQ′(x, y) ∧EQN(y) ∧
∧

bp∈β(C) φy(bp))

∨φx(C)), if C is not a disjunction
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φx(∃EQ.(C1 t . . . t Cn)) =def φx(∃EQ.C1) ∨ . . . ∨ φx(∃EQ.Cn)
φx(∃R.C) =def (∃y : R(x, y) ∧ φy(∃EQ.C)), if R 6= EQ
φx(∀EQ.C) =def (

∧
mp∈α(C) φx(mp)∧

(∀y : EQ′(x, y) ∧EQN(y)→
∧

bp∈β(C) φy(bp))

∧φx(C)), if C is not a disjunction
φx(∀EQ.(C1 t . . . t Cn)) =def ¬(φx(∃EQ.DNF(NNF((¬C1 u . . . u ¬Cn)))))
φx(∀R.C) =def (∀y : R(x, y)→ φy(∀EQ.C)), if R 6= EQ

The formula θ is now defined as follows (please note that we have fixed some errors
that were present in θ as given in [27]):

θ =def ∀x, y : x 6= y ∧ ¬EQN(x) ∧ ¬EQN(y)↔ (DR(x, y) ∨ONE(x, y)) ∧
∀x, y : ¬(DR(x, y) ∧ONE(x, y)) ∧
∀x, y : DR(x, y)↔ DR(y, x) ∧
∀x, y : ONE(x, y)↔ ONE(y, x) ∧
∀x, y : EQ′(x, y)→ ¬EQN(x) ∧EQN(y).

Informally, θ asserts that between any pair of individuals x and y, none of which is
marked with EQN , either DR(x, y) or ONE(x, y) holds (but not both), that both DR
and ONE are symmetric, irreflexive, and that there is an other category of individuals
with is marked with EQN , which are connected to non-EQN -objects via the EQ′-role
(predicate).

Using θ and φx, we define the FO=
2 -translation γ(C) of C as

γ(C) =def φx(C) ∧ θ. �

Theorem 1 C is satisfiable in ALCIRCC3 under the weak EQ-semantics iff the FO=
2 -

formula γ(C) is. �

Proof 3 Given a model I for the concept term C, we show how to construct a model
I ′ such that I ′ |= γ(C) = φx(C) ∧ θ. An illustration of the model re-construction
process is given in Figure 7.

Since I ′ is a model of a first-order formula with a free variable x, we also need to
supply a valuation for x using the function χ (mapping variables to individuals in
∆I′

).

On the other hand, if I ′ |= γ(C) = φx(C) ∧ θ we show how to construct a model for
the original concept term C such that I |= C.

So let I |= C, with I = (∆I , ·I). Please note that EQI is an equivalence relation
(even a congruence relation). Denote the set of equivalence classes of EQI in ∆I with
∆I

/EQ, and assume that, for each [a] ∈ ∆I
/EQ, there is a fixed ordering of the elements

in this equivalence class, e.g. for i ∈ 1 . . . #[a] (#[a] denotes the cardinality of [a]),
[a] ∈ ∆I

/EQ, [a]i denotes the (unique!) ith element in the equivalence class [a].

Then, I ′ = (∆I′
, ·I

′
, χ) is defined as follows:
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Figure 7: On the left, a model of an ALCIRCC3 concept term under the weak EQ-
semantics. On the right hand side a model of its FO=

2 -translation. Illustration of an
EQ-clique: Clique-members have an equivalent modal point of view. One the right,
the EQ-clique has been collapsed into a single node. Note that collapsing an EQ-clique
can never violate the role disjointness requirement, since EQ is a congruence relation
for the roles. On the right-hand side, also note the additional (shaded) EQN -nodes,
representing the original EQ-clique members.

• ∆I′
=def ∆I

/EQ ∪ { [a]i | i ∈ 1 . . . #[a], [a] ∈ ∆I
/EQ }.

This means there is an individual [a] in ∆I′
for each EQ-equivalence class [a], as

well as one individual [a]i for each member ai ∈ [a] in this class. Also note that
[a] denotes two different things: first, the whole equivalence class (i.e., a set of
individuals {[a]1, . . . , [a](#[a])}), as well as an individual [a] in ∆I′

representing
the class [a]. It should be clear from the context which one is meant;

• DRI′
=def {<[a], [b]> | <a, b> ∈ DRI };

• ONEI′
=def {<[a], [b]> | <a, b> ∈ ONEI };

• EQ′I′
=def {<[a], [a]i> | i ∈ 1 . . . #[a], [a] ∈ ∆I

/EQ };

• (=)I
′
=def {<x, x> | x ∈ ∆I′

};

• for all concept names D ∈ NC, [a]i ∈ DI′
iff a ∈ DI and a is the ith element in

the fixed ordering in its equivalence class;

• EQNI′
=def { [a]i | i ∈ 1 . . . #[a], [a] ∈ ∆I

/EQ }.

We first show that, given an arbitrary model I that satisfies the role axioms of
ALCIRCC3 , the model I ′ will also satisfy θ. We do this by showing that every conjunct
of θ is satisfied.

• ∀x, y : x 6= y ∧ ¬EQN(x) ∧ ¬EQN(y)↔ (DR(x, y) ∨ONE(x, y)):
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“←” If (DR(x, y) ∨ ONE(x, y)) for two nodes x, y ∈ ∆I′
, then, by definition

of DRI′
and ONEI′

, x 6= y, since DRI and ONEI are irreflexive. Since
x = [a] and y = [b] for some a, b ∈ ∆I and [a] 6= [a]i for all i, also
¬EQN(x) ∧ ¬EQN(y), since EQN(x) iff x = [a]i, for some [a] and i.

“→” If x 6= y∧¬EQN(x)∧¬EQN(y) for two nodes x, y ∈ ∆I′
, then, x = [a] and

x = [b], with [a] 6= [b]. Therefore, <a, b> /∈ EQI . Because I satisfies the
role box axioms and is a complete graph, either <a, b> ∈ DRI or <a, b> ∈
ONEI . By definition of DRI′

and ONEI′
, also (DR(x, y) ∨ONE(x, y)).

• ∀x, y : ¬(DR(x, y) ∧ ONE(x, y)): due to the fact that DRI ∩ONEI = ∅, and
that EQI is a congruence relation for the roles (this implies that the replacement
of the nodes in I by their equivalence classes in I ′ never yields non-empty role
intersections).

• ∀x, y : DR(x, y) ↔ DR(y, x): an obvious consequence of the semantics of
ALCIRCC3 and of the fact that EQI is a congruence relation for the roles.

• ∀x, y : ONE(x, y)↔ ONE(y, x): see above.

• ∀x, y : EQ′(x, y) → ¬EQN(x) ∧ EQN(y): is easy to satisfy by minimizing
EQ′I′

.

Using induction on C, we show that I ′ |= γ(C) = φx(C)∧θ. Since we have just shown
that I ′ |= θ, by definition of I ′, we subsequently only show that I ′ |= φx(C):

• If C ∈ NC (i.e., C is a concept name) and I |= C, then there is some i ∈ ∆I

with i ∈ CI . Since i ∈ [i], there is some [i]i ∈ ∆I′
. W.l.o.g. we assume that i

is the ith element in [i]. Since i ∈ CI we also have [i]i ∈ CI′
, by definition. By

assigning χ(x) = [i]i we see that I ′ |= φx(C) = C(x).

• If C = ¬D, then D ∈ NC, i.e. D is an atomic concept. See above. Note that
[i]i ∈ DI′

if and only if i ∈ DI and i is the ith element in the fixed ordering in
its equivalence class.

• If C = C1uC2, I |= C1uC2, then, by the semantics of “u”, there is some i ∈ CI
1 ,

i ∈ CI
2 . By the induction hypothesis, there is some [i]i ∈ ∆I′

with χ(x) = [i]i
such that I ′ |= φx(C1) and I ′ |= φx(C2). But then, due to the semantics of “∧”,
also I ′ |= φx(C1) ∧ φx(C2), thus I ′ |= γ(C), since both φx(C1) and φx(C2) have
the same free variable x.

• If C = C1 t C2, I |= C1 t C2, then, by the semantics of “t”, there is some
i ∈ CI

1 or some i ∈ CI
2 . By the induction hypothesis, there is some [i]i ∈ ∆I′

with χ(x) = [a]i such that I ′ |= φx(C1) or I ′ |= φx(C2). But then, due to the
semantics of “∨”, also I ′ |= φx(C1)∨φx(C2), thus I ′ |= φx(C), since both φx(C1)
and φx(C2) have the same free variable x.
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• If C = (∃EQ.D) and D is not a disjunction, then its translation is

φx(∃EQ.D) =def (
∧

mp∈α(D) φx(mp)∧

(∃y : EQ′(x, y) ∧EQN(y) ∧
∧

bp∈β(D) φy(bp))

∨φx(D)).

Since I |= ∃EQ.D there are i ∈ (∃EQ.D)I and j ∈ DI with <i, j> ∈ EQI .
Note that [i] = [j]; i.e. i and j are members in the same EQ-equivalence class;
however, i and j must not be identically. Due to the induction hypothesis, there
is some [j]j such that χ(x) = [j]j and I ′ |= φx(D).

Now, there are two possibilities:

– If i = j due to the reflexiveness of EQI , thus [i]i = [j]j , we have I ′ |= φx(C),
since I ′ |= φx(D) with χ(x) = [i]i and φx(C) = . . . ∨ φx(D).

– If i 6= j, then by construction, j ∈ [i] since [i] = [j] due to <i, j> ∈ EQI . By
construction of I ′ we know that <[i], [i]j> ∈ EQ′I′

, thus <[i], [j]j> ∈ EQ′I′
,

as well as [j]j ∈ EQNI′
.

Consider now ump∈α(D)mp. As defined above, α(D) returns the modal part
of D; i.e. the set of some- and forall-concepts appearing in D. Note that
this set is semantically well-defined: by definition, D does not contain any
disjunctions (the “next” disjunction might only appear within “E” in a
∃R.E- or ∀R.E-conjunct of D). Since α(D) is a conjunction of conjuncts
appearing in D (i.e., a sub-conjunction of D), also j ∈ (ump∈α(D))

I . But

then, due to Lemma 1, also i ∈ (ump∈α(D))
I – recall that EQI is not only

an equivalence, but a congruence relation for the roles (binary predicates).
This shows that we can assign χ(x) = [i], and I ′ |=

∧
mp∈α(D) φx(mp).

Consider now ubp∈β(D)bp. As defined above, β(D) returns the boolean part
of D. Obviously, D = x∈α(D)∪β(D) x (up to reordering of conjuncts). If
we set χ(y) = [j]j , then I ′ |= φy(D) and therefore I ′ |= (∃y : EQ′(x, y) ∧
EQN(y)∧

∧
bp∈β(D) φy(bp)) if we assign χ(x) = [i]. Note that by definition

of I ′, <[i], [i]j> ∈ EQ′I′
, as well as [i]j ∈ EQNI′

.

• If C = (∃EQ.(C1 t . . . t Cn)), then its translation is given by
φx(∃EQ.(C1 t . . . t Cn)) =def φx(∃EQ.C1) ∨ . . . ∨ φx(∃EQ.Cn).

Immediate by the semantics. Note that each Ci is itself a conjunction (possibly
of length one) - φx(∃EQ.Ci) is therefore covered by the previous case.

• If C = ∃R.D, R ∈ {DR,ONE}, then its translation is given by φx(∃R.D) =def

(∃y : R(x, y) ∧ φy(∃EQ.D)). If i ∈ (∃R.D)I , then there is some j ∈ DI such
that <i, j> ∈ RI . By the induction hypothesis, there is some I ′ with χ(x) =
[j]j I

′ |= φx(D). Then also I ′ |= φy(D) with χ(y) = [j]j . Since [j]j ∈ [j],
<[j], [j]j> ∈ EQ′I′

we can show that I ′ |= φy(∃EQ.D) for χ(y) = [j]. Since
<[i], [j]> ∈ RI′

we can assign χ(x) = [i] and get I ′ |= (∃y : R(x, y)∧φy(∃EQ.D)).

• If C = (∀EQ.D) and D is not a disjunction, then its translation is
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φx(∀EQ.D) =def (
∧

mp∈α(D) φx(mp)∧

(∀y : EQ′(x, y) ∧EQN(y)→
∧

bp∈β(D) φy(bp))

∧φx(D))

Let i ∈ (∀EQ.D)I and j ∈ DI such that <i, j> ∈ EQI . By definition of I ′,
[i] = [j], i.e. i and j are members in the same EQ-equivalence class. Due to the
induction hypothesis, I ′ |= φx(D) with χ(x) = [i]j , as well as for χ(x) = [i]i
and χ(x) = [i], since [i] ⊆ DI (i.e., all members of [i] are instances of D). Now,
( mp∈α(D) mp) is a sub-conjunction of D, thus we have [i] ⊆ ( mp∈α(D) bp) u

( bp∈β(D) bp)I . This shows that I ′ |= (
∧

mp∈α(D) φx(mp)) for χ(x) = [i] as well

as for χ(x) = [i]i, χ(x) = [i]j , etc. Therefore, I ′ |= (
∧

bp∈α(D) φx(bp)). By

definition of I ′, <[i], [i]j> ∈ EQ′I′
and [i]j ∈ EQNI′

. But then, I ′ |= (∀y :
EQ′(x, y) ∧EQN(y)→

∧
bp∈β(D) φy(bp)) for χ(x) = [i], thus I ′ |= φx(C).

• If C = ∀EQ.(C1 t . . . t Cn), then its translation is given by
φx(∀EQ.(C1t . . .tCn)) =def ¬(φx(∃EQ.DNF(NNF((¬C1 u . . . u ¬Cn))))). This
holds, since ∀R.D ≡ ¬∃R.¬D is an immediate consequence of the semantics,
and ¬(C1tC2) ≡ (¬C1u¬C2). Obviously, NNF and DNF preserve satisfiability.
Please note that DNF(NNF(¬C1u . . .u¬Cn)) returns a concept which has again
the required normal form properties, such that φx(∃EQ. . . .) can be exploited
for the translation.

• If is C = ∀R.D, R ∈ {DR,ONE}, then its translation is given by
φx(∀R.D) =def (∀y : R(x, y) → φy(∀EQ.D)). If i ∈ (∀R.D)I and <i, j> ∈ RI ,
then, by the semantics, j ∈ DI . By the induction hypothesis there is some I ′

with χ(x) = [j]j , I
′ |= φx(D) (if we assume that j is the jth node in its equiv-

alence class). Since for all nodes j, k ∈ [j] <j, k> ∈ EQI and R ◦ EQ v R we
know that <i, k> ∈ RI . But then, [j] ⊆ DI . This shows that j ∈ (∀EQ.D)I ,
[j]j ∈ (∀EQ.D)I , as well as [j] ⊆ (∀EQ.D)I . By the semantics and the induc-
tion hypothesis this shows that I ′ |= φy(∀EQ.D) with χ(y) = [j]j . Thus we
have shown I ′ |= (∀y : R(x, y)→ φy(∀EQ.D)) with χ(x) = [i].

The other direction in the proof is to show by induction on C that any model for
I |= γ(C) = φx(C) ∧ θ (with χ(x) = i) can be transformed into a model I ′ of C.
The proof is very similar; just the line of argumentation needs to be “reversed”. We
just show how to construct I ′ from I. Let I = (∆I , ·I , χ) be a model of γ(C) with a
minimal interpretation of EQN I and EQ′I . Then I ′ = (∆I′

, ·I
′
) is defined as follows:

• ∆I′
=def ∆I ;

• EQI′
=def (EQ′I)⊗; where “⊗” denotes the reflexive, transitive and symmetric

closure of a binary relation;

• RI′
=def {<i, k> | i, j, k ∈ ∆I′

, <j, k> ∈ EQI′
, <i, j> ∈ RI }

for R ∈ {DR,ONE};

• for all concept names D ∈ NC , DI′
=def DI .
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Is is readily checked that I ′ validates the role box axioms and semantic constraints
on the interpretations of the roles (e.g., that EQI′

is a congruence relation for
{DR,ONE}), etc. We omit the inductive proof that I ′ |= C.

�

4.4 Beyond ALCIRCC3 : ALCIRCC5 and ALCIRCC8

Considering ALCIRCC5 and ALCIRCC8 , we can observe that neither has the finite
model property, unlike ALCIRCC3 and its sub-languages (it is well known that FO=

2

has the finite model property). We’ve already noted that, for example, ((∃PP.>) u
(∀PP.∃PP.>)) has no finite models.

There is some indication that ALCIRCC5 could possibly be computationally easier to
handle than ALCIRCC8 , since the latter seems to have more expressive power. More
specifically, unlike ALCIRCC5 , ALCIRCC8 somehow allows the distinction of a role
and its transitive orbit. A transitive orbit is a role whose interpretation contains at
least the transitive closure of the interpretation of the generating role, i.e. if ⊕(R)
returns the role that has to be interpreted as a transitive orbit of the role R, then the
semantics requires that (RI)+ ⊆ (⊕(R))I , see [23]. Once a role and its transitive orbit
can be distinguished it becomes possible to encode models with paths of exponential
length, see below.

4.4.1 PSPACE-hardness of ALCIRCC5

Currently we can only show PSPACE-hardness, which follows from Ladner’s Theorem.
It is possible to reduce the validity problem for QBFs (Quantified Boolean Formulas)
to the satisfiability problem in ALCIRCC5 . To do so, we only have to show how to
enforce the existence of tree models. We do so by forbidding the PO relation to hold
between nodes in the model. Despite some technical tricks, the following formulas are
nearly identical to the ones in [7, pp. 383]. In order to emphasize the close relatedness
of DLs and modal logics, we will use modal logics syntax this time.

Let Bi =def qi → ( � PPI (qi+1 ∧ pi+1)∧ � PPI (qi+1 ∧ ¬pi+1)), and S(pi,¬pi) =def (pi →�
PPI pi) ∧ (¬pi →

�
PPI ¬pi), and consider the following conjunction:

• Root node: q0

• Forbid PO:
�

R∗

�
PO⊥ (note: same as ∀R∗.∀PO.⊥ )

• Disjointness of qi’s:
�

R∗(qi →
∧

i6=j,0≤i≤m¬qj)

• Ensure DR between siblings:
�

R∗(qi →
�

PPI¬qi) 0 ≤ i ≤ m

• Binary branching: B0 ∧
�

PPI B1 ∧
� 2

PPI
B2 ∧ · · · ∧

� m−1
PPI

Bm−1

• Consistent propagation of “bits” along the tree:
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�
PPI S(p1,¬p1) ∧

� 2
PPI

S(p1,¬p1) ∧ · · · ∧
� m−1

PPI
S(p1,¬p1) ∧

∧
� 2

PPI
S(p2,¬p2) ∧ · · · ∧

� m−1
PPI

S(p2,¬p2) ∧
...

� m−1
PPI

S(pm−1,¬pm−1)

If we consider the strong EQ semantics, the enforced models are binary transitive
trees of height m, with DRI = ∆I ×∆I \ (PPI ∪PPI I ∪ Id(∆I)), PPI I = (PPI I)+

and PPI = (PPI I)−1. As already noted, the weak EQ semantics can be made strong,
if we add

�
R∗(p→

�
EQ p) for all proposition letters, and collapse the EQ cliques in

the model. This means, we have a super-logic of K4 with a “difference modality” DR,
which shows PSPACE-hardness as a lower bound; the upper bound is unknown to us.
However if we consider the “PO-free fragment” of ALCIRCC5 it becomes reasonable
to conjecture that this logic should be in PSPACE and be therefore PSPACE-complete.

It is interesting to note that we can also use ALCIRCC5 as a propositional linear tense
logic (Priorean tense logic, PTL) – which is basic modal logic with the P and F
modalities resp. their duals H and G) – interpreted in strict total orders. Intuitively,
“Fφ” means “somewhere in the f uture, φ will hold”, and “Gφ” means “it is always
going to be the case that φ holds”, and accordingly for the past. Obviously, � PPI can
be used instead of the F operator, and � PP as the P operator. It is also easy to enforce
that PPI and PPI I are linear strict orders: just add the conjunct

�
R∈{DR,EC,PO}⊥

globally to the original formula; e.g. we translate living being → F (dead ∧ G dead )
into (living being → � PPI (dead ∧

�
PPI dead )) ∧

�
R∗
�

R∈{DR,EC ,PO}⊥. Additional
conjuncts might be added for denseness, left- and right-(un)boundedness, etc.

4.4.2 EXPTIME-hardness of ALCIRCC8

Once a role can be distinguished from its transitive orbit (or even its exact transitive
closure), which is the case for all super-languages of ALCR⊕ (see [23]), e.g. languages
like ALCHR+ , SHIQ (see [17]), PDL (Propositional Dynamic Logic) etc., it is easy
to construct concepts enforcing models having paths of exponential length in the size
of the input concept. Note that this is in contrast to the previous QBF reduction -
even though the enforced tree models were also exponential, its tree paths were still
polynomial (linear) in the size of the input formula.

We first show how to distinguish a role from its transitive orbit in ALCIRCC8 . The
following concept enforces an infinite chain of even-odd-. . .-marked individuals, see
Figure 8 and the spatial illustration given in Figure 9. Each node can distinguish its
direct TPPI -successor from all its indirect NTPPI -successors. Laxly speaking, we
can consider NTPPI somehow as the transitive orbit of TPPI ; more specifically, we
have ((TPPII)+ − TPPII) ⊆ NTPPII . An “exact” transitive orbit would require
(TPPII)+ ⊆ NTPPII , but the construction is fine for what follows.

The construction is the following:
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etc.

NTPPI

TPPI TPPI TPPI TPPI TPPI TPPI

PSfrag replacements

Figure 8: Illustration of a (part of an infinite) model of infinite even odd chain

PSfrag replacements odd

odd

odd

even

even

even

etc.

Figure 9: Spatial illustration of infinite even odd chain
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infinite even odd chain =def even u
even→ ∀TPPI .odd u
∀R∗. ((even↔ ¬odd) u

(even→ ∀TPPI .odd) u
(odd→ ∀TPPI .even)) u

∃TPPI .∃TPPI .> u
∀NTPPI .∃TPPI .>

Due to the RCC8 composition table, we have

TPPI ◦ TPPI v TPPI tNTPPI
TPPI ◦ NTPPI v NTPPI
NTPPI ◦ TPPI v NTPPI
NTPPI ◦ NTPPI v NTPPI .

Now that we know how to separate a role from its (pseudo-) transitive orbit we can
continue by showing how to encode the classical binary n-bit counter : if the binary
counter has n bits, then each of its models must have a path of a length at least
2n, representing all numbers from 0 to 2n − 1, one individual along the path for
each number (see also [7] for an encoding of this concept in PDL). Please note that
transitively closed roles are not sufficient for an encoding of the counter. The counter
concept in ALCIRCC8 looks like that:

counter =def even u
even→ ∀TPPI .odd u
∀R∗.((even↔ ¬odd) u (even→ ∀TPPI .odd) u (odd→ ∀TPPI .even)) u

∀NTPPI .(¬(bit0 u . . . u bitn−1)→ ∃TPPI .>) u

∃TPPI .∃TPPI .(¬bit0 u ¬bit1 u . . . u ¬bitn−1) u

∀NTPPI .(toggle bit0 u toggle bit1 u . . . u toggle bitn−1)

toggle bit0 =def (bit0 u ∀TPPI .¬bit0) t (¬bit0 u ∀TPPI .bit0)

toggle biti =def ((u0≤j<ibitj) u ((biti u ∀TPPI .¬biti) t (¬biti u ∀TPPI .biti)))t
(¬(u0≤j<ibitj) u ((biti u ∀TPPI .biti) t (¬biti u ∀TPPI .¬biti)))

Informally, the first three conjuncts in counter enforce an alternating toggling of
even− odd-marked TPPI -successor nodes. As seen before this gives us ((TPPI I)+−
TPPII) ⊆ NTPPII . The fourth conjunct says that unless the “highest number”
of the counter 2n − 1 has been reached (which means that all bits are “turned on”),
yet an other TPPI -successor is still needed. The fifth conjunct ensures the existence
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of a node which represents the number zero (all bits are set to zero). The sixth
conjunct is used to propagate the toggle biti-concepts to each node along the path.
The toggle biti-concepts do exactly what their naming suggests - they enforce the
correct incrementation (bit toggling) along the TPPI -path. For example, toggle bit1

turns bit1 of the next TPPI -successor on iff currently bit0 is on and bit1 is off (note
that bit0 is turned off at the TPPI -successor by toggle bit0). Bit1 is reset to zero
again at the TPPI -successor iff both bit0 and bit1 are currently on. Otherwise, the
state of bit1 is left unchanged.

Obviously, each model must have at least 2 + 2n nodes (“+2” because the zero starts
at the second TPPI -successor, ∃TPPI .∃TPPI .(¬bit0 u¬bit1 u . . . u¬bitn−1)). There
does not seem to be a way to achieve a similar effect in ALCIRCC5 , since we cannot
distinguish a role from its transitive orbit (or closure) in ALCIRCC5 . For the same
reason, an encoding of the counter concept fails in languages like ALCR+ that only
provide transitively closed roles.

However, we did not prove EXPTIME-hardness yet. The existence of concepts which
can only be satisfied in models of exponential size does not imply that the logic can
no longer be in PSPACE (consider the ALCIRCC5 model given above, which was also
exponential). However, by reducing the EXPTIME-complete two person corridor tiling
game to ALCIRCC8 concept satisfiability, we can show that concept satisfiability of
ALCIRCC8 is indeed EXPTIME-hard. Note that this is a lower complexity-bound -
ALCIRCC8 might very well be even undecidable, we don’t know yet. The reduction
works basically like for PDL (see [7], Page 397–403), and we omit it here. The key-
ingredients for a successful reduction of the two person corridor tiling game to concept
satisfiability is the availability of a role and its transitive closure or orbit. We can
easily exploit our already given TPPI /NTPPI -construction for this purpose. Again
we will need to show how to enforce tree models in ALCIRCC8 ; we do so by adding
∀R∗.((∀EC.⊥) u (∀PO.⊥)) as additional conjunct, which forbids the PO and EC
relationships to hold in the models. Models are now trees; children (TPPI successors)
can be distinguished from arbitrary offsprings (NTPPI successors) and siblings (DC
successors), and there are no PO and EC successors. Exploiting this tree structure,
it is not too hard to adopt the PDL EXPTIME-hardness proof in [7, pp. 398–401].
The “PO/EC-free fragment” of ALCIRCC8 should be in EXPTIME - we conjecture
that this fragment is EXPTIME-complete.

4.4.3 ALCIRCC8 – Close to Undecidability?

We can show that ALCIRCC8 is somehow “close” to being undecidable. Slight exten-
sions would make the logic undecidable. We do not now yet if ALCIRCC8 really is
undecidable. This remains an open problem - like decidability of ALCIRCC5 . Note
that the given complexity bounds are lower bounds. As long as we have no tight upper
bounds we cannot say if the logics are decidable.

A classical undecidable problem is the so-called Domino Problem:
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Definition 6 (Domino System) A domino system DOM is a triple (D,H,V),
where D = {d1, . . . , dn} is a non-empty set of so-called domino types, V ⊆ D × D
is the vertical matching relation, and H ⊆ D×D is the horizontal matching relation.

A solution of a domino system is a function f : IN×IN→ D (in the following we assume
that 0 ∈ IN) such that the matching relationships of the domino types are respected,
i.e. for all (i, j) ∈ IN× IN: (f(i, j), f(i + 1, j)) ∈ H and (f(i, j), f(i, j + 1)) ∈ V. �

A solution of a domino system can be seen as a tiling of the first quadrant of the plane
with rectangular domino types. Each domino type can be used infinitely often during
the tiling process, but the vertical and horizontal matching conditions must always be
obeyed. Rotation of domino types is not allowed. Now, it is undecidable whether a
domino system has a solution; i.e. there can be no algorithm that tells us whether an
arbitrary domino system DOM can be used to tile the first quadrant of the infinite
plane.

In order to reduce the domino problem to concept satisfiability in ALCIRCC8 we would
have to construct, from a given domino system DOM, a concept CDOM such that
CDOM is satisfiable iff DOM has a solution. Does there exists an encoding of the
domino problem in ALCIRCC8 , thus proving the undecidability of ALCIRCC8?

One central problem one has to address during the encoding of a domino system is
how to represent (and then encode in a concept) infinite two-dimensional grids. The
grid can be seen as the field where the domino tiles are to be placed. Thus, we have
to find a concept Cgrid whose models can be seen as representations of infinite two-
dimensional grids. The models of Cgrid thus have to fulfill the following conditions
(see, for example, also [12], [2]):

• Nodes in the model represent field-positions in the grid.

• Each node has exactly one horizontal and exactly one vertical successor node,
representing its adjacent fields “to the east and to the north”. That is, there
exists two total functions RI

X and RI
Y that can be extracted unambiguously from

the models of Cgrid, and each node can “access” its neighborhood by means
of a construction in the language (e.g., if RI

X and RI
Y are roles in a DL, we

can “access” them using universal value restrictions of the form ∀RX . . . . and
∀RY . . . .).

• The northern successor of the eastern successor and the eastern successor of the
northern successor of each node must coincide: RI

X ◦ RI
Y = RI

Y ◦ RI
X . In our

case, this condition turns out to be the most difficult one to fulfill.

Once a formula that enforces the infinite grid has been found, we can use a global
axiom (GCI) of the form

> v tDi∈D(Di u (uDj∈D,Di 6=Dj
¬Dj)) u

uDi∈D(Di → ( ∀RX .(t(Di,Dj)∈HDj) u

∀RY .(t(Di,Dj)∈VDj)))
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Figure 10: Frame and isomorphic 3× 3 grid (some edges not drawn). The RCC8 net-
work can be extended to grids of arbitrary size (n×n) without becoming inconsistent.

to enforce a correct tiling of the grid (recall that TBoxes can be internalized, i.e.
transformed into a concept term). Please note that RX and RY might not be present
for direct use as roles. For example, it might be the case that only one role, say R, is
present. But then, we could use additional concept names as labelings, say X and Y ,
and the matching condition could be

uDi∈D(Di → ( ∀R.(X → t(Di,Dj)∈HDj) u

∀R.(Y → t(Di,Dj)∈VDj))).

Of course, now the presence of exactly one X-labeled R-successor and the presence
of exactly one Y -labeled R-successor must be taken for granted, and it might also be
more difficult to enforce the mentioned coincidence, since we have to take care not to
“merge” the wrong R-successors together.

Now, what could be potential candidates for Rx and RY ? Considering the models of
ALCIRCC8 , one observes that they do not look like grids at all. Since every node is
connected to every other node, we have to find a way how to distinguish the direct
(horizontal and vertical) successors in the models from the other successors, i.e. we
have to establish some kind of order on the nodes if we want to embed the grid. In
the one-dimensional case, we already know how to do this: consider the models of
infinite even odd chain, where ((TPPII)+ − TPPII) ⊆ NTPPII holds. Can this
“schema” be extended to the two-dimensional case?

It is in fact possible to construct models of arbitrary (infinite) size that satisfy the
required ALCIRCC8 frame conditions, and these models are isomorphic to grids that
satisfy the required listed three “domino encoding’ conditions”. A 3×3 grid is depicted
in Figure 10. The depicted construction-schema can be used to construct infinite
models that are isomorphic to infinite two-dimensional grids. Each node has access
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to two distinguished (“direct”) TPP -successors: its vertical and horizontal direct
successor. In order to distingush them, i.e. to extract RI

X and RI
Y from the models

such that RI
X ∪ RI

Y = TPP I , we could use additional labeling information in the
nodes (for example, like on the Pages 10 and 11 in [2]).

Even though these infinite models do exists, we have found no way to enforce the
required depicted model(s) by means of a concept term. However, any logic that
has the expressivity to enforce the depicted model by means of a formula will be
undecidable. From a modal logic perspective, the satisfiability problem relative to
this class of frames is of course undecidable. Considering the modal logic concept
of frame definiability (exploiting the concept of frame condition axiomatizability, see
below), the class of frames is of easy to enforce on the level of frames if we exploit
additional axioms. However, this changes the logic. We do not know yet how to
enforce the existence of these grids on the level of models.

Summing up, we encounter the following problems when trying to enforce the depicted
grid structures on the level of models:

• We cannot express that each node should have exactly two TPP -successors.
However, this is not a severe problem, since we can enforce that each node must
have at least two different TPP-successors, which would be sufficent for the
encoding.

• Suppose we can distinguish between TPP-successors representing horizontal and
TPP -successors representing vertical successors (we already noted that a distinc-
tion of the successors is possible by using concept names as additional labels for
the sucessors). Let’s call these relations TPP |X and TPP |Y . Then we stil have
the problem that we cannot enforce the conincidence of (TPP |X) ◦ (TPP |Y )
and (TPP |Y ) ◦ (TPP |X). Consider Figure 11. The possible edges between z
and z′ are {PO ,EQ ,TPP ,NTPP ,TPPI ,NTPPI}. Relying on the strong EQ-
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semantics, is there a way to enforce EQ(z, z ′) and thus z = z′, closing the “gap”
between z and z? Even though we can exploit nominals to enforce that z = z ′,
this identification of (TPP |X) ◦ (TPP |Y ) and (TPP |Y ) ◦ (TPP |X) works only
for a finite number of successors, since we can only exploit a finite number of
nominals for this task (the formula encoding the domino problem must be fi-
nite, of course). Adding hybrid logic’s binding operator “↓” ([7, pp. 444]) would
change this immediately, of course. The resulting logic would be undecidable.
So it is very clear to us that any additional DL constructor allowing to en-
force the coincidence of z and z ′ (on the level of models) is making ALCIRCC8

undecidable.

5 Further Issues

In order to shed some light on the remaining problems we charaterize the considered
DLs in the ALCIRCC family as modal logics and try to axiomatize them in a modal
logician’s style.

We pinpoint some other open ideas which have to be investigated more thoroughly
in the future - for example, how can we get restricted variants or fragments of the
ALCIRCC5 and ALCIRCC8 logics which can be shown more easliy to be decidable
and which are still useful in spatial reasoning scenarios? What about finite model
reasoning, which is especially useful in a deductive GIS context? This part is mainly
about open problems and vague ideas, but nevertheless we felt that these ideas were
worthy enough to get conserved in this report.

5.1 ALCIRCC as a Modal Logic?

What can we say about ALCIRCC from a modal logic point of view? What about
axiomatizability? Which insights do we gain by adopting a modal logician’s point
of view on the problems? To investigate what we can exploit from the modal logics
community, we try to axiomatize the considered ALCIRCC family and look what we
gain from that.

In the following we feel free to use standard modal logic notions without introducing
them formally. They can all be found in [7]. First, for the syntax of concepts:

1. The concept names NC correspond to the set of proposition letters Φ of the
modal logic. We will simply assume that Φ =def NC .

2. The role names NR correspond to the different modalities of the modal logic.
Each role name gives rise to one pair of modal operators, e.g. for R ∈ NR we
have the binary modal operators � R and

�
R. ALCIRCC is a multi-modal logic.

3. Using the “Schild translation” ([24]) Φ, we can translate any ALCIRCC concept
C into a modal formula φ(C): φ(CN) =def CN for CN ∈ NC , and φ(¬C) =def
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¬φ(C), φ(C uD) =def φ(C)∧φ(D), φ(C tD) =def φ(C)∨φ(D), φ(∃R.C) =def

� Rφ(C) and φ(∀R.C) =def
�

Rφ(C).

For example, φ(∃PP .C u ∀PP .∃PP .C) = � PP C ∧
�

PP � PP C. However, this is
only a syntactic transformation. Without any additional “frame conditions” on the
interpretations of the roles (which correspond to the accessibility relations in the
Kripke models) we would only get the basic normal multi-modal logic Km. Km is just
a set of formulas, defined axiomatically:

• All instances of propositional tautologies

• (K)
�

R(p→ q)→ (
�

Rp→
�

Rq), for all R ∈ NR

• (Dual) � Rp↔ ¬
�

R¬p, for all R ∈ NR

Note that p and q might be substituted by arbitrary formulas. The set if closed under
uniform substitutions, generalization (given φ, prove

�
Rφ) and applications of modus

ponens. KM is a very weak modal logic, which does not capture the requirements
that we want to impose on the interpretations of the roles. But we can enforce these
so-called frame conditions by adding appropriate frame axioms, exploiting the second-
order concept of frame definability resp. frame validity of axioms. The axioms should
be sound and complete w.r.t. the intended class of frames.

Definition 7 A Kripke frame for a multi-modal logic with NR = {R1, . . . , Rn} is
a tuple F =def< ∆I , RI

1 , . . . , RI
n >. The RI

i are binary relations on ∆I , called
accessibility relations. A Kripke model is a frame F for which we additionally give
interpretations for the concept names: M =def< F , CNI

1 , . . . , CNI
n > (also written

<F , V>, with V being the valuation function). The model M is said to by based on
the frame F .

A formula φ is called satisfiable iff there is a modelM and a point m ∈ ∆I such that
φ evaluates to true at this point, denoted byM,m |= φ. The satisfaction relationship
“|=” is defined as for the DL ALCIRCC . The global satisfiability problem asks for a
model such that the formula is satisfied at all points. Often we are not interested
in arbitrary models, but in models based on certain frames from a class of frames.
This is the relative satisfiability problem (relative to a class of frames). In case of
ALCIRCC, we are not interested in arbitrary satisfiability, but in satisfiability relative
to the class of ALCIRCC frames which satisfy the mentioned frame conditions.

A formula is valid on a certain frame F iff for all models based on the frame F -
this means the models only differ in the interpretations for the concept names - the
formula is globally satisfied. A formula is valid on a class of frames iff it is valid on
all frames in that class. �

Now it happens to be the case that sets of formulas, defined by frame axioms, can
define classes of frames - the set of frames on which the frame axioms are valid.
A sound and complete axiomatization for a class of frames characterizes this class
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utilizing frame axioms such that the set of frames on which the axioms are valid is
exactly the class of wanted frames. In our case, we would like to find a sound and
complete axiomatization for the class of ALCIRCC frames. Can we? We proceed as
follows:

1. If we add, for all R ∈ NR, the axiom schemas p →
�

R � inv(R) p and p →�
inv(R) � R p, we will have the required converse relationships. The schema is

valid exactly on the class of frames where RI = (inv(R)I)−1, for all R ∈ NR.
The schema is know as “multi-modal” (B).

2. If we add, for all S◦T v R1t· · ·tRn according to the appropriate RCC compo-
sition table, the axiom schema � S � T p→ � R1 p∨ · · · ∨ � Rn

p, this axiomatizes
the composition requirements. The schema could be called “generalized K4”.

3. Under the weak EQ semantics, the role EQ could be axiomatized as an “S5-
like” modality; we only have to add the (T)-axiom: p → � EQ p. Note that
� EQ � EQ p→ � EQ p and p→

�
EQ � EQ p have already been added. However,

there is no corresponding axiom schema if we want to employ the strong EQ
semantics.

4. What about disjointness of roles? Unfortunately, disjointness of roles is not
modally definable, i.e., there is no set of axioms to define the class of disjoint
frames that we need. We have left the realm of standard modal logics and will
need an extended modal logic, see below.

5. What about the “one cluster” requirement? The models enforced so far might
have the form of several, separated clusters (due to the “generalized K4” axioms).
It is known that the universal modality R∗ is not modally definable in the basic
modal language, because modal satisfaction is invariant under disjoint union of
models. However, considering satisfaction of formulas only, e.g. of φ at a point
i in a model, we can simply take its generated sub-model around i (effectively
discarding all non-accessible parts from the model) and then use R1 ∨ · · · ∨Rn

as the global modality in the generated sub model (of course, this is no longer
true if we consider ABoxes, etc.). We therefore consider, in the following, only
the class of connected frames, which is, due to the totality of the composition
axioms, equivalent to the class of one cluster frames; in this class, the global
modality is indeed definable as we did here.

What have we achieved so far? The axiomatization is sound and complete w.r.t. a
class of models/frames which satisfy most of the required frame properties: EQ is
interpreted as an equivalence relation, the compositional axioms from the RCC table
are satisfied, as well as the converse relationships. Only the disjointness requirement
is not satisfied. Note that irreflexiveness, SPO- ness of PP I and PPI I are all conse-
quences of the disjointness requirement. Not surprisingly, irreflexiveness isn’t modally
definable as well. One idea might be to take a “pre-model” of φ which does not sat-
isfy the disjointness requirement, and transform it into a “real” model, by performing
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some kind of standard modal logic “model surgery” (filtratation, unwinding, . . . ) in
order to satisfy the outstanding frame conditions. Unfortunately, this doesn’t work,
since φ might be satisfiable in the pre-model, but will have no “real” model at all (see
Subsection 2.1).

In order to axiomatize the remaining problematic frame conditions we use basic hybrid
modal logic. This logic offers nominals which are denoted like proposition letters (e.g.,
i). Nominals are simply names for states and are interpreted as singletons (similar
to ABox individuals). Additionally, basic hybrid modal logic provides the satisfaction
operator, @i. Intuitevely, @iφ means that the state named i in the model must satisfy
φ: M, i |= φ. The following frame axioms would enforce the required missing frame
properties:

1. Disjointness requirement: ∀R ∈ NR : @ i � R j → @ i
∧

S∈NR\R ¬ � S j

2. Strong EQ-semantics: ¬@ i � EQj

3. The “one cluster” requirement:
∨

R∈NR
@ i � Rj

A pure formula is a hybrid formula that does not mention propositional letters. All
given axioms are pure. In [7, pp. 437] it is shown that adding a set of pure axioms to
the basic hybrid modal logic K (which is equipped with an augmented proof system
and additional axioms for the nominals and @ etc. which we do not want to repeat
here) automatically produces a logic which is sound and complete w.r.t. the intended
class of frames. Since we’ve already left K by the addition of the other axioms above,
we need to rewrite the already given axioms as pure formulas as well, which is easy.
We then get the following sound an complete axiomatic system for ALCIRCC:

1. “One cluster”:
∨

R∈NR
@ i � Rj

2. Strong EQ: ¬@ i � EQj

3. Strong EQ: i→ � EQi

4. Disjointness: ∀R ∈ NR : @ i � R j → @ i
∧

S∈NR\R ¬ � S j

5. Converses: ∀R ∈ NR : @ i � R j → @ j � inv(R) i

6. Compositions: for all S ◦ T v R1 t · · · t Rn from the corresponding RCC
composition table, add @ i � S � T j → @ i � R1j ∨ · · · ∨@ i � Rn

j

Unfortunately a sound and complete axiom schema for ALCIRCC does not help us
in establishing decidability, since the logics do not have the finite model property.
However, the axiomatic system is nevertheless a good starting point for future research,
and contributes to a question raised by Cohn in [8] concerning the completeness of
the “RCC8 modal logic” proposed there (however, the logics are only similar, not
identical).
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Figure 12: Part of an infinite model, enforced by a concept term that doesn’t mention
PP and/or PPI: ∃PO.((∃DR.C) u (∀PO.¬C) u (∀DR.¬C)) enforces to chose PPI
from PO ◦ DR v DR t PO t PPI, and DR ◦ PPI v DR. Due to the alternating
labeling of the nodes with C and ¬C and the “determinism” caused by DR ◦ PPI v
DR and ∀DR. . . . there cannot be a finite model (the sceptical reader might try to
construct one anyway, but will not have success).

5.2 Finite Model Reasoning with ALCIRCC5?

If we have such problems showing decidability or undecidability of ALCIRCC5 and
ALCIRCC8 , then might it probably be easier to restrict ourselves to finite model rea-
soning, i.e. impose a semantics where concepts that have only infinite models are
considered as unsatisfiable? This would also be appealing from an application point
of view, since there is not much practical use of concepts that only allow infinite
models, since we want to model real world spatial phenomena on a qualitative level.

Generally speaking, finite model reasoning is not necessarily easier than reasoning
with general models (Trakhtenbrot). However, it may be easier. For example,

• (∃PP.>) u (∀PP.∃PP.>),

• (∃DR.>) u (∀DR.∃PPI.>), and

• (∃DR.∃PO.C) u (∀PO.¬C) u (∀DR.¬C) u
(∀PP.((∃DR.∃PO.C) u (∀PO.¬C) u (∀DR.¬C)))

only have infinite models. All example concepts use the PP- and/or PPI -role. It is
indeed tempting to suspect that the use of PP and/or PPI within universal and/or
existential value restrictions is responsible for spawning the infinite models.
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Unfortunately, this seemingly plausible idea, as formulated in [27], is wrong. There
are indeed concepts that do not even mention PP and/or PPI , but still do not have
finite models. Consider

∃DR.> u
∀DR.( ∃PO.∃DR.C u

∀PO.¬C u
∀DR.¬C).

A (part of an infinite) model of this term is depicted in Figure 12. In every model of
this concept, the PPI edges bridging PO ◦ DR and the DR edges originating from
the root node 0 must be present, as well as the DR ◦ PO ◦DR ◦ PO ◦ . . .-pattern “at
the bottom of the model”.

However, inspecting the models of the concept (all of which are infinite!), we can
somehow still say that PPI is “responsible” for spawning the infinite model, in com-
bination with DR ◦ PPI v DR and ∀DR. . . . Unfortunately, this cannot be detected
on a syntactical level. But there is some hope that a tableau calculus could detect the
enforced presence of PP and/or PPI, e.g. by adding some form of “self introspection”
to the rules of a tableau calculus. However, this has not been worked out yet. We
were experimenting with some kind of “infinity checker” that tried to detect whenever
an infinite structure is enforced by the current tableau expansion history (of course,
this might be undecidable as well).

An infinity checker is somehow similar to a blocking condition. A blocking condition
(see, for example, [16], [17]) is needed for tableau calculi for logics like ALCR+, which
is plain ALC with additional transitively closed roles (see [23]). Suppose that PP
is simply a transitively closed role in ALCR+: then, a naive ALCR+ calculus would
not terminate for concepts like (∃PP.>) u (∀PP.∃PP.>). For the same reason, an
ALCIRCC5 calculus would not terminate - the calculus would try to construct an
infinite number of PP -successor nodes. Generally speaking, the tableau expansion
process can be seen as an attempt to build a finite pseudo-model of the concept under
consideration. In order to prevent the calculus from infinite expansions, the blocking
condition blocks the generation of new PP -successor nodes at same point in the ex-
pansion process. The blocking condition then has to ensure that, whenever it blocks
the expansion of the calculus, that from this so-far constructed finite pseudo-model
a (possibly infinite) model can always be constructed. In the case of ALCR+, even
a finite model can be constructed from the blocked pseudo-model. This is obviously
not the case for ALCIRCC5 and ALCIRCC8 . An infinity checker is in fact a stronger
predicate than a blocking condition - the blocking condition would have to ensure
that whenever it returns TRUE, an infinite model can be constructed. In contrast, the
infinity checker must not know whether the concept under consideration is satisfiable
in the infinite or not. The problem we are trying to solve seems to be related to the
well-foundedness problem in part-whole-reasoning.

Being even more restrictive, we can only consider finite models with a fixed maximal
cardinality, say n. We have already shown that we can enforce “maximal cardinality
reasoning” with nominals, effectively ruling out all models with |∆I | ≥ n for some
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fixed n. If we do so, we will have a decidable DL (for ALCIRCC5 and ALCIRCC8 ).
This is due to the fact that a logic with a sound and complete axiomatization (which
is given above) which also has the finite model property is decidable.

5.3 Restricted Decidable Fragments of ALCIRCC5 and ALCIRCC8?

What else can we do? One possibility is to identify fragments of ALCIRCC5 and/or
ALCIRCC8 whose decidability can easily be shown. For example, a certain syntax-
restriction criterion in the logic ALCRP(D) ([15, 14, 20]) brings back the finite model
property, which was already lost in general unrestricted ALCRP(D), thus ensuring
the decidability of its syntax-restricted variant. A similar syntax-restriction, derived
from restricted ALCRP(D), can also be formulated for ALCIRCC5 and ALCIRCC8 .
Laxly speaking, we would have to reject every ALCIRCC5 - and/or ALCIRCC8 -concept
showing quantifier patterns of the form “∃R. . . . ∀S. . . .” and/or “∀R. . . . ∃S. . . .” in its
negation normal form. Referring to the TBox in our deductive GIS example, we can
then no longer model the concept hamburg as given there. Since hamburg violates the
syntax-restriction criterion which is derived from ALCRP(D), the concept hamburg
could not be modeled in ALCRP(S2) neither. ALCRP(S2) is a specialization of
ALCRP(D), offering a specific concrete domain D = S2 which could be used in a
similar way like ALCIRCC8 to address qualitative spatial reasoning tasks.

An other more-or-less obvious idea of how to get a restricted decidable logic is to allow
only purely boolean concepts within universal value restrictions in its NNFs. That is, if
D is the concept to be tested for satisfiability, then for all ∀R.C ∈ sub(D), C must be a
boolean concept (which means that there is no ∀S.E ∈ sub(C) and no ∃S.E ∈ sub(C)
for any R, E).

However, all kinds of syntax-restrictions make modeling quite hard: first of all, the
syntax-restrictions need to be checked at the level of the NNF of a concept, and the
NNF of a concept can be quite different from the original formulation of that concept.
Inference tasks like computation of subsumption relationships between concepts will
typically be solved by reduction to concept satisfiability: to check whether C v̇D holds
a DL-system would typically check for unsatisfiability of the concept Cu¬D. However,
then not only D, but also ¬D must be syntax restricted, as well as Cu¬D, and so on.
Obviously the syntax restriction criterion must be preserved under negation. Negating
a syntax-restricted concept must again yield a syntax-restricted concept.

In contrast, consider the syntax-restriction which only allows for boolean concepts
as qualifications within universal value restrictions. This criterion is obviously not
preserved under negation. If we want to turn into into a negation-preserved criterion
we would also have to forbid non-boolean concepts within the qualifications of exis-
tential value restrictions as well. But then this gives us exactly the syntax-restriction
criterion which we have already derived from ALCRP(D).

50



6 Summary and Outlook

Summing up, we have made some first steps from the general, previously considered
ALCRA	 , ALCRA and ALCRASG DLs to languages which are more useful for qual-
itative spatial reasoning tasks. However, there are still many open questions which
need to be solved in the future. We’ve already highlighted some open points for future
research in the previous sections.
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