
SAT Planning in Description Logics:

Solving the Classical

“Wolf Goat Cabbage” Riddle

Michael Wessel

2014 – 06 - 30

Wolf – Goat (Sheep) – Cabbage Riddle

A shepherd (= “ferryman” in the

following), wolf, goat, and cabbage

want to cross the river.

The boat only hosts two.

The wolf and goat (sheep?) cannot

be left alone together.

The cabbage and goat cannot be left

alone.

How can they safely cross the river?

Sat Plan

• Is a planning problem

• Reduction of planning to SAT (propositional case)

– SAT (plan /\ start /\ goal /\ actions /\ …) = true

iff

Plan = <step_1 = start, step_2, …, step_n = goal> Plan = <step_1 = start, step_2, …, step_n = goal>

(see Russell & Norvig’s AIMA book for full details)

– Problem: length n of plan unknown (try all…)

– Propositional logic: proliferation of symbols

• Here – more “symbol” efficient reduction to modal logic /
description logics

Logical Signature

• Next is a functional relation (feature)

• Each “logical symbol” can be in 4 different states

– goat-A (goat on A river bank)

– goat-B (goat on B river bank) – goat-B (goat on B river bank)

– goat-on-boat-from-A-to-B

– goat-on-boat-from-B-to-A

Axioms to Constrain Possible Worlds

• Need axioms that describe the possible next states

Successor State Axioms

• If the boat is on riverbank A, the next it is

going from A to B

• If the boat is going from A to B, then next it is

on riverbank B, etc.on riverbank B, etc.

(implies boat-a
(all next boat-from-a-to-b))

(implies boat-from-a-to-b
(all next boat-b))

(implies boat-b
(all next boat-from-b-to-a))

(implies boat-from-b-to-a
(all next boat-a))

∀∀∀∀x : boat-from-a-to-b�x�	⇒	

∀∀∀∀y : next�x,	y�	⇒	boat-b(y)

KRSS Syntax

Some More Constraints

• If the boat is going from A to B, then

– the boat cannot go alone (the ferryman has to go with it)

– It should not go with only the ferryman – however, it can

go back from B to A with only the ferryman!

– the boat has capacity for ferryman and one other object– the boat has capacity for ferryman and one other object

(implies boat-from-a-to-b
(and ferryman-boat-from-a-to-b

(or cabbage-boat-from-a-to-b
wolf-boat-from-a-to-b
goat-boat-from-a-to-b)

(not (and cabbage-boat-from-a-to-b
wolf-boat-from-a-to-b))

(not (and cabbage-boat-from-a-to-b
goat-boat-from-a-to-b))

(not (and wolf-boat-from-a-to-b
goat-boat-from-a-to-b))))

∀∀∀∀x : boat-from-a-to-b�x�	⇒	

ferryman-boat-from-a-to-b�x�		∧

(cabbage-boat-from-a-to-b(x) ˅

wolf-boat-from-a-to-b(x) ˅

goat-boat-from-a-to-b(x)) ∧	

~ (cabbage-boat-from-a-to-b�x�	∧		

wolf-boat-from-a-to-b�x�	�	∧	

~ (cabbage-boat-from-a-to-b�x�	∧		

goat-boat-from-a-to-b�x�	�	∧	

~ (wolf-boat-from-a-to-b�x�	∧		

goat-boat-from-a-to-b(x))

Further Axioms

• Ensure cabbage and goat, and wolf and goat, are not alone

• Ensure every object can only be at one place at a time

• Make sure objects don’t disappear – every “state” specifies

that goat, boat, etc. exists “somewhere”

(implies (and wolf-a goat-a) ferryman-a)
(implies (and wolf-b goat-b) ferryman-b)

(implies (and cabbage-a goat-a) ferryman-a)
(implies (and cabbage-b goat-b) ferryman-b)

(disjoint goat-a goat-b goat-boat-from-a-to-b goat- boat-from-b-to-a)

(implies goat
(or goat-a goat-b goat-boat-from-a-to-b goat-boat-f rom-b-to-a))

States, Start, Goal

• Every state is either a goal or has some next state

• Every state specifies the state of all objects

• Start state = all objects on riverbank A

• Goal state = all objects on riverbank B • Goal state = all objects on riverbank B

(implies goat
(or goat-a goat-b goat-boat-from-a-to-b goat-boat-f rom-b-to-a))

(implies state
(and (or goal (some next state))

goat wolf cabbage ferryman boat))

(implies start
(and state boat-a goat-a wolf-a cabbage-a ferryman- a))

(implies goal
(and state boat-b goat-b wolf-b cabbage-b ferryman- b))

KRSS Syntax

(and start
(some next

(some next
(some next

Verifying a “Solution”

• Check satisfiability of formula

…
(some next goal))))

• There is a solution for n = 14
– and also a surprising one

– however, we need an ABox to read off the solution!

Create ABox to Read off

Entailed Individual Types via Abox Query
(instance s1 start)
(related s1 s2 next)
(related s2 s3 next)
(related s3 s4 next)

…
(related s13 s14 next)
(related s14 s15 next)
(instance s15 goal)

? (retrieve (?x (types ?x)) (?x state))? (retrieve (?x (types ?x)) (?x state))
> (((?X S1) ((BOAT-A) (CABBAGE-A) (FERRYMAN-A) (GOAT-A) (START) (WOLF-A)))

((?X S2) ((BOAT-FROM-A-TO-B FERRYMAN-BOAT-FROM-A-TO-B) (CABBAGE-A) (GOAT-BOAT-FROM-A-TO-B)
(WOLF-A)))

((?X S3) ((BOAT-B) (CABBAGE-A) (FERRYMAN-B) (GOAT-B) (WOLF-A)))
((?X S4) ((BOAT-FROM-B-TO-A FERRYMAN-BOAT-FROM-B-TO-A) (CABBAGE-A) (GOAT-B) (WOLF-A)))
((?X S5) ((BOAT-A) (CABBAGE-A) (FERRYMAN-A) (GOAT-B) (WOLF-A)))
((?X S6) ((BOAT-FROM-A-TO-B FERRYMAN-BOAT-FROM-A-TO-B) (GOAT-B)))
((?X S7) ((BOAT-B) (FERRYMAN-B) (GOAT-B)))
((?X S8) ((BOAT-FROM-B-TO-A FERRYMAN-BOAT-FROM-B-TO-A) (GOAT-BOAT-FROM-B-TO-A)))
((?X S9) ((BOAT-A) (FERRYMAN-A) (GOAT-A)))
((?X S10) ((BOAT-FROM-A-TO-B FERRYMAN-BOAT-FROM-A-TO-B) (GOAT-A)))
((?X S11) ((BOAT-B) (CABBAGE-B) (FERRYMAN-B) (GOAT-A) (WOLF-B)))
((?X S12) ((BOAT-FROM-B-TO-A FERRYMAN-BOAT-FROM-B-TO-A) (CABBAGE-B) (GOAT-A) (WOLF-B)))
((?X S13) ((BOAT-A) (CABBAGE-B) (FERRYMAN-A) (GOAT-A) (WOLF-B)))
((?X S14) ((BOAT-FROM-A-TO-B FERRYMAN-BOAT-FROM-A-TO-B) (CABBAGE-B) (GOAT-BOAT-FROM-A-TO-B)

(WOLF-B)))
((?X S15) ((BOAT-B) (CABBAGE-B) (FERRYMAN-B) (GOAL) (GOAT-B) (WOLF-B)))

Two Possible Solutions!
? (retrieve (?x (types ?x)) (?x state))
> (((?X S1) ((BOAT-A) (CABBAGE-A) (FERRYMAN-A) (GOAT-A) (START) (WOLF-A)))

((?X S2) ((BOAT-FROM-A-TO-B FERRYMAN-BOAT-FROM-A-TO-B) (CABBAGE-A) (GOAT-BOAT-FROM-A-TO-B)
(WOLF-A)))

((?X S3) ((BOAT-B) (CABBAGE-A) (FERRYMAN-B) (GOAT-B) (WOLF-A)))
((?X S4) ((BOAT-FROM-B-TO-A FERRYMAN-BOAT-FROM-B-TO-A) (CABBAGE-A) (GOAT-B) (WOLF-A)))
((?X S5) ((BOAT-A) (CABBAGE-A) (FERRYMAN-A) (GOAT-B) (WOLF-A)))

((?X S6) ((CABBAGE- BOAT- FROM- A- TO- B) …) ((?X S6) ((WOLF- BOAT- FROM- A- TO- B) …)

((?X S11) ((BOAT-B) (CABBAGE-B) (FERRYMAN-B) (GOAT-A) (WOLF-B)))
((?X S12) ((BOAT-FROM-B-TO-A FERRYMAN-BOAT-FROM-B-TO-A) (CABBAGE-B) (GOAT-A) (WOLF-B)))
((?X S13) ((BOAT-A) (CABBAGE-B) (FERRYMAN-A) (GOAT-A) (WOLF-B)))
((?X S14) ((BOAT-FROM-A-TO-B FERRYMAN-BOAT-FROM-A-TO-B) (CABBAGE-B) (GOAT-BOAT-FROM-A-TO-B)

(WOLF-B)))
((?X S15) ((BOAT-B) (CABBAGE-B) (FERRYMAN-B) (GOAL) (GOAT-B) (WOLF-B)))

((?X S6) ((CABBAGE- BOAT- FROM- A- TO- B) …)
((?X S7) ((CABBAGE-B) (GOAT-B) …)
((?X S8) ((GOAT-BOAT-FROM-B-TO-A) …)
((?X S9) ((FERRYMAN-A) …)
((?X S10) ((WOLF-BOAT-FROM-A-TO-B) …)

((?X S6) ((WOLF- BOAT- FROM- A- TO- B) …)
((?X S7) ((WOLF-B) (GOAT-B) …)
((?X S8) ((GOAT-BOAT-FROM-B-TO-A) …)
((?X S9) ((FERRYMAN-A) …)
((?X S10) ((CABBAGE-BOAT-FROM-A-TO-B) …)

The Official Solution

Racer via JRacer API

Load wzk-via-Load wzk-via-

porter.racer

User this button

Change options as

shown here…

computation of graph

takes about 5 seconds

User this button

to get all types

on a node

