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Abstract

A description logic (DL) is a knowledge representation falism which may provide interesting
inference services for diverse application areas. Thisapdjpst gives an overview of the benefits
which a DL may provide for Computer Vision. The main body efthper presents recent work at
Hamburg University on extending DLs to handle spatial rewsg and default reasoning.

1: Why is Description Logic Interesting for Computer Vision?

This contribution discusses the merits of descriptiondsdiDLs) for Computer Vision (CV)
and reports about some recent work on DL extensions at Hanimirversity. Our goal is to make
DLs more useful for diverse applications, in particulars@@volving concrete real-life phenomena
which play a part in diagnosis, configuration and — last nastle- in CV. This work extends results
previously published in [9].

DL is the family name of object-based knowledge-represiemiaformalisms in the spirit of
KL-ONE which have been introduced 20 years ago [4] with thénmparpose of providing formal
semantics for semantic nets, thus providing the logicahdlations for knowledge-based inferences.
A particular DL typically realizes a particular subset ofgiOrder Predicate Logic (FOPL). Much
of the research on DLs has dealt with decidability and corityleoroperties depending on the
expressiveness of the language. Different from a full FORIverx, the goal is generally that a DL
system should provide decidable inference services.

Typical inference services offered by a DL system are

e subsumption check,
e consistency check,
e classification,

e abstraction.

These services can be applied to the conceptual descsptioa terminological knowledge base
(TBox) and may provide obvious advantages regarding thetamtion and maintenance of large
knowledge bases. In particular, automatic classificatioroacept terms allows for the semantic-
based construction of concept hierarchies (taxonomies).

For the representation of factual knowledge, a DL systeruiges facilities for the declaration
of knowledge about individual objects in the assertionahidedge base (ABox), which refers to a
TBox. With an ABox it is possible to express conceptual proee of instances, for example, of
the contents of a particular scene. Furthermore, relati@tseen individuals are described. The



TBox background knowledge determines what can be infenad the explicit declarations in an
ABox. For example, an ABox object can be shown to be an instaficertain TBox concepts
(instance checking inference service). In addition, thetmost specific concept names of which
an individual is an instance can be computed (this procesmigtimes called object classification).

For CV researchers who are primarily interested in geomatnd photometric aspects of a CV
problem, formal knowledge representation may seem a diipit, relevant mainly for symbolic
processing in high-level vision tasks. We will argue in thidwing that formal knowledge repre-
sentation and, in particular, DLs may play a more signifigeant for vision systems than commonly
recognized.

Standardized services: From a very general point of view, a DL is attractive not so mbe-
cause of object-based declarative knowledge represemtéhis is also possible with other tools)
but rather because of the standardized services which afalzle to a system developer. It will
be a significant economical advantage if provably correct remisable software components can
be used instead of complex application-dependent softviFameexample, one could use the object
classifier of a DL instead of programming an object recogniprocedure. At this stage, we are still
at the beginning of exploring the potential of DL servicesdpecific tasks, including image inter-
pretation. But the goal is to express knowledge-based tpesaof a vision system by standardized
inference procedures.

Pattern classification: One way of using a DL for image interpretation is to employ bie
classifier for pattern classification tasks. This has beessiigated in [10] for change detection in
aerial image sequences. The idea is to conceptually defigeas (in this case types of changes) in
terms of sufficient conditions which must be fulfilled by inesfgatures. Given image features, a DL
classifier can then automatically deduce which classes.agy discussed in [10], this approach
does not permit a hypothesize-and-test control which isspahsable for complex vision tasks.
On the other hand, DL classifiers guarantee soundness, etanpss and termination and can be
obtained off-the-shelves, providing considerable safévwengineering benefits.

The logics of understanding images: Several researchers have tried to clarify the underlying
logics of an image interpretation task. This is an importastie in view of the difficulties of our
field to establish a consensus about the expected resuligesfumance of vision systems. In a
recent dissertation [11] a DL has been used to provide theledge-representation framework for
model-construction (in the logical sense) which has beentified as the formal task underlying
image interpretation. While this work does not provide thsib for an immediate implementation,
it identifies several functional building blocks of a visisystem at the logical level. The work also
contains interesting evaluations of existing image imegiion formalisms and points out several
deficiencies.

Interfacing to knowledge bases: Vision is often part of more complex tasks, where symbolic
knowledge-representation is indispensable. For exanaptebot may involve vision in planning
and plan execution, based on beliefs, desires and intentiohis knowledge base. There is ob-
viously the need to interface vision with other Al comporserand it is interesting to look at the
requirements for this interface. First, one must notice féogtual knowledge (encoded in the ABox
of a knowledge base) often provides the situational coritextision. Hence ABox reasoning is an
important facility, for example, checking vision results tonsistency with contextual knowledge.



Second, in order to support hypothesize-and-test prosedse vision system, the representation
system should provide more services than a simple askehiditerface. In particular, it must be
possible to generate expectations which restrict andifizipossible hypotheses. One approach
we pursue is to generate expectations using default reagohnportant foundations for defaults
in DLs are due to [2]. Another approach is to extend DLs witblyabilities so that “soft” classi-
fications and ordered hypotheses can be supported [7]. Bllisbia hypothesis generation would
certainly meet important requirements from the CV side. f@mdther hand, central notions of
formal knowledge representation, e.g. consistency, losie traditional meaning.

Dealing with space and time: The generality and application-independence of symboligcl
formalisms is an advantage with respect to validity andabiliy, but may be a severe impediment
when domain-specific properties and laws must be exploited fask. One of the most interesting
extensions of DLs has been the incorporation of “concretealos” [1]. Under certain conditions,
objects and relations of a concrete domain (e.g. real nusnbeings, polygons) can be built into a
DL so that knowledge representation and reasoning can berped with other than purely sym-
bolic objects. For several application areas includingowig is important to reason about space and
time. In particular in high-level vision, many interestingncepts can be described as spatial and
temporal aggregates of objects. For example, an overtadk@ ean be described conceptually as
an aggregate of individual object motions which are temhoead spatially related. The construc-
tion of a recognition system for overtake occurrences ahdrapatiotemporal aggregates could be
facilitated considerably if consistency checks and otleevises could be extended to incorporate
spatial and temporal theories.

In the following sections we present recent work at Hambungvérsity on extending DLs in
the spirit described above. In particular, we investigagsoning about spatial information with
the DLALCRP(S,) whereS, denotes a particular concrete domain which is used to moget t
logical relations. We show that the inbuilt topological geaing power of this DL can be used to
control default reasoning, for example for hypothesis gaien. While this may be only a modest
advance on the way to a full-fledged DL-based vision systeapresent the work in some detail to
demonstrate some of the problems and subtleties with winethas to deal when extending DLs.

2: Description Logics

In order to demonstrate modeling with description logicg, bviefly discuss some examples.
Let manbe a concept. Then the concepan M Joffspringhumandescribes all men which are
related to at least one human via the offspring role (existequantification). Thus, the concept
term given above could have been nanfigither with the terminological axionfather = man M
Joffspringhuman

It can be seen as a limitation that standard descriptiow$ogan only handle abstract knowledge.
Imagine that we want to represent the ages of humans as inatuméers. This cannot be done in
most description logics. There are, however, some DL fasma which overcome this limitation
and are able to additionally represent knowledge aboutiBeecconcrete objects such as numbers
and polygons. One important formalism of this type is thgyleageALC(D) defined by [1]. With
this language, one could define an old persotm@®an M dage. >g9. Here,ageis a single-
valued role (those roles are called features). The feaiyeattaches concrete objects that represent
natural numbers to abstract objects (in this case of twomar. The extension of the above-
mentioned concept term is “All humans who are older than &0s/é The example demonstrates



that defining concept terms based on predicates over cenuiggcts (e.g.%¢0") greatly extends
the expressiveness of the knowledge representation fizmmal

The languaged LCRP(D) defined in [8] goes one step further. It also allows one to dafites
based on predicates over concrete objects. Like in4li€ (D) example above, predicates over
concrete objects that are attached to abstract objecteaiares can be seen as properties of these
abstract objects. Take again humans and their ages as aiplexarhe age is a property of each
object which is of typehuman(it is a concrete object attached via thge feature). Assume that
we would like to define the conceptdest-person The extension of this concept does not have a
cardinality greater than one unless there are some peojté Wave the same age. WCCRP(D),
one could use the tertmuman M —3older.human whereolder is a defined role whose extension
is the set of those pairs of objedis, b) such that the natural number attached to objedia the
featureageis greater then the natural number attached to obje@ the same feature. Thus, only
those objects of typbumanare inside the extension of the concept for which no othegailgxists
that is older and also of tydeuman An equivalent formalization that takes all domain objeots
account cannot be expressed usgC(D).

ALCRP(D) is a very powerful language for reasoning about abstractcamtrete knowl-
edge. Like ALC(D) it can be parameterized with a concrete domain, which istaofseon-
crete objects plus a set of predicates over these concrggetb Unfortunately, reasoning in
ALCRP(D) is undecidable in general as proven in [8]. In [5] syntacéstrictions to be posed
on ALCRP(D)-terminologies are introduced. It is shown that w.r.t. hes-called restricted ter-
minologies sound and complete algorithms for deciding throon reasoning problems exist.
Decidability is achieved by restricting the free combitigpiof operators in restricted terminolo-
gies. Some combinations of value and exists restrictiorsnat allowed if they quantify over
defined roles. Furthermore, the use of the concept formiedigate operator known frord LC (D)
has to be restricted, too. These restrictions are solelyvatet by decidability issues. From the
knowledge engineer’s point of view they are relatively str@onstraints on the possible structure
of concept terms. Another approach for defining a decidaetsion of ACCRP (D) would have
been to pose limitations on the allowed set of predicatescdma be used with concept- and role-
forming operators. But this seems to be less promising Isecthe intended areas of application,
representing time and space, already require fairly compiedicates which presumably cause
undecidability of the resulting language.

In the following we define the syntax of role and concept tetmglLCRP (D). The formal
semantics is given in [6].

Definition 1 Let R andF be disjoint sets of role and feature names, respectively.bFavity we
also use the terms roles and features. Any elemeRtwof is anatomicrole term. A composition
of features (writterf,f,- - - ) is called a feature chain. A simple feature can be viewedfaatare
chain of length 1. IfP is a predicate nhame froi, with arity n + m anduy, ... ,u, as well ass,
...V, are feature chains, then the expressiom, ..., u,)(v1, ..., Vy).P (role-forming predicate
restriction) is acomplexrole term. LetSbe a role name and I@tbe a role term. TheB =T is a
terminological axiom

Definition 2 Let C be a set of concept names which is disjoinR@andF. Any element ofC is a
concept ternfatomicconcept term). IfC andD are concept term®&is a role termP is a predicate
name fromsS, with arity n, anduy, ... ,u, are feature chains, then the following expressions are
also concept termsC M D (conjunction), C U D (disjunctior), —=C (negatior), 3R.C (exists
restriction), VR.C (value restriction, and3duy, ..., u,.P (predicate exists restrictign
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Figure 1. Elementary relations between two regions A and B.

For all kinds of exists and value restrictions, the role temnthe list of feature chains may be
written in parentheses. Létbe a concept name and Btbe a concept term. Theh= D (equiv-
alence) andA C D (implication) are terminological axioms as well. A finitet & terminological
axioms7 is aterminologyor TBoxif no concept or role name ifi appears more than once on the
left hand side of a definition and, furthermore, if no cyclefiditions are present.

ALCRP(S,) is the description logic resulting from the instantiationtloe description logic
ALCRP(D) with the concrete domai? = S, (see [5, 6]).

Definition 3 The concrete domais, is defined w.r.t. the topological spac&?, 28*). The domain
As, contains all non-empty, regular closed subset®dfvhich are calledegionsfor short. The
set of predicate names is defined as follows:

e A unary concrete_domain_top predicateis-region with is-region®> = A, and its negation
is-no-region With is-no-region2 = ().

e The 8 basic predicated, ec, po, tpp, ntpp, tppi, ntppi andeq correspond to the RCC-8
relations (Figure 1). Due to space restrictions we would li& refer to [6] for a formal
definition of the semantics.

¢ In order to name disjunctions of base relations, we neediaddl predicates. Unigue names
for these “disjunction predicates” are enforced by impgshe following canonical order on
the basic predicate names, ec, po, tpp, ntpp, tppi, ntppi, eq. Thetppi relation (tppi) is
the inverse of thepp (resp. ntppi) relation; all others are symmetrical. For each sequence
p1,--.,Ppn Of basic predicates in canonical order £ 2), an additional predicate of arity 2
is defined. The predicate has the nape- - - -p, and we haver;,r3) € pi-----p,2 iff
(r1,m9) € p152 or... or (ry,r2) € paS2. The predicatelc-ec-po-tpp-ntpp-tppi-ntppi-eq is
also calledspatially-related.

e A binary predicaténconsistent-relation with inconsistent-relation®> = §) is the negation of
spatially-related.

3: Terminological Default Reasoning

In the following we investigate a Reiter-based approackrminological default reasoning about
spatial information. Originally, a default rule has thenfor

a: i, B2 -5 B0
Y
(also writtena : (31, 52,...,06, / ), Wherea, 3; and~y are FOPL formulae.« is called the

preconditionof the rule, thes; terms are callequstifications,and~y is theconsequentintuitively



the idea behind default reasoning is the following: stgrtivith a world descriptiom4d of what is
known to be true, default rules can be applied such that thggnantA by default rule conclusions
~ to yield aset of beliefs.A default can be applied, i.e. its conclusigrcan be added to the set
of current beliefs iffa is entailed by this set, each formubais consistent with the current set of
beliefs andy is not already entailed.

Defaults may interact and depending on the set of defadsroéing applied, different “possible
worlds” or hypotheses can be computed. These possible svarkireferred to asxtensiongsee
below for a formal definition). Depending on the reasoningdentheconsequence problefior
terminological default theories is to decide whether a miassertional axiom is member of all
extensions (skeptical mode) or of at least one extensi@uous mode).

Using description logiconcept termg default rules instead of first-order or propositionaliéog
formulae has been extensively considered in [2}teAninological default theoris a pair(A, D)
whereA is an ABox, andD is a finite set oterminologicaldefault rules whose preconditions, justi-
fications and consequents are concept terms. Because tteroep correspond to unary predicates
ranging over a free variable, these defaults are callgehdefaults. In contrast;loseddefaults
do not contain any free variables. Unlike Reiter’s origipabposal, the approach of [2] applies
defaults only to those individuals that are explicitly mened in the world description (ABox).
Default rules are never applied to implicit individualsroduced byd-restrictions. With this kind
of semantics the consequence problem(fby D) is decidable (see [2] for details). Closed default
rules can be obtained by instantiating the free variableercbncept expressions with all explicitly
mentioned ABox individuals (see [2] for a formal definitiorfhus, for closed defaults;, 5; and
~ areconcept membership assertid#sBox concept axioms).

Once we have a closed default theory, a set of consequenseaslof theory is referred to as an
extensiorwhich is a set of deductively closed formulae defined by a fp@dt construction. In the
case of terminological default reasoning about spatiarinftion it is also interesting to conclude
spatial relations by default. Therefore, we extended theageh presented in [2] to be able to deal
with role assertions in default rules. This can be achieweallowing ALCRP(S,) ABoxesnside
the default rules a&, 5; and~. Before discussing the computation of extensions of suoked
default theories, we first consider some examples of usifaple in the context of terminological
reasoning about spatial information.

4: Examples for Spatioterminological Default Reasoning

We will now illustrate the use of a DL with integrated topoilog) reasoning for an example
which could be part of an aerial image interpretation tagdie iiea is to use defaults for hypothesis
generation regarding the classification of areas in an image default reasoning component of
the DL will generate extensions of the ABox representingdtlypsized classifications which are
consistent with the rest of the knowledge base. The consigteheck involves spatial reasoning.
Additionally, also spatial relationships between areaddcbe hypothesized, for example, in case
of partial object occlusions (see below).

4.1: Example 1
Suppose we have incomplete knowledge regarding the ctzgsifn of the objech in Figure 2(a).

We already know that is a country, but arekis only known to be an area. The image interpretation
system may want to generate possible hypotheses-fdrcould be a city (Figure 2(b)), but could
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Figure 2. Generation of hypotheses for object B.

also be a lake (Figure 2(c)), both plausible hypotheses. vitre size of ared. Obviously, these
different hypotheses are disjoint, sineeannot be both a city and a lake. Other hypotheses are
not generated although these might be plausible at first.slghparticular, since we require that
countries are always disjoint (relatiaft) or touching (relatiorec), the system deduces that the
hypothesis shown in Figure 2(d) should not be generated.

4.1.1: Formalizing the Example

Using ALCRP(S,)’s role-forming predicate-based operator, we define a sebwoiplex roles
according to the mentioned RCCS8 predicates:

inside = 3J(has_area)(has_area).tpp-ntpp
contains = J(has_area)(has_area).tppi-ntppi
overlaps = 3J(has_area)(has_area).po
touches = 3(has_area)(has_area).ec
disjoint = 3(has_area)(has_area).dc

The following definitions of concepts are required to moaghdin objects representing different
kinds of regions in a TBox which satisfies tleCCRP (D) restrictedness criteria. This conceptual
background knowledge also applies to the subsequent ezampl

area
natural_region
country_region

J(has_area).is-region
—administrative_region
administrative_region I
large_scale Marea
administrative_region I
=large_scale M area
natural_region M area
natural_region M area

-1

I

city_region

lake_region C
river_region C
An area is a two-dimensional region with some extent. Furthermuare distinguish between
administrative_regions andnatural_regions which are disjoint concepts. The difference be-

tween acountry_region and acity_region is that the former isarge_scale, but the latter is not.



Thus, these two concepts are disjoint as well. The interttiglnind the other concepts should be
obvious.

country = country_region I
Vcontains.—country_region I
Yoverlaps.—country_region
Vinside.—~country_region

cty = city_region 1

Jinside.country_region

lake_region

river_region I

Yoverlaps.—lake_region I

Veontains. L M

Vinside.~lake_region

lake

river

[~ 17

A country is a country_region that can never contain or be contained within other
country_regions. Also, countries never overlap othetountry regions. Eachcity must be-
long to a specificountry, i.e. must lie within acountry. Unfortunately, we cannot write this
directly asdinside.country because the unfolded resulting term is no longer restricé&al we
have to use the somewhat weaker version with the base coaegptry_region. In our world
model acity must be inside aountry. For ariver we require that it nevesverlaps or isinside
with alake_region.

river_flowing_into_a_lake = river N Jtouches.lake_region

A river_flowing_into_a_lake is a specificriver thattouches alake_region (recall that the
RCC-8 relations:c andpo and alscec andntpp-tpp are disjoint). It would be reasonable to also
state that cities do not overlap other cities etc., but thignored here for the sake of brevity.

We have seen thad LCRP(S,,) provides the necessary expressiveness to model domairtobje
in our geographic information system scenario. In [6] mow@eples for the use ALCRP (D) are
given, which also demonstrate the influence of spatial reagoon TBox reasoning (subsumption
of concepts).

Formalizing hypothesis generation in the way we alreadgusised informally, we now consider
the following spatioterminologicadefault rulesd;, do andds:

area : city area : lake area : country
city lake country

Suppose we have an ABox according to our world descripticghas/n in Figure 2(a):
{a : country,b : area, (a,b) : contains, (b,a) : inside}

Closing defaults, i.e. instantiating the defauli{sds, ds over the ABox individuals: andb yields 6
different closed defaults. Now, let us assumes and~ have been replaced by the corresponding
assertional axiomge.g. instantiating the defaultrea : city / city with the individuala yields

the closed default rulga : area} : {a : city} / {a : city} — expressions like : city are
called assertional axioms or ABox axioms). We use the rmtatj(ind) to refer to a default that

is instantiated with the individuahd. Given our 6 closed default rules let us examine the status of
each:



@ city ?

a : country a:country c:country region

Can B be a city? No!

Figure 3. Subtle inferences due to topological constraints.

e Defaultd;(a) cannot be applied because adding city to the ABox yields a contradic-
tion with a : country. The conceptgountry_region andcity_region are disjoint (due to
large_scale and—large_scale).

e Defaultd; (b) can be applied. We get an augmented ABo¥grtension 1see Figure 2(b):
{a : country,b : area,b : city, (a,b) : contains, (b,a) : inside}

e Defaultds(a) cannot be applied because addinglake to the ABox yields a contradiction
with a : country. A country is anadministrative_region and alake is defined as a
natural_region, and both are disjoint concepts.

e Defaultds(b) can be applied. Thus, we can get an augmented ABdxxtension 2 see
Figure 2(c):

{a: country,b : area,b : lake, (a,b) : contains, (b,a) : inside}

However, if we have an ABox already augmented by the cormtusi defaultd, (b), b : city,
we cannot applylz(b). So, only one ofd; (b) or d2(b) can be applied, resulting in two
differentextensions.

e Defaultds(a) cannot be applied, because its conclusion is already edthy the ABox.

e Defaultds(b) cannot be applied even if no other default has been applitaiebeAdding
the default's consequent: country would yield an inconsistent ABox becausés already
known to be acountry and so, among others,: VYcontains.—country_region holds. Be-
cause(a, b) : contains holds and : country would imply b : country_region, the default
cannot be applied. Thus, we cannot get an extension comdimpto the wrong interpreta-
tion in Figure 2(d).

4.2: Example 2

Another subtle inference can be demonstrated by showingthieadefaultd; (b) (as defined
above) cannot be applied to conclude that objéntFigure 3 is acity. Figure 3 corresponds to the
ABox or world description

{a : country,b : area, (a,b) : overlaps, (b,a) : overlaps}

Trying to asserb : city would result in a constraint : city_region M Jinside.country_region.
Therefore, polygor cannot be the appropriateuntry_region becauséb, a) : overlaps holds.
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Figure 4. Incomplete spatial information.

Due to the exists restriction there exists an implicit ingdidal ¢ which is acountry_region such
that (b, ¢) : inside holds. As can be seen in Figure 3, there is no way to find a $patengement
such thab is insidec andc does not overlap with or does not contain. Because: is acountry
and, therefore, may not overlap or may not be contained ithencountry_region, there is no
way to conclude that could possibly be aity.

4.3: Example 3

As already mentioned, terminological default rules like tmes used in the previous examples
have already been exploited by Baader & Hollunder (but nainiimage interpretation context).

Let us consider Figure 4. In this case, we only hmmemplete spatial information.r.t. to the
topological relationship betweerand!, because a cloud occludes relevant parts of the two objects.
The corresponding ABox is

{l: lake,r : river}

Since we already know thats a lake and- is a river (perhaps this is also a hypothesis generated by
previous default rule applications), we can conclude framaonceptual background knowledge
that the spatial relationship between the river and thetaltst be eitheec (touches) oric (discon-
nected or disjoint). There are no other possibilities,, @giver never overlaps a lake and is never
contained within a lake. We can therefore hypothesize thesegossible spatial relationships by
default rule applications. This shows that not only cona@ptlass memberships can be deduced
by defaults. The important insight is the following dualit/e can either use spatial relations be-
tween object pairs to conclude their concept membershipgeaan use already known concept
memberships to conclude particular spatial relations betwobjects.

Unfortunately, relationship conclusions cannot be exqardsvith the terminological default rules
introduced so far, because 5; and~y are limited toconcept expressionsThis shows why we
extended the terminological default rules introduced inbj2 permitting so-calledABox patterns
instead of concept expressions for 3; and~y ([9]). ABox patterns are basically ABoxes with
placeholders for individuals (written with capital le®r Closing the default rules instantiates the
patterns with all possible combinations of individualsigieg closed defaults whose, 5; and~y
are ACCRP(S,) ABoxes:

~ {X tlake,Y :river} : {(X,Y) : disjoint}
B {(X,Y) : disjoint}

dy

_ {X :lake,Y :river} : {(X,Y) : touches}

ds {(X,Y) : touches}




Closing the patterns, i.e. instantiatidg Y over the ABoxA = {l : lake,r : river} would
yield eight different closed defaults whose; andy are ACCRP(S,) ABoxes, e.g. instantiating
dy with X « [, Y « r yields the closed default rule

{l:lake,r : river} : {(l,r) : disjoint}
{(l,7) : disjoint}
Additionally, as well as allowing variables such &sandY’, one might also be able to refer to
specific ABox individuals in the ABox patterns (for instantge individual “Bodensee”).

4.3.1: Default Reasoning with Specificity

Let us consider the world description
A = {r: river_flowing_into_a_lake,l : lake}

Since it is already known thatis really ariver_flowing_into_a_lake and not only ariver, we
would like to conclude that the lakein A should bethe lake. That is, the complex role assertion
(I,7) : touches should be added:

_ {X :lake,Y : river_flowing-into_a_lake} : {(X,Y): touches}
N {(X,Y) : touches}

In the case oflg, we would like to render the application @f andds invalid, because they are
“less specific” thanlg (even ifds yields the same conclusiotuches).

A default d, is said to be more specific thafy, d, < dp iff (a(d,) E a(dy)) A (a(dy)
a(dg)) wherea(d) denotes the precondition of the defadlt Algorithms for computing the so-
called S-extensiongS for specificity) have already been developed by Baader arihtizr [3].
There is a strong conjecture that these algorithms can bieedpp our ACCRP(S,) context as
well. In contrast, the ordinary extensions are cale@xtensiongR for Reiter). In our example,
we would get two different R-extensions, but only one S-esi@n containing the ABox axiom
(r,1) : touches. The othelR-extensiorcontaining(r, ) : disjoint could not be derived, since only
the most specific active defaults are applied when comp@&hegtensions. This would render the
application ofd, andds impossible becausg; is also active and more specific than bdirandds.

This concludes the illustrating examples. We have shownhdiamdardized reasoning services
of a DL can be used to generate hypotheses consistent withvlieable knowledge. This is, of
course, only one of several building blocks required forgmanterpretation. Questions regarding
the ordering of extensions, the verification of possibleesions with additional evidence, the in-
corporation of metric information a.o. have not been treated in many cases cannot be answered.
Below the line, however, we hope that the value of inferemreises has been demonstrated.

In the next section we will show that tlmnsequence problem decidable for terminological
default theories with default rules containidgCCRP(S,) ABoxes. Since we can always obtain
ordinary ABoxes from our ABox patterns by closing them, tbasequence problem is decidable
for defaults with ABox patterns as well.

de

5: Computing Extensions

Intuitively, given a closed terminological default thedry, D) a deductively closed set of con-
sequences of such a theory is referred to asx@nsion As usual, the exact definition is given by
a fixpoint construction. We cite a formal definition takennfr2]. 7'/ (I") stands for the deductive
closure of a set of formulaE. In a description logic context is an ABox.



Definition 4 Let E be a set of closed formulae afd, D) be a closed default theory. We define
Ey:=Aandforalli >0

Ei+1 = F; U {’Y ‘ (07 51,...,[3”/"}/ eD,ac€ Th(Ei),—\ﬂl,...,_\ﬂn gé Th(E)}

Then,Th(E) is an extension ofA, D) iff
Th(E) = | J Th(E;)
1=0

Note that, in principle, this definition for an extensi@rk(£) has a non-constructive nature
because in the definition the deductive closiifg F) is already used in each iteration step. Never-
theless, as we will see below, the definition induces an glgorfor actually computing extensions
if the implicit entailment subproblems in the definition aecidable (see also [2]).

In order to be able to infer spatial relations between donobijects, the basic terminological
default reasoning approach described in [2] is adapted.b@kie idea is that the precondition, the
justifications and the consequent of a default can be ABoxes.

Definition 5 A spatioterminological default ruld (or spatioterminological default for short) has
the foormd = a : 31...5, / v wherea, 3; andy are consistent and restrictediCCRP(S,)
ABoxes which may, among others, contain predicate-baséd axioms of the form(a,b) :
Jd(hasarea)(hasarea).P with P being ansS, predicate of arity two. Aspatioterminological de-
fault theoryis a tuple(A, D) where D is a set of spatioterminological default rules aAds a
consistent and restricted CCRP(S,) ABox.

Lemmal A restricted ALCRP(S,) ABox axiom ¢ is logically entailed by a restricted
ALCRP(S,) ABox A,

0=a:C—
-SAT(AU{a: -C})
0= (a,b): R —
—“SAT(AU{a : VR. Xpew, b : " Xnew}),
0= (ab): f—
—SAT(AU {a: V[ Xpewl!
3(f).is-region, b : =" Xyew }),
A ES, iff = (a,z): f—
—SAT(AU {a:3(f).VUIfTUVS. L z: T},
0= (1’1,1’2) P —
—SAT(A U {(x1,22) : P})
0 = (a,b) : I(u)(v).P —
-SAT(AU{(a,b) : I(u)(v).P}) A
-SAT(AU{a :Yu.T}) A=SAT(AU{b:Vv.T}),
whereu = v = has_area,

—_ o~ =~

where X,,.,, iS a new atomic concept that does not appear elsewhere inBlos A. X, IS
used as a “marker” concept. Analogously, (resp. ¥) is a new (otherwise unused) concrete
domain “marker” predicate. These two predicates have thpgsty that they do not interact with
the other concrete domain predicates Therefore, the two arbitrary conjunctions of concrete



domain predicated\”_, P, A ¥ and\"_, P, A T are satisfiable if\"_, P, is satisfiable. However,
/\f:1 P, AU AV is always unsatisfiable, regardless of the satisfiabilit)'\ﬁ1 P;. Additionally,

R is a primitive role andf is a feature.SAT(A) decides the ABox consistency problem for an
ABox A. Please note that, b are interpreted as abstract domain objects, untike,, x> which
are interpreted as concrete domain objects. The concretaidd, and the abstract domain are
disjoint.

Proof 1 (Sketch) The first case is the instance checking problemchwisi decidable becausé

is a restricted concept term. The second case deals withitipgmole assertions. In case that
b is an R successor ofi, the assertion: : VR. X, Would entailb : X,,c,, Where X,,.,, is a
new (otherwise unused) atomic “marker” concept. This wabgiously contradict the assertion
b : =X, The same trick can be applied to check whethieb) : f holds. Unlike primitive
roles, thef successor ofi might be a concrete domain object, which would also conttatiie
assertiors : VR. X, HOwever, we can check for the presence of a concrete dontlemffiof a

by asserting(f).is-region. To check if(a, x) : f holds, we cannot propagateXg,.., marker, since

x : X,ew Yields animmediate contradiction (recall that the coreedetmain and the abstract domain
are disjoint). We therefore have to propagate a new, otlserwinused concrete domain “marker”
predicate¥. As stated abovey (resp. ¥) does not affect the satisfiability of the other concrete
domain predicate®;, and therefore the only possibility to get a contradictidthwespect tol (¥)

is to have asserted both(z) and¥ (z) for a concrete domain object However, we do not want to
infer (a, z) : f if a has anf successor in the abstract domain or can not havg sutcessor in the
concrete or abstract domain. We therefore check for theepoesof an abstract domain fillgrof

a by assertingd f. T and additionally check whether it is known thatan't have ary successor by
asserting: : Vf. L. In the fifth case we must decide whether the binary concreteaith predicate
P holds for the concrete domain objeats, zo. There exists a concrete domain predicRiethe
negation ofP. The last case is more problematic, becauseABERP(S,) language does not
provide a negation operator for predicate-based role axiolowever, we can check whether
(a,b) : 3(has_area)(has_area).P V a: —3(has_area).is-region V b: —3(has_area).is-region
holds. The NNF of-3(has_area).is-region is 3(has_area).is-no-region LI V(has_area).T. Since
J(has_area).is-no-region is inconsistent, the resulting term(ig, b) : 3(has_area)(has_area).PV

a : Vhas_area.T Vb : Yhas_area.T. Obviously, this is not amlLCRP(S,) ABox. However,
AU{a; Vay V- - Vay,}isinconsistent iffva; : AU {a;} is inconsistent. Note that the predicate
nameP exists because the concrete domain is required to be atieigsi

Theorem 1 The consequence problem for a spatioterminological defaabry (A, D) is decid-
able.

Proof 2 Considering the sound and complete tableaux calculus foidity the consistency of
restricted ALCRP(S,) ABoxes,§ € Th(T') iff I' = 6. Thus, instead of takin@'2(E) we can
view the ABox E as a representative for an extension. The fixpoint congbrudéh Definition 4
can be used as a tester for determining whether a given ABreally is an extension of a default
theory (A, D). Since each extensiali is an ABox having the formd U {vy |« : 81 ...0,/y € D'}
for a set of so-calledjenerating defaultd)’ C D, we can simply check for each elemefitof
{AUX | X € 2lylafifBn/7€D}Y whether it is an extension or not.



The following inference problems need to be decided:

1. « € Th(E;): This can be easily tested by checking whetligr = o wherea =
{a1,as9,...,a,}. We can decide thi&\Box entailment probleriif we can decide whether
each assertional axiom is logically entailed byE;, i.e.Va; € a : E; = a;. This can be
decided according to Lemma 1.

2. =f3; ¢ Th(E): This can be checked by testing whetliet: —3;. However,E = —3;, where
Bi = {b1,ba, ..., b, } iff AU S, is consistent. The ABox consistency problem for restricted
ALCRP(S,) ABoxes is decidable.

3. Th(E) = U2, Th(E;): The fixpoint can be constructed in a finite number of stepsibse
we consider only a finite number of defaults. In principle, /e to decide th&Box
equivalence problemAn ABox A; is equivalent to an ABoxd, A; = Ay iff 41 | Ao
and As | Aj, i.e. the ABox equivalence problem can be reduced to two A&aailment
problems.O

In [2] another algorithm is discussed for computing extensi This algorithm seems to be more
efficient in the average case. There is a strong conjectatetta algorithm is also applicable in the
ALCRP(S,) context. Furthermore, it can easily be seen that the refulspatioterminological
default theories wrtALCRP(S,) can be extended td LCRP(D) as well.

6: Conclusion

To the best of our knowledge we have proposed a first theorgdatioterminological default
reasoning. Our spatioterminological default approacleraid previous work done in [5, 6]. The
new contributions to [2] are: As a base language, the expeespatioterminological description
logic ALCRP(S,) is used. Allowing not only concept terms as formulae in diéfiades but also
restricted ACCRP(S,) ABoxes with complex role assertions is necessary from aticapion-
oriented point of view but imposes a number of theoreticabfams. We have shown that the
possible extensions of a closelLCRP(S,) spatioterminological default theory can be effectively
computed.

An implementation of ACCRP(D) is described in [12]. With the implementation of the
ALCRP(D) default reasoning substrate, an implementation afl@€RP (D) TBox and ABox
management system as well as an RCC-8 relation networkstensy checker is also available for
research purposes. Qualitatively speaking, tests witltdineent implementation indicate that for
small problems with few ABox assertions, results can be egokin a reasonable time but runtimes
dramatically increase when more than only a few individ@aésinvolved.

As pointed out before, spatioterminological default red@sgp is an important service for con-
strained hypothesis generation in vision systems. To dpwble underlying foundations is a neces-
sary step towards knowledge-based vision system arahmitsstwhere powerful inference services
can be employed instead of costly and error-prone apmicapecific programming.
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