Leveraging the Expressivity of
Grounded Conjunctive Query
Languages

Alissa Kaplunova, Ralf Moller,
Michael Wessel

lamburg University of Technology (TUI
SSWS 07, November 27, 2007

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

H)



I Background

I » Grounded conjunctive query languages

for the SemWeb are well established
I — no or only shallow reasoning:
* e.g., RDF(S): RQL, RDQL, SPARQL, ...
- more reasoning: DL & OWL Qls:

* e.g., NRQL, SPARQL DL, SWRAQL, ...
« also consider inferred (axiomatic) ,triples”

- ,grounded” easier to implement than full

(unrestricted) conjunctive queries
* QA systems for unrestricted conjunctive queries
exist (QuOnto), but for less expressive DLs

- > focus on GCQs in RacerPro (nRQL)

« NRQL offers more, but irrelevant for this talk

Technische Universitit Hamburg-Harburg



I Simple Example Queries

I * From the well-known university domain
- retrieve all student X course pairs

I ans(x,y) < Student(x), takesCourse(x,y)

(retrieve (?x ?y)

(and (?x Student) (7?x ?y takesCourse)))
(retrieve (7?x)

(and (?x Student) (?x ?y takesCourse)))

« Semantics of CQs:
F(iy.. ... i )| da s Xo— (i i) (i1 ... im ) € inds(O)"".
O = HZ,H(”fmulj A Aalatomy) }.

« For GCQs: remove 14, change to da : Y

Technische Universitit Hamburg-Harburg



I Statement & Motivation

* Many practically important features still

missing in available SemWeb QA systems

I - SQL-like aggregation operators: count, sum
max, mn, avg,

 many more imaginable

e group- by, order-by needed? complicated...

— queries with constraints on datatype values
e often ,ad hoc” filter predicates in queries needed
 predicate description language needed
» problem: predicates often fixed (OWL 1.0)

- (open world) reasoning with such extensions

may be very difficult or even undecidable
* but pragmatic solutions in practice needed

Technische Universitit Hamburg-Harburg



A General Purpose ,,Solution®

« Add a procedural extension / functional
expression language to address these
problems (,Mini Lisp®)

- concise ad hoc specification of arbitrary
aggregation operators and filter predicates
inline within the queries -> flexibility

- termination-safe (no ,unsafe queries®)

 Drawbacks of the approach:

— filter predicates: no true concrete domain
reasoning (or use CD of Racer -> true CD
reasoning, but set of CD predicates is fixed)

— aggregation operators: work on named
_ontology individuals only (OWA vs. CWA)

dt Hamburg-H.



I Examples in the University Domain

I » Simple Aggregation
- how many courses does each student take?
I - how many hours does a professor teach?

 Ad hoc filter

— which students take courses whose names
contain the substring ,42° ,;-)

» Basic idea is simple:
- allow lambda expressions as terms in ans

predicate orr et ri eve head, resp.

- lambdas are applied and their results
Included at that position in the answer tuple

Technische Universitit Hamburg-Harburg



I Reminder: Lambda Expressions

* Formulation
A(xg,...,3,) @body
I - formal parameters: i, ..., z,
* Application
((\(x1,...,2,) @ body) i, ..., 10,)
- applied to actual arguments: i, ..., %,
* Reduction example

(A (z,y)@z+y) 3,4) —»3+4 — 7

iversitdt Hamburg-Harbur,



I Lambda Expressions in MiniLisp

I * Formulation

(l anbda (x1 ... xn) body)
* Application
((lanbda (x1 ... xn) body)
11 ... 1n))

* Reduction example
((lanbda (x y) (+ x y)) 3 4)

-> (+ 34 ->7
* Lambda filter: return L. =:r ej ect
*. Aggregation: construct & pose subqueries,



I UD Filter Example

I  All pairs with a course containing 42 in

I its name are rejected:

(retrieve (?x ((lambda (course)
(let ((cn
(first (datatype-fillers x #!:name))))
(if (search "42" cn)
cn
-reject)))
?y))

(and (?x #!:Student)
(?x ?y #!:takesCourse))

Technische Universitit Hamburg-Harburg



I UD Aggregation Example

I » Naive solution: for each student, a

which retrieves the students courses:

I subquery is constructed and executed

(retrieve (7?x
((lambda (student)
(let ((courses
(retrieve '(?c)
( ?c #!:takesCourse)))))
“(?num-courses ,(length courses))))

?X)))
(?x #!:Student))

Technische Universitit Hamburg-Harburg

10



I Semantics of GCQs with Lambdas

I [ Gtse e agm) | Fa Y = (iq, ... i), (i1, ... i) € inds(O),
O = alatomy),...O = alatom,,).
such that foralll € 1...m:
j1 = «a(hy) if hy is a variable,
= (Mo, ..,vp) @) alyr), ..., a(yp))
if 51 = ((A(vq.. . Up) @ ) Yt Yp)
and j; # | }.

11

Technische Universitit Hamburg-Harburg



MiniLisp in a Nutshell

* numbers, strings, symbols, lists

» cond. evaluation, file |O (HTML, XML)

» structure mapping and finite loops

* many of the standard Common Lisp
functions for the supported datatypes

» access to all RacerPro API functions

* it is termination-safe, because
- no infinite loops or lists
— NO def un, NO set g

- lambdas not first class, but special forms
((I anbda YY) (YY))

12

Technische Universitit Hamburg-Harburg



I Notes on Performance

I * The analog of what MiniLisp is doing
I could also be implemented in a

RacerPro client (e.g.) in Java, but
— MiniLisp is efficently executed on the

RacerPro server
* no TCP socket communication latency /
overhead, no string parsing and construction
— dedicated optimizations (see below)
 special precompilation optimization for
subqueries being called from MiniLisp, so-called
,promises”
- next: simple benchmarks illustrating these

Issues 13

Technische Universitit Hamburg-Harburg



Technis

che Un

UD Filter Example

* Test with 1 LUBM university
- 17174 individuals, 51207 concept / class

assertions, 49336 role / property assertions
- (retrieve (?x) (?x Student))

/790 tuples, 5 seconds
- (retrieve (?x ?y) (and (?x Student)
(?x ?y takesCourse)))

21489 tuples, 5 seconds
 Filter (,42%)
- 432 tuples
— MiniLisp: 6.4 (then 1.8) seconds
— external Lisp: 38 (then 23) seconds
—,approx. 6 times faster

iversitit Hamburg-Harburg

14



I UD Aggregation Example

I » Naive aggregation (number of courses):
- 7790 tuples
I _ MiniLisp: 26 (then 22) seconds
- external Java / Lisp: Ctrl-c after 3 minutes
* MiniLisp is much faster, but there are

still problems:

— 7790 subqueries have to be parsed,
optimized, compiled -> time and memory
consuming!

- NRQL maintains queries as objects; but
even if the subqueries are immediately
deleted, 7790 subqueries are constructed

15

Technische Universitit Hamburg-Harburg



I A Special Optimization - Promises

I Basic idea: replace the runtime query
I construction in the outer query

(... (retrieve '(?¢)
“(,student ?c #!:takesCourse))

)
with something like
( -abox-query (?z)
(?x ?z #!:takesCourse)
id ))

(... ( -query ) ...)

Technische Universitit Hamburg-Harburg

16



I Promises Explained

I Problem:?x can neither be treated as
I individual nor variable by the compiler:

( -abox-query (?z)
(?x ?z #!:takesCourse)
‘id ))
* not a variable (?x will be bound by outer
query)
* not an individual (since ?x will change)
 the optimizer may treat ?x as an
individual if we ,promise” that a binding
for.?x will be supplied before execution

iversitdt Hamburg-Harbur,




Aggregation Query with Promise

(prepare-abox-query (?z)
( 7z #!:takesCourse))
:id :num-courses))

(retrieve (?x
((lambda (x)

“(?num-courses
,(length

?X))
(?x #!:Student))

Technische Universitit Hamburg-Harburg

18



I Effectiveness of Promises

I * Naive aggregation without promise:
- 7790 tuples
I _ MiniLisp: 26 (then 22) seconds
- external Java / Lisp: Ctrl-c after 3 minutes
* Naive aggregation with promise:
- 2.5 seconds
— speed up: approx. 10
- the bigger the intermediate result sets, the
more time you save

Technische Universitit Hamburg-Harburg

19



I Conclusion

I * MiniLisp is very flexible and handy
- solves practical relevant problems
I — ad hoc solutions possible (no precompilation
of ,plugins” for the the query engine required)
- concise and (almost) declarative
—lisp-to-xm, xm-to-1l1sp
* Aggregations have to be computed on the
server (,move the query, not the data”)
* The ideas could be applied in other query
engines
- but engine must offer query life cycle
managment, optimization and compilation

Technische Universitit Hamburg-Harburg



- NES ‘Z@‘ oemie Hacer Systemsz

Bootstrapping Ontology Evolution with Multimedia Information Extraction

nische Universitit Hamburg-Harburg



