
 1

Leveraging the Expressivity of
Grounded Conjunctive Query

Languages

Alissa Kaplunova, Ralf Möller,
Michael Wessel

Hamburg University of Technology (TUHH)
SSWS 07, November 27, 2007

 2

Background

● Grounded conjunctive query languages
for the SemWeb are well established
– no or only shallow reasoning:

● e.g., RDF(S): RQL, RDQL, SPARQL, ...
– more reasoning: DL & OWL Qls:

● e.g., nRQL, SPARQL DL, SWRQL, ...
● also consider inferred (axiomatic) „triples“

– „grounded“ easier to implement than full
(unrestricted) conjunctive queries

● QA systems for unrestricted conjunctive queries
exist (QuOnto), but for less expressive DLs

– > focus on GCQs in RacerPro (nRQL)
● nRQL offers more, but irrelevant for this talk

 3

Simple Example Queries

● From the well-known university domain
– retrieve all student X course pairs

ans(x,y) ¬ Student(x), takesCourse(x,y)
(retrieve (?x ?y)

(and (?x Student) (?x ?y takesCourse)))
(retrieve (?x)

(and (?x Student) (?x ?y takesCourse)))

● Semantics of CQs:

● For GCQs: remove , change to

 4

Statement & Motivation

● Many practically important features still
missing in available SemWeb QA systems
– SQL-like aggregation operators: count, sum,
max, min, avg, ...

● many more imaginable
● group-by, order-by needed? complicated...

– queries with constraints on datatype values
● often „ad hoc“ filter predicates in queries needed
● predicate description language needed
● problem: predicates often fixed (OWL 1.0)

– (open world) reasoning with such extensions
may be very difficult or even undecidable

● but pragmatic solutions in practice needed

 5

A General Purpose „Solution“

● Add a procedural extension / functional
expression language to address these
problems („Mini Lisp“)
– concise ad hoc specification of arbitrary

aggregation operators and filter predicates
inline within the queries -> flexibility

– termination-safe (no „unsafe queries“)
● Drawbacks of the approach:

– filter predicates: no true concrete domain
reasoning (or use CD of Racer -> true CD
reasoning, but set of CD predicates is fixed)

– aggregation operators: work on named
 ontology individuals only (OWA vs. CWA)

 6

Examples in the University Domain

● Simple Aggregation
– how many courses does each student take?
– how many hours does a professor teach?

● Ad hoc filter
– which students take courses whose names

contain the substring „42“ ;-)
● Basic idea is simple:

– allow lambda expressions as terms in ans

predicate or retrieve head, resp.
– lambdas are applied and their results

included at that position in the answer tuple

 7

Reminder: Lambda Expressions

● Formulation

 l (x1, ..., xn) · body

– formal parameters: x1, ..., xn

● Application

 ((l (x1, ..., xn) · body) i1, ..., in)

– applied to actual arguments: i1, ..., in
● Reduction example

((l (x,y) · x+y) 3,4) ® 3+4 ® 7

 8

Lambda Expressions in MiniLisp

● Formulation
(lambda (x1 ... xn) body)

● Application
((lambda (x1 ... xn) body)
 i1 ... in))

● Reduction example

((lambda (x y) (+ x y)) 3 4)
-> (+ 3 4) -> 7

● Lambda filter: return ^ = :reject
● Aggregation: construct & pose subqueries

 9

UD Filter Example

(retrieve (?x ((lambda (course)
 (let ((cn
 (first (datatype-fillers x #!:name))))
 (if (search "42" cn)
 cn
 :reject)))
 ?y))

 (and (?x #!:Student)
 (?x ?y #!:takesCourse))

● All pairs with a course containing 42 in
its name are rejected:

 10

UD Aggregation Example

(retrieve (?x
 ((lambda (student)
 (let ((courses
 (retrieve '(?c)
 `(,student ?c #!:takesCourse)))))
 `(?num-courses ,(length courses))))
 ?x)))

 (?x #!:Student))

● Naive solution: for each student, a
subquery is constructed and executed
which retrieves the students courses:

 11

Semantics of GCQs with Lambdas

 12

MiniLisp in a Nutshell

● numbers, strings, symbols, lists
● cond. evaluation, file IO (HTML, XML)
● structure mapping and finite loops
● many of the standard Common Lisp

functions for the supported datatypes
● access to all RacerPro API functions
● it is termination-safe, because

– no infinite loops or lists
– no defun, no setq
– lambdas not first class, but special forms
((lambda (Y Y) (Y Y) (lambda (Y Y) (Y Y))

 13

Notes on Performance

● The analog of what MiniLisp is doing
could also be implemented in a
RacerPro client (e.g.) in Java, but
– MiniLisp is efficently executed on the

RacerPro server
● no TCP socket communication latency /

overhead, no string parsing and construction
– dedicated optimizations (see below)

● special precompilation optimization for
subqueries being called from MiniLisp, so-called
„promises“

– next: simple benchmarks illustrating these
issues

 14

UD Filter Example

● Test with 1 LUBM university
– 17174 individuals, 51207 concept / class

assertions, 49336 role / property assertions
– (retrieve (?x) (?x Student))

7790 tuples, 5 seconds
– (retrieve (?x ?y) (and (?x Student)

 (?x ?y takesCourse)))

21489 tuples, 5 seconds
● Filter („42“)

– 432 tuples
– MiniLisp: 6.4 (then 1.8) seconds
– external Lisp: 38 (then 23) seconds
– approx. 6 times faster

 15

UD Aggregation Example

● Naive aggregation (number of courses):
– 7790 tuples
– MiniLisp: 26 (then 22) seconds
– external Java / Lisp: Ctrl-c after 3 minutes

● MiniLisp is much faster, but there are
still problems:
– 7790 subqueries have to be parsed,

optimized, compiled -> time and memory
consuming!

– nRQL maintains queries as objects; but
even if the subqueries are immediately
deleted, 7790 subqueries are constructed

 16

A Special Optimization - Promises

Basic idea: replace the runtime query
construction in the outer query

 with something like
 (prepare-abox-query (?z)
 (?x ?z #!:takesCourse)
 :id :num-courses))

(.... (execute-query :num-courses) ...)

(... (retrieve '(?c)
 `(,student ?c #!:takesCourse))

....)

 17

Promises Explained

Problem:?x can neither be treated as
individual nor variable by the compiler:

● not a variable (?x will be bound by outer
query)

● not an individual (since ?x will change)
● the optimizer may treat ?x as an

individual if we „promise“ that a binding
for ?x will be supplied before execution

 (prepare-abox-query (?z)
 (?x ?z #!:takesCourse)
 :id :num-courses))

 18

Aggregation Query with Promise

 (with-future-bindings (?x)
 (prepare-abox-query (?z)
 (?x ?z #!:takesCourse))
 :id :num-courses))

(retrieve (?x
 ((lambda (x)
 (with-nrql-settings (:bindings `((?x ,x)))
 `(?num-courses
 ,(length
 (execute-or-reexecute-query
 :num-courses)))))
 ?x))
 (?x #!:Student))

 19

Effectiveness of Promises

● Naive aggregation without promise:
– 7790 tuples
– MiniLisp: 26 (then 22) seconds
– external Java / Lisp: Ctrl-c after 3 minutes

● Naive aggregation with promise:
– 2.5 seconds
– speed up: approx. 10
– the bigger the intermediate result sets, the

more time you save

 20

Conclusion

● MiniLisp is very flexible and handy
– solves practical relevant problems
– ad hoc solutions possible (no precompilation

of „plugins“ for the the query engine required)
– concise and (almost) declarative
– lisp-to-xml, xml-to-lisp

● Aggregations have to be computed on the
server („move the query, not the data“)

● The ideas could be applied in other query
engines
– but engine must offer query life cycle

managment, optimization and compilation

 21

Thanks!

 l

