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Abstract. We study the extension of context ontologies towards ergthgoal-
itative spatio-temporal representations and reasoning.g0al is to model and
extract events that are important to the user from her coftgxi.e. the history
of context data collected over a longer period. We preserasae study based
on actual context ontologies and context data from the GoMatcher mobile
application. The presented work has been fully implemeinetthe DL-based
reasoning engine A&CERPRO.

1 Introduction

In this paper we present the representation and recoguifisignificant events within
the context data that a mobile user collects over a longeogeuch as a couple of
days. As contextual data sources we assume data collec@aigxtWatchei]1]. Con-
textWatchdi is a mobile application that facilitates easy gathering stmaking of per-
sonal context from an underlying network of context prov&d@&hese context providers
include the user’s location in terms of the present locatiocation traces as well as
frequently visited places, all kinds of user-tagged olsjectd activities, and location-
specific information extracted from public sources, suctoaal weather information.
In ContextWatcher, the value of personal context infororats multiplied by sharing
context with others through networks of defined social reteships.

ContextWatcher is implemented as a self-contained moldatdut can also con-
nect to third party applications. A currently very populgphlcation is the automatic
compilation of gathered context into personal daily Webs|dgr instance, to show
pictures taken on the phone in a certain context, displasuis selected places or to
disclose social encounters. Such contextual blogs have &estrong motivation for
the work presented in this paper: to enhance the blog relégtati make sharing of
posts easier and to simply make blogs more attractive, esltlesoncepts to model and
recognize important events are needed.

As most data delivered by our context providers is of quatiNi nature in the
first place, abstraction methods and context ontologiesrh&een introduced to deal
with context at a higher level]2]. At the level of these cotntentologies, complex
conceptual dependencies between context elements avduotd to enrich contextual
descriptions and to implement classification-based reéag@bout the user’s situation.
Qualitative context descriptions were firstly introduceddontextWatcher to describe
user places as conceptual abstractions from exact losatibramples include place
descriptions like “Office”, “Home” ore “Business Place”. Alse supporting context
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ontologies evolved, more qualitative concepts that conteethese place descriptions
were added. In the current version of ContextWatcher, til@atie between exact phys-
ical user locations and qualitative places is implemenitedugh clustering methods
which are applied to user traces.

In this paper we exploit extensions of the existing Conteattiver ontologies to-
wards enhanced qualitative spatial representation arsbnézgy. We study the imple-
mentation of a complex event recognition and managemetersywith RacERPROM
as our DL-based reasoning component of choice. The restpé#per is organized
as follows. We first define required terminology and sket@hdherall architecture of
the proposed framework. Then we describe oaCBRPRO event model. We illustrate
the potentials of the modeling with an example scenarioallirwe conclude. In the
following we assume some basic knowledge of Descriptionitco@OLs) [3] and re-
lated semantic technologies (e.g., W3C standards such ddland semantic query
languages such agRQL [4]).

2 Context Awareness and Event Recognition

The most prominent definition afontextwas coined by A. K. Dey et alContext is
any information that can be used to characterize the situmatif an entity. An entity is
a person, place, or object that is considered relevant toikeraction between a user
and an application, including the user and applicationstiselves.

Such a piece of relevant ™information™ is also callectantext elemenfAs men-
tioned in the introduction, context elements are providgddntext providersin this
case study, we are primarily considering the context elesdenationandtime The
collection of all context elements is called the currentteghor currensituation

Situational reasoning?] uses background knowledge specified in OWL ontologies
to infer additional context elements from the asserted .oB@& can claim that con-
text providers merely provideaw context dataand that this context data can only be
tranformed into context elements (being characterizedrdertnation”) by means of
interpretation.This interpretation is performed with the help of logicasening.

Currently, the approach taken by ContextWatcher is to mapctntext data into
context assertions a context or situation ABoin RACERPRO. The ABox realization
service(which is a standard DL inference service) is then used byt&tWatcher to
derive the entailed, logically implied ABox context asgers. Each agent is represented
as an individual in the ABox, describing the agent’s curmaritext. The ABox also
includes social as well as spatial relationships.

The mapping function froncontext dataeto context assertionis currently defined
procedurally. For example, the location of an agent is gtediby a GPS device. So-
calledlocation clustersare acquired from GPS agent traces which are analyzed offline
by statistical learning / clustering methods to find soezhllocation clusters. An ac-
quired location cluster can then be annotated by the uséramtOWL class or DL
concept, e.ghomeor office Membership in these clusters is from now on recognized
automatically by ContextWatcher, and approprigtmlitative location assertions are
put into the context ABox. This mapping function (which natlyptakes care of lo-
cation) is called thé&ituation Description Generatan the following. In many cases,
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gquantitativecontext data is mapped tpualitativecontext assertions such that OWL or
DL reasoning can be exploited, which primarily works on altjative, symbolic level.
However, by exploiting thexpressive concrete domain reasoning facilittésRAC-
ERPRO we will also show how reasoning on quantitative (time) cghtéata can be
performed and exploited.

Context ABoxes in ContextWatcher so far can be describedadis slescriptions
of “snapshots” in space-time. We claim that the recognittbrdynamic space-time
histories so called events, can provide valuable additional cordgkthents for Con-
textWatcher —in fact, certain situations can only be recaphif thesituational changes
are considered rather than the (static) situations themseFor example, the situation
leaving homds characterized by aertain change in the agent’s situatiofirst the
agent isinsideits home cluster, then, in the next situation, he no longdnisase the
event takes place in the early morning hours of a working dlay,reasonable to as-
sume that the agent is leaving his home for work. In case hgldhe too late, an SMS
could be send automatically to his boss, apologizing in adedor being late. More-
over, as mentioned in the introduction, event structureislwhave been recognized in
daily context logs can be used for the automated generatidiary-like blogs. Thus,
adynamiccontext ABox and DL-based event model is needed in whiions of time
and change play a major role.

3 DL-based Event Recognition — A Case Study witlRACERPRO

Our RACERPRO event recognition model includésree basic building blocksa model

of time, a model for situations, and an event model. In thiefahg, a situation is called
astateto make the resemblance with temporal modal logics or Al milagpformalisms
[BliE] more explicit.

Time Points and Intervals The basic temporal building blocks atiene pointsand
intervals Let us start with time points. A time point is any ABox indival which has
a real valued filler of thei ne attribute in the concrete domain #fLCOHZr+ (D),
which is the DL implemented by RCERPRO:
(define-concrete-domain-attribute time :type real)
(define-concept point-in-tine (a tinme))
Two individual time pointg1 andp2 can be modeled in the ABox as follows:
(instance pl (= tine 6.5))
(instance p2 (= tine 8.0))
Certain day times can be modeled as defined concepts:
(define-concept early-norning-tine (and (<= 6.0 tinme) (< tine 7.0)))

Note thatpl is an instance oéar | y- nor ni ng-t i ne then. We also want to be able
to reason about theelative locationsof time points to one another, e.g., we want to
know whethem1 is before of aftep2. A mapping to qualitative relationships such
asbefore-point-in-time andafter-point-in-tineis thus needed. In Rc-
ERPRO we can usealefinedNRQL queriesor NRQL ABox rulesto establish such a
mapping:

(def query before-point-in-tine (?sl ?s2)

(and (?sl point-in-tinme) (?s2 point-in-tine)
(?s1 ?s2 (constraint tine tine <))))



A def query form can be understood as a simple macro which can be uged L
queries such agretrieve (?x ?y) (?x ?y before-point-in-tine)),which
thenreturng ((?x pl) (?y p2))).Butin orderto make ABox reasoning aware of
the qualitative relationship holding betweghandp2, we must add ahef or e- poi nt -
i n-ti me role assertiorto the ABox. This can be done with an ABox rule:

(firerule (?x ?y before-point-in-tine)

((related ?x ?x before-point-in-tine-role)))

This rule fires and adds(a el at ed pl p2 before-point-in-time-role) asser-
tion to the ABox. Due to the added role assertighcan now for example be recognized
as an instance of the concept

(define-concept has-successor-poi nt

(and point-in-tine (some before-point-in-time-role point-in-tine)))

Having modeled time points, we can continue definimtgrvalswhich have a start and
end time point; moreover, the intervals duration shall Eatgr than zero:

(define-concrete-donmin-attribute start-time :type real)

(define-concrete-domain-attribute end-tinme :type real)

(define-concept interval (and (a start-tinme) (a end-tine)

(< start-tinme end-tine)))

Given this definition of interval, it is even possible to g/ recognize events ahort
or long intervals again by means of the expressive concrete domain reasoffiérgd
by RACERPRO:

(define-concept short-interval

(and interval (< end-tine (+ start-time 1.0))))
A short interval is thus an interval that lasts at most onerfioote that( < end-ti nme
(+ start-tinme 1.0)) is satisfied iffend_time — start_time < 1; this equation
cannot be expressed in a more direct way ACRRPRO.
Thepoint in intervalrelationship is an important qualitative relationshipcan be

modeled as a defined query as follows:

(def query point-in-tine-inside-interval (?s ?e)
(and (?s point-in-tine) (?e interval)
(?e ?s (constraint start-time time <=))
(?s ?e (constraint tine end-tinme <=))))
Itis now reasonable to defirertain special day timessinterval individuals e.g., like
mor ni ng- hour s. The rationale is that these intervals can be used in qusuigs as
What happened during the morning hours?
(instance early-norning-interval
(and interval (= start-tine 6.0) (= end-time 7.0)))
Moreover, the famougllen temporal relationshipfl/] provide well-known qualita-
tive temporal relational vocabulary for intervals (meetgerlaps, during, ...). Like the
point in interval relation, the Allen relations can be defirses queries. If required, cor-
responding ABox rules can again adten role assertionso the ABox so that further
reasoning processes are aware of the qualitative temdaibnships holding between
the intervals. Thereet s relationship between intervals looks as follows:

(def query neets (?el ?e2)
(and (?el interval) (?e2 interval)
(?el ?e2 (constraint end-tine start-tinme =))))
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Fig. 1. States (Circles), Simple Events (Light Gray), and Complearits (Gray)

From Time Points to States and Histories A stateis a user/agent-specific description

of the user’s current situations as well as of its relevgmdfial, social, .. .) environment

at a given time point. States will be generated by the Sitadfiescription Generator.

Every time point thahas some agerassociated with it is called state of that agent
(define-concept state (and point-in-time (some has-agent agent)))

An arbitrary amount of additional context information can“battached” to a state indi-
vidual; for example, information regarding the currentdtion for which we are using
thei n-r egi on role. Regions can be cluster regions annotated with locamcepts,
but also annotated map regions, points of interest etc:

(define-primtive-role in-region :domain state :range region)
A sequence of states of an agémtcalled ahistory. Like in a modal temporal logic
based on a discrete linear model of time, we are are introducfunctional rolenext
to reference the successor state. The inverse of next edgalevi ous; next has a
transitive super-role callefut ur e which can thus be used to access all future states
from the current state. Obviouslyast is the inverse of ut ur e.

Since the state individuals of the agents are generatedeb§ithation Description
Generator, the generator can as well create the requirglcht ed s1 s2 next) role
assertions to produce the time thread. However, since thetiative time information
is available, the requiremext role assertionsan also be created with an ABox rule:

(firerule (and (?sl state) (?sl ?a has-agent)
(?s2 state) (?s2 ?a has-agent)
(?s1l ?s2 before-point-in-tine)
(neg (project-to (?sl ?s2 ?a)
(and (?sl ?s before-point-in-tine)
(?s ?s2 before-point-in-tine)
(?s ?a has-agent)))))
((related ?sl ?s2 next)))
The variables?s1 and?s2 will be bound to states of the same ageat Moreover,
?s1 precede®s2 in time. We also have to verify thats2 is thedirect successor of
?s1. This means that there is no sta&®in betweerPs1 and?s2 of that same agent.
This is verified with the expressiomeg (project-to ...)). If satisfying?s1,
?s2 bindings are found, the rule addg eel at ed ?s1 ?s2 next) assertion to the

ABoOX.

From Histories to Events Now we have an ABox containing all the histories of the
agents. Events shall now be recognized on agent historieexample history of an
agent on which events have been recognized is shown in Fig. 1.



An eventis a time intervalhaving a start state; and an end state,. An event
either describes eonstancy holding between and s, e.g., likestaying at homeor
acertain change that happened betwegrand s,, e.g.going from home to workl he
former events are callddomogeneous eventSuch an event has the property that the
described constancy does not only hold for the whole evenhglbo for all its subevents.
Moreover, such events shall often bensdximum lengthi.e., there shall be no proper
subintervals which also satisfy the event property. In @sif the events describing
changes are often callgglestalt eventsf they maynot have subevents for which the
property also holds. Thus, such events shall beimimum lengthWe will show how
these requirements (whose modeling would requinerdihmodality in temporal modal
logics) can be formalized iIRRQL.

We distinguishgeneric or non-thematic evengsd thematic eventsA thematic
event requires background knowledge (e.g., social reagdim order to be recognized.
For example, the evestaying in a regioris a (homogeneous) generic event, whereas
the staying at homevent is a thematic event. An additional discriminator igegiby
the distinction osimple vs. complex evenss illustrated in Fig. 2. Simple events have
no subevents, whereas complex events have. The requiatidnships of the subevents
to one another are specified with the help of Allen relations.

Events describing constanciean only be recognized if states are also automati-
cally generated even if the situation description haschangedbut simply time has
gone by. Thus, if a significant change of the value of the titirébate is considered as
a relevant change in the situation description, then a nate still be generated auto-
matically, so events describing constancies can be repediiiom the similarity (non
change) of attributes between situations. However, tkis dveals the question bbw
frequentnew states shall be constructed. We do not answer this qoéstre.

Given the structure of the history ABoxes, the next impdrtaurestion to ask is:
How to recognize the events? As a first idea, we can try to iiyeewents with their
start statesand then exploit the temporal structure spawned bytheandfuturerela-
tionships. Thus, éeaving home evertould be recognized with the following concept
definition:

(define-concept |eaving-hone-event

(and state (sone in-region hone) (some next (all in-region (not hone)))))

However, due to the Open World Semantids [3, pp. 68] empldyedLs, we see that
(all in-region (not home)) can only be proven if appropriate closure assertions
are added on theext successor’'s n-regi on role. Moreover, it does not seem to
be adequate to identify events which have a certain duratioihare thus conceptually
intervals with their start states which are conceptuathetpoints. Also, there is no way
to access or refer to the duration of such an event, sinceuaetification omext and
f ut ur e can onlyseethe require future states, but canfistthem. Thusyariablesare
needed. Moreover, while / until operators known from tenaponodal logics would
be needed in order to express that an event has maximum anorimiength. Also, a
concept such alsone depends on the agent and thus cannot be used if more than one
agent individual is present. Thus, we have to verify thatréggon is indeed the home
of the agent

We are thus defining events with the help of rules again. EBvard instances of
an event concept and reference their start and end statesheitolesst art - stat e



andend- st at e. In case of a complex event, the subevents are aggregategl the
has- subevent role. These events thus satisfy
(define-concept event
(and interval (sone has-agent agent)
(sonme start-state state) (sone end-state state)))
Event rules have to construsew individuals So-calledDL-safe rulesare rules whose
variables only range over ABox individuals, i.e., all vénlizs aredistinguished This
is always the case iIRRQL. However, sincelRQL allows the creation of new indi-
viduals with rules we need to be careful, since rules may Ipdiexpto freshly created
individuals as well. In order to avoid termination problem&QL does not offer an
automatic rule application strategy; instead, API funasifunction are supplied to first
identify the applicable rules, and then to fire (all or sometloém. This is called a sin-
gle rule application cycleln principle it is unclear how many cycles will be needed.
Thus, the application runs a loop. To ensure terminationnake the antecedences of
the rulesnon-monotonisuch that a rule can only be fired once for a certain set of input
individuals. Thegeneral pattern / idiom for simple event rulésis looks as follows:
(prepare-abox-rul e
(and (?sl state) (?s2 state)
(?s1 ?a has-agent) (?s2 ?a has-agent)
(?s1 ?s2 next) // or future or past or previous
. Il sone nore conditions on the states
/1 ensure that rule can only be fired "once":
(neg (project-to (?sl ?s2)
(and (?e sone-sinple-event)
(?e ?sl start-state) (?e ?s2 end-state)))))
((instance (newind newsinple-event ?sl ?s2) sone-sinple-event)
(related (newind newsinple-event ?sl ?s2) ?sl start-state)
(related (newind newsinple-event ?sl ?s2) ?s2 end-state)))
If the antecedence of the rule identified appropriate stadtend stateSs1 and?s2
in the same history (belonging to the same age)t and such an event has not al-
ready been constructed, then a new event instance refegetei, ?s2 is created.
The newi nd operator is used to construct a new ABox individual?éfl is bound
tosl and?s2 tos2, then the expressigmew- i nd new si npl e- event ?sl ?s2)
creates a new individuakew- si npl e- event - s1-s2.

Using this pattern, we can define homogeneous and gestadiric simple events.
For example, we have the following spatial evetdgaving a region, entering a region,
staying in a regionand thein no region eventBy means oblutooth devices and buddy
lists, it can also be recognized if a buddy is close by. We thus alse tleemeeting
buddy, leaving buddy, staying in company of a budslyvell as théeing alone event.

It is obvious that thdeaving and entering a region everdse easy to model with
ABox rules as follows: the general event rule pattern is ubatladditional constraints
on the states are imposed, for examgtes1 ?r in-region) and(neg (?s2 ?r
i n-regi on)) in case of the leaving a region event, and vice versa for therieg a
region event. Maximum duration and homogeneity of evergdarder to enforce. Let
us consider thet ayi ng-i n-r egi on event. Assume tha&r is the region in which the
agent is currently staying. To enforce maximum duratiorhefinterval to the left, we
require that?’s1 does not have ar evi ous state which is also contained #r, and
similar for ?s2 andnext . Homogeneity can be expressed as well — betwsdanand
?s2 there shall be no stat@s 3 in which (?s3 ?r in-region) doesnothold. This
gives us the additional conjuncts:



(going-from-home-to-office-event)
(going-from-lunch-to-home-event)
(going-from-a-to-b-event) (going-from-lunch-to-office-event)
(going-from-office-to-home-event)

(going-from-office-to-lunch-event)
(moving-together-event)
(ordinary-work-day-event)

Fig. 2. Taxonomy of Complex Thematic Events

(and (neg (project-to (?s3 ?r)
(and (?s3 ?s4 next) (?s4 ?r in-region))))
(neg (project-to (?s2 ?r)
(and (?s12 ?s2 next) (?sl12 ?r in-region))))
(neg (project-to (?s2 ?s3 ?r)
(and (?s2 ?sx future) (?sx ?s3 future)
(neg (?sx ?r in-region))))))

The analog social evenstaying in company of a buddig even more complicated,
since here one has to relate states of histories of two difteagents in order to detect
the constancy; note that the- buddy- pr oxi mi ty relation holds betweestatesof
agents.

Having recognized the simple generic events, we can sjpecitilese tadhematic
eventsfor example, d eavi ng- hone- event is a special eavi ng-r egi on- event .
In some cases, simple concept definitions are sufficientdoognition, but in other
cases, rules are needed again.

Complex and Very High Level Events We then continue and defirmomplex event
that consist of several subevents. As with the simple eyamslistinguistgeneric and
thematic complex event&n important generic complex event is theing from A to B
event This event is neither maximal nor homogeneous; insteds vell known that
going fromA to B eventually means that one fist has to go frdrto C, and then from
C'to B. Such recursive event rules can become very complex.

So, what are reasonable compthematicevents in our case study scenario? Given
thetypical working day scenarioye primarily consider further specializations of the
going from A to B evenwhich takes the thematic types of the origin and destination
regions into account. For examplegaing from office to lunch eveig recognized if
the destination region is a restaurant, and if the sourdemag the work office of the
agent. Moreover, such an event has to overlaguheh timeindividual interval. The
introduced complex thematic events are visualized in Fig. 2

Finally, we can defineery high level complex event&n ordinary working day
eventis assumed to consist of the following consecuteguence of eventgoi ng-
from home-to-of fice-event, working-event, going-fromoffice-to-
| unch-event, lunch-event, going-fromlunch-to-office-event, work-

i ng-event, going-fromoffice-to-hone-event. If such a sequence of events
?el to ?e7 is found, all belonging to the same agent, such {fed[ n] ?e[ n+1]
meet s) holds for alln from 1 to 6, then a complex event of typedi nar y- wor ki ng-
day- event is constructed, and the seven subevents are connectedstogtthehas-
subevent role.

4 A Complex Example

A complex history ABox is visualized in Fig. 3. The historiefthe three agental,
A2, A3 are shown. Circles denote states, and containment of aistateegion (the
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Fig. 3. History ABox for Agentsal, A2, A3

i n-regi on relationship) is depicted with the help of the state enadlggray shaded
boxes (visualizing the regions). Theme regions ofAl andA2 are different, but the
rest aurant andof fi ce boxes visualize the same region. The bold gray arrows vi-
sualize the n- buddy- pr oxi ni t y relationship. The values of the ne attributes are
shown as well (in decimal coding).

The scenario modeled in the example ABox goes as followsnfge is the boss
of A1, andA3 is a friend ofAl. Al leaves its home at 7.0 and enters his office at 8.75;
in the meantime he wam the roadHe stayed in the office (presumably working) until
12.20 (we are omitting the concrete times in the remainirgrdption). He is then in
buddy proximity with his boss. Both are leaving the officedtiger and are entering the
restaurant, where they are having lunch. In the restauranmeets a friendA3) for
a couple of minutes. After staying a while in the restaurantandA2 are leaving the
restaurant togetheal goes back to office and stays there until he leaves the office in
the evening, heading towards home. In contraatgoes home after lunch.

This history ABox induces a complex event structure. Afiertules no more apply,
the following complex thematic events have been constduftie A1. The following
list is the result of avRQL query; for each bindingx to a complex thematic event
we are also including its start and end time as well amitst specific types:or the
events, acevent - name><st art - st at e><end- st at e> naming schema is used, and
<st at e- nunber ><agent > for the states:

(((?x ordinary-working-day-slal-s9al) (7.0) (19.0)
(ordi nary-wor ki ng- day-event |ong-interval))

((?x going-froma-to-b-slal-s3al) (7.0) (8.75)
(goi ng-from honme-to-of fi ce-event region-event short-interval))

((?x going-froma-to-b-s4al-s5al) (12.2) (12.3)
(goi ng-fromoffice-to-lunch-event noving-together-event region-event))

((?x going-froma-to-b-s6al-s7al) (13.0) (13.5)
(goi ng-fromlunch-to-of fice-event regi on-event))

((?x going-froma-to-b-s8al-s9al) (18.5) (19.0)
(goi ng-fromof fice-to-honme-event region-event)))
Thus, as expected] has experienced an arbitrary working day. However, thigither
the case fon2 nor for A3. Note that some more events have been recognized, but they
are not “complex”, e.g., the eventsayi ng-i n-regi on- of - of f i ce- of - al- s3al- s4al from



8.7510 12.2 of typ&wor ki ng- event | ong-interval), in-conpany-a3-s5al-s6al from 12.3
t0 13.0 of type& i n- conpany- event rmeeting-friend-event)) (Which is a “social event” due
to the bluetooth proximity with friend3), andst ayi ng- i n-r egi on- of - r est aur ant - 1- s5a1-
s6al from 12.3 to 13.0 of typel unch- wi t h-boss-event ) .

5 Conclusion & Future Work

We have proposed a practical and working event model metbggan the RACERPRO
DL system. The long term research goal of this work is to enbdne spatial, temporal
and dynamic awareness of the ContextWatcher applicataméwork. The principle
feasibility of the approach has been demonstrated with a sagly. A drawback of
the proposed model is the slightly non-declarative seroastiown by some rules, es-
pecially those that create new individuals. Recently itlesn shown thabduction—
which is a non-deductive inference process — has the paténtieliver hypotheses and
can thus also be used to hypothesize the assertions whiclaweechnstructed simply
by means of rule<.[8,9]. How to apply this abduction framéwsifuture work.

It should be stressed that the proposed model only works RitbeRPRO, since
current W3C Semantic Web standards (OWL, SPARQL, SWRL dtzot offer the
required expressivity for the formulation of rules (e.gegation as failure, closed do-
main universal quantification, creation of new individyaisncrete domain reasoning).
It is clear that corresponding concept constructors edséy to undecidability. But
pragmatic solutiontiave to be developed for practical applications, as we hexed-
strated.
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