
A Probabilistic Abduction Engine for Media Interpretation
based on Ontologies

Oliver Gries, Ralf Möller, Anahita Nafissi, Maurice Rosenfeld, Kamil Sokolski, Michael Wessel

Hamburg University of Technology, Germany

Abstract. For multimedia interpretation, and in particular for the combined interpretation
of information coming from different modalities, a semantically well-founded formalization is
required in the context of an agent-based scenario. Low-level percepts, which are represented
symbolically, define the observations of an agent, and interpretations of content are defined as
explanations for the observations. We propose an abduction-based formalism that uses descrip-
tion logics for the ontology and Horn rules for defining the space of hypotheses for explanations
(i.e., the space of possible interpretations of media content), and we use Markov logic to define
the motivation for the agent to generate explanations on the one hand, and for ranking different
explanations on the other.1

1 Introduction

For multimedia interpretation in the context of an agent-based scenario, and for the combined inter-
pretation of information coming from different modalities in particular, a semantically well-founded
formalization is required. Low-level percepts, which are represented symbolically, define the observa-
tions of an agent w.r.t. some content, and interpretations of the content are defined as explanations for
the observations. In [Castano et al., 2008] we have proposed an abduction-based formalism that uses
description logics for the ontology and Horn rules for defining the space of hypotheses for explanations
(i.e., the space of possible interpretations of media content). An evaluation of the abduction approach
based on description logics and rules is presented in [Espinosa-Peraldi et al., 2010b]. A discussion of
related work can be found in [Espinosa-Peraldi et al., 2010a].

In this paper, we propose the use of Markov logic to define the motivation for the agent to generate
explanations on the one hand, and for ranking different explanations on the other. Furthermore, we
discuss completely how the reasoning process is performed with uncertainty and under inconsistency
in the input data. In this paper, we introduce a new approach for ranking interpretation Aboxes.
The ranking process is performed based on a probabilistic scoring function (as opposed to the proof-
theoretic scoring function used in [Espinosa-Peraldi et al., 2010b]). A termination condition is also
defined which determines how long the interpretation process should be performed.

On the one hand, the approach presented in this paper can be used to formalize media interpreta-
tion whereas, in the long run, the approach can be seen as a theory for agent behavior for interpreting
observations (which are inherently uncertain). We use a probabilistic logic to motivate the media in-
terpretation strategy (or the agent’s explanation endeavor) by increasing the belief in the observations.
Hence, we define a semantically well-founded utility measure to justify the computational resources
spent for generating interpretations. In this paper we focus on the media interpretation scenario.

Based on a presentation of the most important preliminaries in Section 2, the abduction and inter-
pretation procedures are discussed in detail in Section 3. Optimization techniques for the probabilistic
abduction engine are pointed out. In Section 4, a complete example is given showing the main ap-
proach using intermediate steps. In Section 6 an agenda is described which applies some techniques
to improve the performance of the interpretation process. Section 7 summarizes this paper.

1 This work has been funded by the European Community with the project CASAM (Contract FP7-217061
CASAM) and by the German Science Foundation with the project PRESINT (DFG MO 801/1-1).

2 Preliminaries

In this section, the most important preliminaries are specified in order to make this document self-
contained.

2.1 Preliminaries on Description Logics

For specifying the ontology used to describe low-level analysis results as well as high-level interpretation
results, a less expressive description logic is applied to facilitate fast computations. We decided to
represent the domain knowledge with the DL ALHf − (restricted attributive concept language with
role hierarchies, functional roles and concrete domains). The motivation to only allow a restricted use
of existential restrictions is to support a well-founded integration of the description logic part of the
knowledge base with the probabilistic part (based on Markov logic networks, see Section 2.4).

In logic-based approaches, atomic representation units have to be specified. The atomic represen-
tation units are fixed using a so-called signature. A DL signature is a tuple S = (CN,RN, IN),
where CN = {A1, ..., An} is the set of concept names (denoting sets of domain objects) and RN =
{R1, ..., Rm} is the set of role names (denoting relations between domain objects). The signature also
contains a component IN indicating a set of individuals (names for domain objects).

In order to relate concept names and role names to each other (terminological knowledge) and
to talk about specific individuals (assertional knowledge), a knowledge base has to be specified. An
ALHf − knowledge base ΣS = (T ,A), defined with respect to a signature S, is comprised of a termi-
nological component T (called Tbox) and an assertional component A (called Abox). In the following
we just write Σ if the signature is clear from context. A Tbox is a set of so-called axioms, which are
restricted to the following form in ALHf −:

(I) Subsumption A1 v A2, R1 v R2

(II) Disjointness A1 v ¬A2

(III) Domain and range restrictions for roles ∃R.> v A, > v ∀R.A
(IV) Functional restriction on roles > v (≤ 1R)
(V) Local range restrictions for roles A1 v ∀R.A2

(VI) Definitions with value restrictions A ≡ A0 u ∀R1.A1 u ... u ∀Rn.An

With axioms of form (I), concept (role) names can be declared to be subconcepts (subroles) of each
other. Axioms of form (II) denote disjointness between concepts. Axioms of type (III) introduce domain
and range restrictions for roles. Axioms of the form (IV) introduce so-called functional restrictions on
roles, and axioms of type (V) specify local range restrictions (using value restrictions, see below). With
axioms of kind (VI) so-called definitions (with necessary and sufficient conditions) can be specified
for concept names found on the left-hand side of the ≡ sign. In the axioms, so-called concepts are
used. Concepts are concept names or expressions of the form > (anything), ⊥ (nothing), ¬A (atomic
negation), (≤ 1R) (role functionality), ∃R.> (limited existential restriction), ∀R.A (value restriction)
and (C1 u ... u Cn) (concept conjunction).

Knowledge about individuals is represented in the Abox part of Σ. An Abox A is a set of expressions
of the form A(a) or R(a, b) (concept assertions and role assertions, respectively) where A stands for
a concept name, R stands for a role name, and a, b stand for individuals. Aboxes can also contain
equality (a = b) and inequality assertions (a 6= b). We say that the unique name assumption (UNA) is
applied, if a 6= b is added for all pairs of individuals a and b.

In order to understand the notion of logical entailment, we introduce the semantics of ALHf −. In
DLs such as ALHf −, the semantics is defined with interpretations I = (4I , ·I), where 4I is a non-
empty set of domain objects (called the domain of I) and ·I is an interpretation function which maps
individuals to objects of the domain (aI ∈ 4I), atomic concepts to subsets of the domain (AI ⊆ 4I)
and roles to subsets of the cartesian product of the domain (RI ⊆ 4I ×4I). The interpretation of
arbitrary ALHf − concepts is then defined by extending ·I to all ALHf − concept constructors:

>I = 4I
⊥I = ∅
(¬A)I = 4I \AI
(≤ 1R)I = {u ∈ 4I | (∀v1, v2) [((u, v1) ∈ RI ∧ (u, v2) ∈ RI)→ v1 = v2]
(∃R.>)I = {u ∈ 4I | (∃v) [(u, v) ∈ RI]}
(∀R.C)I = {u ∈ 4I | (∀v) [(u, v) ∈ RI → v ∈ CI]}
(C1 u ... u Cn)I = CI1 ∩ ... ∩ CIn

In the following, the satisfiability condition for axioms and assertions of an ALHf −-knowledge
base Σ in an interpretation I are defined. A concept inclusion C v D (concept definition C ≡ D)
is satisfied in I, if CI ⊆ DI (resp. CI = DI) and a role inclusion R v S (role definition R ≡ S), if
RI ⊆ SI (resp. RI = SI). Similarly, assertions C(a) and R(a, b) are satisfied in I, if aI ∈ CI resp.
(a, b)I ∈ RI . If an interpretation I satisfies all axioms of T resp. A it is called a model of T resp. A.
If it satisfies both T and A it is called a model of Σ. Finally, if there is a model of Σ (i.e., a model
for T and A), then Σ is called satisfiable. We are now able to define the entailment relation |=. A DL
knowledge base Σ logically entails an assertion α (symbolically Σ |= α) if α is satisfied in all models
of Σ. For an Abox A, we say Σ |= A if Σ |= α for all α ∈ A.

2.2 Substitutions, Queries, and Rules

Sequences, Variable Substitutions and Transformations A variable is a name of the form
String where String is a string of characters from {A. . .Z}. In the following definitions, we denote
places where variables can appear with uppercase letters.

Let V be a set of variables, and let X,Y1, . . . , Yn be sequences 〈. . .〉 of variables from V . The
notation z denotes a sequence of individuals. We consider sequences of length 1 or 2 only, if not
indicated otherwise, and assume that (〈X〉) is to be read as (X) and (〈X,Y 〉) is to be read as (X,Y)
etc. Furthermore, we assume that sequences are automatically flattened. A function as set turns a
sequence into a set in the obvious way.

A variable substitution σ = [X ← i, Y ← j, . . .] is a mapping from variables to individuals mentioned
in an Abox. The application of a variable substitution σ to a sequence of variables 〈X〉 or 〈X,Y 〉 is
defined as 〈σ(X)〉 or 〈σ(X), σ(Y)〉, respectively, with σ(X) = i and σ(Y) = j. In this case, a sequence
of individuals is defined. If a substitution is applied to a variable X for which there exists no mapping
X ← k in σ then the result is undefined. A variable for which all required mappings are defined is
called admissible (w.r.t. the context).

Grounded Conjunctive Queries Let X,Y1, . . . , Yn be sequences of variables, and let Q1, . . . , Qn
denote concept or role names. A query is defined by the following syntax: {(X) | Q1(Y1), . . . , Qn(Yn)}.
The sequence X may be of arbitrary length but all variables mentioned in X must also appear in at
least one of the Y1, · · · , Yn: as set(X) ⊆ as set(Y1) ∪ · · · ∪ as set(Yn).

Informally speaking, Q1(Y1), . . . , Qn(Yn) defines a conjunction of so-called query atoms Qi(Yi). The
list of variables to the left of the sign | is called the head and the atoms to the right are called the
query body. The variables in the head are called distinguished variables. They define the query result.
The variables that appear only in the body are called non-distinguished variables and are existentially
quantified. Answering a query with respect to a knowledge base Σ means finding admissible variable
substitutions σ such that Σ |= {σ(Q1(Y1)), . . . , σ(Qn(Yn))}. We say that a variable substitution σ =
[X ← i, Y ← j, . . .] introduces bindings i, j, . . . for variables X,Y, Given all possible variable
substitutions σ, the result of a query is defined as {(σ(X))}. Note that the variable substitution σ is
applied before checking whether Σ |= {Q1(σ(Y1)), . . . , Qn(σ(Yn))}, i.e., the query is grounded first.

A boolean query is a query with X being of length zero. If for a boolean query there exists a variable
substitution σ such that Σ |= {σ(Q1(Y1)), . . . , σ(Qn(Yn))} holds, we say that the query is answered
with true, otherwise the answer is false. Later on, we will have to convert query atoms into Abox
assertions. This is done with the function transform. The function transform applied to a set of query

atoms {γ1, . . . γn} is defined as {transform(γ1, σ), . . . , transform(γn, σ)} where transform(P (X), σ) :=
P (σ(X)).

Rules A rule r has the following form P (X) ← Q1(Y1), . . . , Qn(Yn) where P, Q1, . . . , Qn denote
concept or role names with the additional restriction (safety condition) that as set(X) ⊆ as set(Y1)∪
· · ·∪as set(Yn). Rules are used to derive new Abox assertions, and we say that a rule r is applied to an
Abox A. The function call apply(Σ,P (X)← Q1(Y1), . . . , Qn(Yn),A) returns a set of Abox assertions
{σ(P (X))} if there exists an admissible variable substitution σ such that the answer to the query

{() | Q1(σ(Y1)), . . . , Qn(σ(Yn))}

is true with respect to Σ ∪A.2 If no such σ can be found, the result of the call to apply(Σ, r,A) is the
empty set. The application of a set of rules R = {r1, . . . rn} to an Abox is defined as follows:

apply(Σ,R,A) =
⋃
r∈R

apply(Σ, r,A)

The result of forward chain(Σ,R,A) is defined to be ∅ if apply(Σ,R,A) ∪ A = A holds. Otherwise
the result of forward chain is determined by the recursive call
apply(Σ,R,A) ∪ forward chain(Σ,R,A ∪ apply(Σ,R,A)).

For some set of rules R we extend the entailment relation by specifying that (T ,A) |=R A0 iff
(T ,A ∪ forward chain((T , ∅),R,A)) |= A0.

2.3 Probabilistic Knowledge Representation

The basic notion of probabilistic knowledge representation formalisms is the so-called random experi-
ment. A random variable X is a function assigning a value to the result of a random experiment. The
random experiment itself is not represented, so random variables are functions without arguments,
which return different values at different points of time. Possible values of a random variable comprise
the so-called domain of the random variable. In the sequel, we will use boolean random variables,
whose values can be either 1 or 0 (true or false, respectively). Let ~X = {X1, ..., Xn} be the ordered
set of all random variables of a random experiment. An event (denoted ~X = ~x) is an assignment
X1 = x1, ..., Xn = xn to all random variables. In case n = 1 we call the event simple, otherwise the
event is called complex. A certain vector of values ~x is referred to as a possible world. A possible world
can be associated with a probability value or probability for short. Hence, the notion of a possible
world can be used as a synonym for an event, and depending on the context we use the former or the
latter name. In case of an event with a boolean random variable X, we write x as an abbreviation for
X = true and ¬x as an abbreviation for X = false. Mappings of events to probabilities (or assignment
of probabilities to events) are specified with so-called probability assertions of the following syntax:
P (~X = ~x) = p, where ~X is a vector of random variables, and p is a real value between 0 and 1 (it is
assumed that the reader is familiar with Kolmogorov’s axioms of probability). In the special case of a
simple event (single random variable, n = 1) we write P (X = x) = p. The probability value p of an
event is denoted as P (~X = ~x) (or P (X = x) in the simple case). In its raw form a set of probabilistic
assertions is called a probabilistic knowledge base (with signature ~X). A mapping from the domain of
a random variable X to probability values [0, 1] is called a distribution. For distributions we use the
notation P(X). Distributions can be defined for (ordered) sets of random variables as well. In this case
we use P(X1, . . . , Xn) as a denotation for a mapping to the n-dimensional cross product of [0, 1]. For
specifying a distribution, probability assertions for all domain values must be specified, and the values
p must sum up to 1. In case all random variables of a random experiment are involved, we speak of a

2 We slightly misuse notation in assuming (T ,A) ∪ ∆ = (T ,A ∪ ∆). If Σ ∪ A is inconsistent the result is
well-defined but useless. It will not be used afterwards.

full joint probability distribution (JPD), otherwise the expression is said to denote a joint distribution
or a marginal distribution (projection of the n-dimensional space of probability values to a lower-
dimensional space with m dimensions). The expression P(X1, . . . , Xm, Xm+1 = xm+1, . . . , Xl = xl)
denotes an m-dimensional distribution with known values xm+1, . . . , xl. In slight misuse of notation,
we sometimes write ~e for these known values (e stands for evidence). The fragment ~e need not neces-
sarily be written at the end in the parameter list of P. A conditional probability for a set of random
variables X1, ..., Xm is denoted with P (X1 = x1, ..., Xm = xm | ~e) or, in distribution form, we write
P(X1, ..., Xm | ~e) (conditional probability distribution). This distribution can also be written as P(~X,~e)

P(~e) .
For a probabilistic knowledge base, formal inference problems are defined. We restrict our attention
to the two most convenient probabilistic inference problems: A conditional probability query is the
computation of the joint distribution of a set of m random variables conditioned on ~e and is denoted
with PX(x1 ∧ ... ∧ xm | ~e) where vars(x1, . . . , xm) ∩ vars(~e) = ∅ and vars(x1, . . . , xm) ∪ vars(~e) ⊆ X
with vars specified in the obvious way. Note that xi indicates Xi = xi. In the following we have the
distribution form of the above query: PX(X1, ..., Xm | ~e). If the set of random variables X is known
from the context, the subscript X is often omitted. The Maximum A Posteriori (MAP) inference re-
turns the most-likely state of query atoms given the evidence. Based on the MAP inference, the “most
probable world” given the evidence is determined as a set of events. The MAP inference problem given
a distribution for a set of random variables X is formalized as follows:

MAPX(~e) := ~e ∪ argmax~xP (~x|~e) (1)

where vars(~x) ∩ vars(~e) = ∅ and vars(~x) ∪ vars(~e) = X. For both inference problems, conditional
probability queries as well as the MAP problem, different kinds of algorithms exist, which possibly
exploit additional assertions (such as, e.g., conditional independence assumptions in so-called Bayesian
networks, or factored probability distribution specifications as in so-called Markov networks). In the
next subsection, we focus on the latter formalism.

2.4 Markov Logic

The formalism of Markov logic [Domingos and Richardson, 2007] provides a means to combine the
expressivity of first-order logic augmented with the formalism of Markov networks [Pearl, 1988]. The
Markov logic formalism uses first-order logic to define “templates” for constructing Markov networks.
The basic notion for this is called a Markov logic network.

A Markov logic network MLN = (FMLN ,WMLN) consists of a sequence of first-order formulas
FMLN = 〈F1, ..., Fm〉 and a sequence of real number weightsWMLN = 〈w1, ..., wm〉. The association of
a formula to its weight is by position in the sequence. For a formula F ∈ FMLN with associated weight
w ∈ WMLN we also write wF (weighted formula). Thus, a Markov logic network can also be defined
as a set of weighted formulas. Both views can be used interchangeably. As a notational convenience,
for ordered sets we nevertheless sometimes write ~X, ~Y instead of ~X ∪ ~Y .

In contrast to standard first-order logics such as predicate logic, relational structures not satisfying
a formula Fi are not ruled out as models. If a relational structure does not satisfy a formula associated
with a large weight it is just considered to be quite unlikely the ”right” one.

Let C = {c1, ..., cm} be the set of all constants mentioned in FMLN . A grounding of a formula
Fi ∈ FMLN is a substitution of all variables in the matrix of Fi with constants from C. From all
groundings, the (finite) set of grounded atomic formulas (also referred to as ground atoms) can be
obtained. Grounding corresponds to a domain closure assumption. The motivation is to get rid of the
quantifiers and reduce inference problems to the propositional case.

Since a ground atom can either be true or false in an interpretation (or world), it can be considered
as a boolean random variable X. Consequently, for each MLN with associated random variables ~X,
there is a set of possible worlds ~x. In this view, sets of ground atoms are sometimes used to denote
worlds. In this context, negated ground atoms correspond to false and non-negated ones to true. We
denote worlds using a sequence of (possibly negated) atoms.

When a world ~x violates a weighted formula (does not satisfy the formula) the idea is to ensure
that this world is less probable rather than impossible as in predicate logic. Note that weights do not
directly correspond to probabilities (see [Domingos and Richardson, 2007] for details).

For each possible world of a Markov logic network MLN = (FMLN ,WMLN) there is a proba-
bility for its occurrence. Probabilistic knowledge is required to obtain this value. As usual, proba-
bilistic knowledge is specified using a probability distribution. In the formalism of Markov networks
the full joint probability distribution of a Markov logic network MLN is specified in symbolic form
as PMLN (~X) = (P (~X = ~x1), . . . , P (~X = ~xn)), for every possible ~xi ∈ {true, false}n, n = | ~X|
and P (~X = ~x) := log linMLN (~x) (for a motivation of the log-linear form, see, e.g., [Domingos and
Richardson, 2007]), with log lin being defined as

log linMLN (~x) =
1
Z
exp (

|FMLN |∑
i=1

wini(~x))

According to this definition, the probability of a possible world ~x is determined by the exponential
of the sum of the number of true groundings (ni) formulas Fi ∈ FMLN in ~x, multiplied with their
corresponding weights wi ∈ WMLN , and finally normalized with

Z =
∑
~x∈ ~X

exp (
|FMLN |∑
i=1

wini(~x)), (2)

the sum of the probabilities of all possible worlds. Thus, rather than specifying the full joint distribution
directly in symbolic form as we have discussed before, in the Markov logic formalism, the probabilistic
knowledge is specified implicitly by the weights associated with formulas. Determining these formulas
and their weights in a practical context is all but obvious, such that machine learning techniques are
usually employed for knowledge acquisition.

A conditional probability query for a Markov logic network MLN is the computation of the joint
distribution of a set of m events involving random variables conditioned on ~e and is denoted with

PMLN (x1 ∧ . . . ∧ xm | ~e)

The semantics of this query is given as:

Prand vars(MLN)(x1 ∧ . . . ∧ xm | ~e) w.r.t. PMLN (rand vars(MLN))

where vars(x1, . . . , xm)∩vars(~e) = ∅ and vars(x1, . . . , xm) ⊆ rand vars(MLN). The function rand vars
is defined as follows: rand vars((F ,W)) := {A(C) | A(C) is mentioned in some grounded formula F ∈
F}. Grounding is accomplished w.r.t. all constants that appear in F where A denotes atomic concept
or atomic role. An algorithm for answering queries of the above form is investigated in [Gries and
Möller, 2010]. In the case of Markov logic, the definition of the MAP problem given in (1) can be
rewritten as follows. The conditional probability term P (~x|~e) is replaced with the Markovian formula:

MAPMLN (~e) := ~e ∪ argmax~x
1
Ze

exp

(∑
i

wini (~x,~e)

)
(3)

Thus, for describing the most-probable world, MAP returns a set of events, one for each random
variable used in the Markov network derived from MLN . In the above equation, ~x denotes the hidden
variables, and Ze denotes the normalization constant which indicates that the normalization process
is performed over possible worlds consistent with the evidence ~e. In the next equation, Ze is removed
since it is constant and it does not affect the argmax operation. Similarly, in order to optimize the
MAP computation the exp function is left out since it is a monotonic function and only its argument
has to be maximized:

MAPMLN (~e) := ~e ∪ argmax~x
∑
i

wini (~x,~e) (4)

The above equation shows that the MAP problem in Markov logic formalism is reduced to a new
problem which maximizes the sum of weights of satisfied clauses. Since the MAP determination in
Markov networks is an NP-hard problem [Domingos and Richardson, 2007], it is performed by exact
and approximate solvers. The most commonly used approximate solver is theMaxWalkSAT algorithm,
a weighted variant of the WalkSAT local-search satisfiability solver. The MaxWalkSAT algorithm
attempts to satisfy clauses with positive weights and keeps clauses with negative weights unsatisfied.

2.5 Combining Markov Logic and Description Logics

Since ALHf − is a fragment of first-order logic, its extension to the Markovian style of formalisms is
specified in a similar way as for predicate logic in the section before. The formulas in Markov logic
correspond to Tbox axioms and Abox assertions. Weights in Markov description logics are associated
with axioms and assertions. Groundings of Tbox axioms are defined analogously to the previous case.3

Abox assertions do not contain variables and are already grounded. Note that due to the restricted
use of existential restrictions in ALHf − there always exists a model with a domain whose elements
correspond the individuals mentioned in an Abox (no “unnamed domain objects” are required).

For appropriately representing domain knowledge, weights might be used only for a subset of the
axioms of the domain ontology. The remaining axioms can be assumed to be strict, i.e., assumed to
be true in any case. A consequence of specifying strict axioms is that lots of possible worlds ~x can be
ruled out (i.e., will have probability 0 by definition). This has a direct consequence for implementing
sampling approaches to answer probabilistic queries. Using deterministic knowledge (rather than high
weights) can speed up Gibbs sampling significantly. Since lots of possible worlds do not have to be
considered because their probability is known to be 0, probabilistic reasoning will be significantly faster,
given one can show the ergodic character of the corresponding Markov chains. In [Gries and Möller,
2010] we show that Gibbs sampling with deterministic dependencies specified in a fragment of ALH−f
remains correct, i.e., probability estimations approximate the correct probabilities. The advantage of
this approach is that initial ontology engineering is done as usual with standard reasoning support and
with the possibility to add weighted axioms and weighted assertions on top of the strict fundament.

3 Probabilistic Interpretation Engine

At the beginning of this section, the most important preliminaries to the abduction process are speci-
fied. Afterwards, functions are introduced for the abduction procedure, interpretation procedure, and
the media interpretation agent.

3.1 Computing Explanations

In general, abduction is formalized as Σ ∪ ∆ |=R Γ where background knowledge (Σ), rules (R),
and observations (Γ) are given, and explanations (∆) are to be computed. In terms of DLs, ∆ and
Γ are Aboxes and Σ is a pair of Tbox and Abox. Abox abduction is implemented as a non-standard
retrieval inference service in DLs. In contrast to standard retrieval inference services where answers
are found by exploiting the ontology, Abox abduction has the task of acquiring what should be added
to the knowledge base in order to answer a query. Therefore, the result of Abox abduction is a set of
hypothesized Abox assertions. To achieve this, the space of abducibles has to be defined. We do this
in terms of rules. We assume that a set of rules R as defined above (see Section 2.2) are specified, and
define a non-deterministic function compute explanation as follows.4

– compute explanation(Σ,R,A, P (z)) = transform(Φ, σ) if there exists a rule

r = P (X)← Q1(Y1), . . . , Qn(Yn) ∈ R
3 For this purpose, the variable-free syntax of axioms can be first translated to predicate logic.
4 The funcion transform is defined in Section 2.2.

that is applied to an Abox A such that a minimal set of atoms Φ and an admissible variable
substitution σ with σ(X) = z can be found such that the query Q := {() | expand(P (z), r,R, σ)\Φ}
is answered with true. Note that σ might introduce mappings to individuals not mentioned in A
(new individuals). The number of new individuals is bounded by the number of variables.

– If no such rule r exists in R it holds that compute explanation(Σ,R,A, P (z)) = ∅.

The goal of the function compute explanation is to determine what must be added (σ(Φ)) such that
an entailment Σ∪A∪Φ |=R P (z) holds. Hence, for compute explanation, abductive reasoning is used.
The set of assertions Φ ⊆ expand(P (X), r,R, σ) represents what needs to be hypothesized in order
to answer the query Q with true. The definition of compute explanation is non-deterministic due to
several possible choices for Φ.

Assuming a fresh name fresh prefix for each application of rule r = P (X)← Q1(Y1), . . . , Qn(Yn),
the function application expand(P (z), P (X) ← Q1(Y1), . . . , Qn(Yn),R, σ) is also defined in a non-
deterministic way as

expand′(Q1(σ′fresh prefix(Y1)),R, σ) ∪ · · · ∪ expand′(Qn(σ′fresh prefix(Yn)),R, σ)

with expand′(P (z),R, σ) being expand(P (z), r,R, σ) if there exists a rule r = (P (X)← . . .) ∈ R and
〈P (X)〉 otherwise. The variable substitution σ′ is an extension of σ such that σ′prefix(x) = σ(x) if x ∈
as set(X) and, otherwise, σ′prefix(x) = concat(prefix, x) where concat is a function for concatenating
prefix and x.

Applying the expand proedure, we say the set of rules is backward-chained, and since there might be
multiple rules inR, backward-chaining is non-deterministic. Thus, multiple explanations are generated.

3.2 The Abduction Procedure

In the following, we devise an abstract computational engine for “explaining” Abox assertions in terms
of a given set of rules. Explanation of Abox assertions w.r.t. a set of rules is meant in the sense that
using the rules some high-level explanations are constructed such that the Abox assertions are entailed.
The explanation of an Abox is again an Abox. For instance, the output Abox represents results of the
content interpretation process. The presentation is slightly extended compared to the one in [Castano
et al., 2008]. Let the agenda A be a set of Aboxes Γ and let Γ be an Abox of observations whose
assertions are to be explained. The goal of the explanation process is to use a set of rules R to
derive “explanations” for elements in Γ . The explanation algorithm implemented in the Conceptual
Abduction Engine (CAE) works on a set of Aboxes I.

The complete explanation process is implemented by the CAE function:

Function CAE(Ω, Ξ, Σ, R, S, A):
Input: a strategy function Ω, a termination function Ξ, a knowledge base Σ, a set of rules R, a
scoring function S, and an agenda A
Output: a set of interpretation Aboxes I′

I′ := {assign level(l,A)};
repeat

I := I′;
(A, α) := Ω(I);
l = l + 1;
I′ := (A \ {A}) ∪ assign level(l, explanation step(Σ,R, S,A, α));

until Ξ(I) or no A and α can be selected such that I′ 6= I ;
return I′

where assign level(l,A) is defined as follows:

assign level(l,A) = map(λ(A) • assign level(l,A),A) (5)

assign level(l,A) takes as input a superscript l and an agenda A. In the following, assign level(l,A)
is defined which superscripts each assertion α of the Abox A with l if the assertion α does not already
have a superscript:

assign level(l,A) =
{
αl | α ∈ A, α 6= βi, i ∈ N

}
(6)

The motivation for adding levels to assertions is to support different strategies Ω. Note that l is a global
variable, its starting value is zero, and it is incremented in the CAE function. The map5 function is
defined as follows:

map(f,X) =
⋃
x∈X
{f(x)} (7)

It takes as parameters a function f and a set X and returns a set consisting of the values of f
applied to every element x of X. The CAE function applies the strategy function Ω in order to decide
which assertions to explain, uses a termination function Ξ in order to check whether to terminate due
to resource constraints and a scoring function S to valuate an explanation. The function Ω for the
explanation strategy and Ξ for the termination condition are used as an oracle and must be defined
in an application-specific way. The function explanation step is defined as follows.

explanation step(Σ,R, S,A, α):⋃
∆∈compute all explanations(Σ,R,S,A,α)

consistent completed explanations(Σ,R,A, ∆).

We need two additional auxiliary functions.

consistent completed explanations(Σ,R,A, ∆):
{∆′ | ∆′ = ∆ ∪ A ∪ forward chain(Σ,R, ∆ ∪ A), consistentΣ(∆′)}

compute all explanations(Σ,R, S,A, α):
maximize(Σ,R,A, {∆ | ∆ = compute explanation(Σ,R, α), consistentΣ∪A(∆)}, S).

The function maximize(Σ,R,A, ∆s, S) selects those explanations ∆ ∈ ∆s for which the score
S(Σ,R,A, ∆) is maximal, i.e., there exists no other∆′ ∈ ∆s such that S(Σ,R,A, ∆′) > S(Σ,R,A, ∆).
The function consistent(T ,A)(A′) determines if the Abox A ∪ A′ has a model which is also a model
of the Tbox T . Note the call to the nondeterministic function compute explanation. It may return
different values, all of which are collected. In the next Section we explain how probabilistic knowledge is
used to (i) formalize the effect of the “explanation”, and (ii) formalize the scoring function S used in the
CAE algorithm explained above. In addition, it is shown how the termination condition (represented
with the parameter Ξ in the above procedure) can be defined based on the probabilistic conditions.

3.3 The Interpretation Procedure

The interpretation procedure is completely discussed in this section by explaining the interpretation
problem and presenting a solution to this problem. The solution is presented by a probabilistic in-
terpretation algorithm which calls the CAE function described in the previous section. In the given
algorithm, a termination function, and a scoring function are defined. The termination function de-
termines if the interpretation process can be stopped since at some point during the interpretation
process it makes no sense to continue the process. The reason for stopping the interpretation process
is that no significant changes can be seen in the results. The defined scoring function in this section
assigns probabilistic scores to the interpretation Aboxes.
5 Please note that in this report, the expression map is used in two different contexts. The first one MAP

denotes the Maximum A Posteriori approach which is a sampling method whereas the second one map is a
function used in the assign level(l,A) function.

Problem The objective of the interpretation component is the generation of interpretations for the
observations. An interpretation is an Abox which contains high level concept assertions. Since in we
adopt the view that agents are used for solving the problems while acquiring information, in the
following the same problem is formalized in the perspective of an agent: Consider an agent given some
percepts in an environment where the percepts are the analysis results of the multimedia documents.6

The objective of this agent is finding explanations for the existence of percepts. The question is how
the interpretation Aboxes are determined and how long the interpretation process must be performed
by the agent. The functionality of this Media Interpretation Agent is presented in the MI Agent
algorithm in Section 3.4.

Solution In the following, an application for a probabilistic interpretation algorithm is presented which
gives a solution to the mentioned problem. This solution illustrates a new perspective to the interpre-
tation process and the reason why it is performed. In this approach, we define a probabilistic scoring
function which assigns probabilities to the interpretation Aboxes. Additionally, we define a termination
function which determines whether the interpretation process can be terminated. The central idea is to
check whether interpretation results computed by a call to CAE substantially increase the probability
the the observations are true. If there is no significant increase (due to a threshold ε, possible interpre-
tations are considered as irrelevant for the agent.7 Another important idea is that, given a “current”
interpretation, the agent should be able to compute what must be added due to new percepts and
what must be retracted (for this purpose, an Abox difference operator is used).

We are now ready to define the algorithm. Assume that the media interpretation component
receives a weighted Abox A which contains observations. In the following, the applied operation
P (A,A′,R,WR, T) in the algorithm is explained:

The P (A,A′,R,WR, T) function determines the probability of the Abox A with respect to the
Abox A′, a set of rules R, a set of weighted rules WR, and the Tbox T where A ⊆ A′. Note that R
is a set of forward and backward chaining rules. The probability determination is performed based on
the Markov logic formalism as follows:

P (A,A′,R,WR, T) = PMLN(A,A′,R,WR,T)(~Q(A) | ~e(A′)) (8)

~Q(A) denotes an event composed of the conjunction of all assertions which appear in the Abox A.
Assume that the Abox A contains n assertions α1, . . . , αn. Consequently, the event for the Abox A is
defined as follows:

~Q(A) = 〈α1 = true ∧ . . . ∧ αn = true〉 (9)

Consider Abox A contains m assertions α1, . . . , αm. Then, the evidence vector ~e(A) is defined by:

~e(A) = 〈α1 = true, . . . , αm = true〉 (10)

Note that α1, . . . , αn denote the boolean random variables of the MLN . In order to answer the query
PMLN(A,A′,R,WR,T)(~Q(A) | ~e(A′)) the function MLN(A,A′,R,WR, T) is called. This function re-
turns a Markov logic network MLN = (FMLN ,WMLN) where FMLN and WMLN are ordered sets
initialized as follows: FMLN = ∅ and WMLN = ∅. In the following, it is described how the MLN is
built based on the Aboxes A and A′, the rules R and WR and the Tbox T :8

MLN(A,A′,R,WR, T) =

8>>>>>>>>>>><>>>>>>>>>>>:

FMLN = FMLN ∪ {α}; WMLN =WMLN ∪ {w} if wα ∈ A
FMLN = FMLN ∪ {α}; WMLN =WMLN ∪ {∞} if α ∈ A
FMLN = FMLN ∪ {α}; WMLN =WMLN ∪ {w} if wα ∈ A′

FMLN = FMLN ∪ {α}; WMLN =WMLN ∪ {∞} if α ∈ A′

FMLN = FMLN ∪ {α}; WMLN =WMLN ∪ {∞} if α ∈ R
FMLN = FMLN ∪ {α}; WMLN =WMLN ∪ {w} if wα ∈ WR
FMLN = FMLN ∪ {FOL(α)}; WMLN =WMLN ∪ {∞} if α ∈ T

6 The analysis might also be carried out by the agent.
7 Obviously, there is a horizon problem, which we neglect for the time being.
8 FOL(φ) represents the GCI φ is first-order notation.

where w and α denote a weight and an assertion, respectively. In the following, the interpretation
algorithm Interpret is presented:

Function Interpret(A, CurrentI, Γ , T , FR, BR, WR, ε)
Input: an agenda A, a current interpretation Abox CurrentI, an Abox of observations Γ , a
Tbox T , a set of forward chaining rules FR, a set of backward chaining rules BR, a set of
weighted rules WR, and the desired explanation significance threshold ε
Output: an agenda A′, a new interpretation Abox NewI, and Abox differences for additions
∆1 and omissions ∆2

i := 0 ;
p0 := P (Γ, Γ,R,WR, T) ;
Ξ := λ(A) •

{
i := i+ 1; pi := maxA∈A P (Γ,A ∪A0,R,WR, T); return | pi − pi−1 |< ε

i

}
;

Σ := (T , ∅);
R := FR ∪ BR;
S := λ((T ,A0)),R,A, ∆) • P (Γ,A ∪A0 ∪∆,R,WR, T);
A′ := CAE(Ω,Ξ,Σ,R, S,A);
NewI = argmaxA∈A′(P (Γ,A,R,WR, T));
∆+ = AboxDiff (NewI,CurrentI); // additions
∆− = AboxDiff (CurrentI,NewI); // omissions
return (A′, NewI,∆+, ∆−);

In the above algorithm, the termination function Ξ and the scoring function S are defined by lambda
calculus terms. The termination condition Ξ of the algorithm is that no significant changes can be
seen in the successive probabilities pi and pi−1 (scores) of the two successive generated interpretation
Aboxes in two successive levels i− 1 and i. In this case, the current interpretation Abox CurrentI is
preferred to the new interpretation Abox NewI. The CAE function is called which returns agenda
A′. Afterwards, the interpretation Abox NewI with the maximum score among the Aboxes A of A′

is selected. Additionally, the Abox differences ∆+ and ∆−, respectively, for additions and omissions
among the interpretation Aboxes CurrentI and NewI are computed.

For the time being, we formalize AboxDiff as set difference, knowing that a semantic approach
would be desirable.

In the following, the strategy condition Ω is defined which is one of the parameters of CAE function:

Function Ω(I)
Input: a set of interpretation Aboxes I
Output: an Abox A and a fiat assertion α

A :=
{
A ∈ I | ¬∃A′ ∈ I,A′ 6= A : ∃α′l

′
∈ A′ : ∀αl ∈ A : l′ < l

}
;

A := random select(A);
min αs =

{
αl ∈ A | ¬∃α′l

′
∈ A′, α′l

′
6= αl, l′ < l

}
;

return (A, random select(min αs));

In the above strategy function Ω, the agenda A is a set of Aboxes A such that the assigned superscripts
to their assertions are minimum. In the next step, an Abox A from A is randomly selected. Afterwards,
the min αs set is determined which contains the assertions α from A whose superscripts are minimal.
These are the assertions which require explanations. The strategy function returns as output an Abox
A and an assertion α which requires explanation.

3.4 The Media Interpretation Agent

In the following, the MI Agent function is presented which calls the Interpret function:

Function MI Agent(Q, Partners, Die, (T ,A0),FR,BR,WR, ε)
Input: a queue of percept results Q, a set of partners Partners, a function Die, a background
knowledge base (T ,A0), a set of forward chaining rules FR, a set of backward chaining rules
BR, a set of weighted rules WR, and the desired precision of the results ε
Output: –
CurrentI = ∅;
A′′ = {∅};
repeat

Γ := extractObservations(Q);
W := MAP (Γ,WR, T) ;
Γ ′ := select(W,Γ);
A′ := filter(λ(A)•consistentΣ(A),map(λ(A)•Γ ′∪A∪A0∪forward chain(Σ,FR, Γ ′∪A∪A0),

{select(MAP (Γ ′ ∪ A ∪A0,WR, T), Γ ′ ∪ A ∪A0) | A ∈ A′′}));
(A′′, NewI,∆+, ∆−) := Interpret(A′, CurrentI, Γ ′, T ,FR,BR,WR∪ Γ, ε);
CurrentI := NewI;
Communicate(∆+, ∆−, Partners);
A′′ := manage agenda(A′′);

until Die() ;

The body of MI Agent uses a set of auxiliary functions, which are defined as follows.

filter(f,X) =
⋃
x∈X

{
{x} if f(x) = true

∅ else
(11)

The function filter takes as parameters a function f and a set X and returns a set consisting of the
values of f applied to every element x of X. In the MI Agent function, the current interpretation
CurrentI is initialized to empty set and the agenda A′′ to a set containing empty set. Since the
agent performs an incremental process, it is defined by a repeat-loop. The percept results Γ are sent
to the queue Q. In order to take the observations Γ from the queue Q, the MI Agent calls the
extractObservations function.

In the following we assume that Γ represents an ordered set. The MAP (Γ,WR, T) determines the
most probable world of observations Γ with respect to a set of weighted rulesWR and the Tbox T . This
function performs the MAP process defined in Section 2. It returns a vector W which consists of zeros
and ones assigned to indicate whether the ground atoms of the considered world are true (positive)
and false (negative), respectively. The function select(W,Γ) then selects the positive assertions in
the input Abox Γ using the bit vector W . The selected positive assertions are the assertions which
require explanations. The Select operation returns as output an Abox Γ ′ which has the following
characteristic: Γ ′ ⊆ Γ . The determination of the most probable world by the MAP function and the
selection of the positive assertions is also carried out on Γ ′ ∪ A ∪A0.

In the next step, a set of forward chaining rules FR is applied to Γ ′ ∪ A ∪ A0. The generated
assertions in this process are added to the to Γ ′ ∪A∪A0. In the next step, only the consistent Aboxes
are selected and the inconsistent Aboxes are removed. Afterwards, the Interpret function is called to
determine the new agenda A′′, the new interpretation Abox NewI and the Abox differences ∆1 and
∆2 for additions and omissions among CurrentI and NewI. Afterwards, the CurrentI is set to the
NewI and the MI Agent function communicates the Abox differences ∆1 and ∆2 to the Partners.
The manage agenda function is also called. This function is explained in Section 6. The termination
condition of the MI Agent function is that the Die() function is true. Note that the MI Agent waits
in the function call extractObservations(Q) if Q = ∅.

After presenting the above algorithms, the mentioned unanswered questions can be discussed. A
reason for performing the interpretation process and explaining the fiat assertions is that the probability
of P (A,A′,R,WR, T) will increase through the interpretation process. In other words, by explaining
the observations the agent’s belief to the percepts will increase. This shows a new perspective for
performing the interpretation process. The answer to the question whether there is any measure for

stopping the interpretation process, is indeed positive. This is expressed by | pi−pi−1 |< ε
i which is the

termination condition Ξ of the algorithm. The reason for selecting ε
i and not ε as the upper limit for

the termination condition is to terminate the oscillation behaviour of the results. In other words, the
precision interval is tightened step by step during the interpretation process. In Section 4, we discuss
an example for interpreting a single video shot.

4 Preference-Based Video Shot Interpretation

One of the main innovations introduced in the previous section, namely the introduction of a proba-
bilistic preference measure to control the space of possible interpretations, is demonstrated here using
examples from an environmental domain.

We have to mention that this example is not constructed to show the possible branchings through
the interpretation process. The purpose of this example is to show how the probabilities of the most
probable world of observations P (A0,A,R,WR, T) behave during the interpretation process.

At the beginning of this example, the signature of the knowledge base is presented. The set of all
concept names CN is divided into two disjoint sets Events and PhysicalThings such that

CN = Events ∪PhysicalThings where these two sets are defined as follows:
Events = {CarEntry,EnvConference, EnvProt,HealthProt}
PhysicalThings = {Car,DoorSlam,Building,Environment,Agency}

EnvConference, EnvProt and HealthProt denote respectively environmental conference, environmen-
tal protection and health protection. The set of role names RN is defined as follows:

RN = {Causes,OccursAt,HasAgency,HasTopic,HasSubject,HasObject,HasEffect ,
HasSubEvent,HasLocation}

In the following, the set of individual names IN is given:
IN = {C1, DS1, ES1, Ind42, Ind43, Ind44, Ind45, Ind46, Ind47, Ind48}

In the following, the set of the forward chaining rules FR is defined:
FR = {∀x CarEntry(x)→ ∃y Building(y), OccursAt(x, y),

∀x EnvConference(x)→ ∃y Environment(y), HasTopic(x, y),
∀x EnvProt(x)→ ∃y Agency(y), HasAgency(x, y)}

Similarly, the set of backward chaining rules BR is given as follows:
BR = {Causes(x, y)← CarEntry(z), HasObject(z, x),HasEffect(z, y), Car(x), DoorSlam(y),

OccursAt(x, y)← EnvConference(z), HasSubEvent(z, x), HasLocation(z, y), CarEntry(x), Building(y),

HasTopic(x, y)← EnvProt(z), HasSubEvent(z, x), HasObject(z, y),EnvConference(x), Environment(y),

HasAgency(x, y)← HealthProt(z), HasObject(z, x), HasSubject(z, y), EnvProt(x), Agency(y)}
In the following, a set of weighted rules WR is defined where the weight of each rule is 5:
WR = {5 ∀x, y, z CarEntry(z)∧HasObject(z, x)∧HasEffect(z, y)→ Car(x)∧DoorSlam(y)∧Causes(x, y),

5 ∀x, y, z EnvConference(z)∧HasSubEvent(z, x)∧HasLocation(z, y)→ CarEntry(x)∧Building(y)∧OccursAt(x, y),

5 ∀x, y, z EnvProt(z) ∧ HasSubEvent(z, x) ∧ HasObject(z, y) → EnvConference(x) ∧ Environment(y) ∧
HasTopic(x, y),

5 ∀x, y, z HealthProt(z)∧HasObject(z, x)∧HasSubject(z, y)→ EnvProt(x)∧Agency(y)∧HasAgency(x, y)}
The selected value for ε in this example is 0.05. In the following, ∆1 and ∆2 denote respectively

the set of assertions hypothesized by a forward chaining rule and the set of assertions generated by a
backward chaining rule at each interpretation level. Let us assume that the media interpretation agent
receives the following weighted Abox A:
A = {1.3 Car(C1), 1.2 DoorSlam(DS1),−0.3 EngineSound(ES1), Causes(C1, DS1)}

The first applied operation to A is the MAP function which returns the bit vector W = 〈1, 1, 0, 1〉. By
applying the select function to W and the input Abox A, the assertions from the input Abox A are
selected that correspond to the positive events in W . Additionally, the assigned weights to the positive
assertions are also taken from the input Abox A. In the following, Abox A0 is depicted which contains
the positive assertions:
A0 = {1.3 Car(C1), 1.2 DoorSlam(DS1), Causes(C1, DS1)}

At this step, p0 = P (A0,A0,R,WR, T) = 0.755. Since no appropriate forward chaining rule from FR
is applicable to Abox A0, ∆1 = ∅ and as a result A0 = A0 ∪ ∅. The next step is the performance of
backward chain function where the next backward chaining rule from BR can be applied to Abox A0:

Causes(x, y)← CarEntry(z), HasObject(z, x),HasEffect(z, y), Car(x), DoorSlam(y)
Consequently, by applying the above rule the next set of assertions is hypothesized:
∆2 = {CarEntry(Ind42), HasObject(Ind42, C1),HasEffect(Ind42, DS1)}
which are considered as strict assertions. Consequently, A1 is defined as follows: A1 = A0 ∪∆2.

In the above Abox, p1 = P (A0,A1,R,WR, T) = 0.993. As it can be seen, p1 > p0 i.e.
P (A0,Ai,R,WR, T) increases by adding the new hypothesized assertions. This shows that the new
assertions are considered as additional support. The termination condition of the algorithm is not
fulfilled therefore the algorithm continues processing. At this level, it is still not known whether Abox
A1 can be considered as the final interpretation Abox. Thus, this process is continued with another
level. Consider the next forward chaining rule:
∀x CarEntry(x)→ ∃y Building(y), OccursAt(x, y)
By applying the above rule, the next set of assertions is generated namely:
∆1 = {Building(Ind43), OccursAt(Ind42, Ind43)}
The generated assertions are also considered as strict assertions. In the following, the expanded

Abox A1 is defined as follows: A1 := A1 ∪∆1.
Let us assume the next backward chaining rule from BR:
OccursAt(x, y)← EnvConference(z), HasSubEvent(z, x), HasLocation(z, y), CarEntry(x), Building(y)

Consequently, by applying the above abduction rule the next set of assertions is hypothesized:
∆2 = {EnvConference(Ind44), HasSubEvent(Ind44, Ind42), HasLocation(Ind44, Ind43)}
which are considered as strict assertions. Consequently, A2 = A1 ∪∆2.
In the above Abox, p2 = P (A0,A2,R,WR, T) = 0.988. As it can be seen, p2 < p1 i.e.

P (A0,Ai,R,WR, T) decreases slightly by adding the new hypothesized assertions. Since the termina-
tion condition of the algorithm is fulfilled, Abox A1 can be considered as the final interpretation Abox.
To realize how the further behaviour of the probabilities is, this process is continued for the sake of
illustration. Consider the next forward chaining rule from FR:
∀x EnvConference(x)→ ∃y Environment(y), HasTopic(x, y)
By applying the above rule, new assertions are generated.
∆1 = {Environment(Ind45), HasTopic(Ind44, Ind45)}
In the following, the expanded Abox A2 is defined: A2 = A2 ∪∆1.

Consider the next backward chaining rule from BR:
HasTopic(x, y)← EnvProt(z), HasSubEvent(z, x), HasObject(z, y),EnvConference(x), Environment(y)

By applying the above abduction rule, the following set of assertions is hypothesized:
∆2 = {EnvProt(Ind46), HasSubEvent(Ind46, Ind44), HasObject(Ind46, Ind45)}
which are considered as strict assertions. In the following, A3 is defined as follows A3 = A2 ∪∆2.

In the above Abox A3, p3 = P (A0,A3,R,WR, T) = 0.99. As it can be seen, p3 > p2, i.e.
P (A0,Ai,R,WR, T) increases slightly by adding the new hypothesized assertions.
Consider the next forward chaining rule:
∀x EnvProt(x)→ ∃y Agency(y), HasAgency(x, y)
By applying the above rule, the next assertions are generated:
∆1 = {Agency(Ind47), HasAgency(Ind46, Ind47)}
As a result, the expanded Abox A3 is presented as follows: A3 = A3 ∪∆1.
Let us consider the next backward chaining rule from BR:
HasAgency(x, y)← HealthProt(z), HasObject(z, x), HasSubject(z, y), EnvProt(x), Agency(y)

Consequently, new assertions are hypothesized by applying the above abduction rule, namely:
∆2 = {HealthProt(Ind48), HasObject(Ind48, Ind46), HasSubject(Ind48, Ind47)}
which are considered as strict assertions. Consequently, A4 is defined as follows: A4 = A3 ∪∆2.
In the above Abox, p4 = P (A0,A4,R,WR, T) = 0.985. As it can be seen, p4 < p3, i.e.
P (A0,Ai,R,WR, T) decreases slightly by adding the new hypothesized assertions.

Discussion of the Results:

The determined probability values P (A0,Ai,R,WR, T) of this example are summarized in the
next table which shows clearly the behaviour of the probabilities stepwise after performing the inter-
pretation process. In this table, variable i denotes the successive levels of the interpretation process.

i Abox Ai pi = P (A0,Ai,R,WR, T)
0 A0 p0 = 0.755
1 A1 p1 = 0.993
2 A2 p2 = 0.988
3 A3 p3 = 0.99
4 A4 p4 = 0.985

In this example, the interpretation process is consecutively
performed four times. As it can be seen, through the first
interpretation level the probability p1 increases strongly in
comparison to p0. By performing the second, third and
the forth interpretation levels, the probability values de-
crease slightly in comparison to p1. This means no significant
changes can be seen in the results. In other words, the de-
termination of A3 and A4 were not required at all. But the
determination of A2 was required to realize the slight differ-
ence |p2 − p1| < ε

2 . Consequently, Abox A1 is considered as
the final interpretation Abox.

5 Preference-based Scene Interpretation

In this example, we discuss how an interpretation process is performed by considering the analysis
results of two consecutive video shots. For the interpretation of each video shot we require information
about the previous video shots, otherwise the interpretation process does not work as intended. The
question is which assertions have to be considered from the previous video shots. As was discussed
in this paper we would like to consider the assertions from the previous video shots which increase
P (A0,Ai,R,WR, T). At the beginning of this example, the signature of the knowledge base is pre-
sented. The set of the concept names CN is divided into two disjoint sets Events and PhysicalThings
which are described as follows:

Events = {CarEntry, CarExit, CarRide}
PhysicalThings = {Car,DoorSlam}
Additionally, the set of the role names RN and the set of the individual names IN are represented

as follows:
RN = {Causes,HasObject,HasEffect ,Before, HasStartEvent,HasEndEvent}
IN = {C1, C2, DS1, DS2, Ind41, Ind42, Ind44}
The Tbox T contains the axiom CarEntry v ¬CarExit. In the following, the set of the forward

chaining rules FR is given:
FR = {
∀x, xl, y, yl, w, z AudioSeg(x), HasSegLoc(x, xl), V ideoSeg(y), HasSegLoc(y, yl), IsSmaller(xl, yl),

Depicts(x,w), Depicts(y, z), CarEntry(w), CarEntry(z)→ Before(z, w),

∀x, xl, y, yl, w, z AudioSeg(x), HasSegLoc(x, xl), V ideoSeg(y), HasSegLoc(y, yl), IsSmaller(xl, yl),
Depicts(x,w), Depicts(y, z), CarEntry(w), CarExit(z)→ Before(z, w),

∀x, xl, y, yl, w, z AudioSeg(x), HasSegLoc(x, xl), V ideoSeg(y), HasSegLoc(y, yl), IsSmaller(xl, yl),
Depicts(x,w), Depicts(y, z), CarExit(w), CarEntry(z)→ Before(z, w),

∀x, xl, y, yl, w, z AudioSeg(x), HasSegLoc(x, xl), V ideoSeg(y), HasSegLoc(y, yl), IsSmaller(xl, yl),

Depicts(x,w), Depicts(y, z), CarExit(w), CarExit(z)→ Before(z, w)}
where AudioSeg, HasSegLoc and V ideoSeg denote AudioSegment, HasSegmentLocator and
V ideoSegment respectively. Note that the concepts and roles in FR which are not given in CN and
RN appear only in the multimedia content ontology. The multimedia content ontology determines the
structure of the multimedia document. Additionally, it determines whether the concpts are originated
from video, audio or text. The above rules mean that the concept assertion CarEntry or CarExit
from the first video shot appear chronologically before the concept assertion CarEntry or CarExit
from the second video shot. The set of the backward chaining rules BR is presented as follows:
BR = {Causes(x, y)← CarEntry(z), HasObject(z, x),HasEffect(z, y), Car(x), DoorSlam(y),

Causes(x, y)← CarExit(z), HasObject(z, x),HasEffect(z, y), Car(x), DoorSlam(y),

Before(x, y)← CarRide(z), HasStartEvent(z, x), HasEndEvent(z, y), CarEntry(x), CarExit(y)}
Additionally, the set of the weighted rules is defined as follows:
WR = {5 ∀x, y, z CarEntry(z)∧HasObject(z, x)∧HasEffect(z, y)⇒ Car(x)∧DoorSlam(y)∧Causes(x, y),

5 ∀x, y, z CarExit(z)∧HasObject(z, x)∧HasEffect(z, y)⇒ Car(x)∧DoorSlam(y)∧Causes(x, y),

5 ∀x, y, z, k,m CarRide(z) ∧ HasStartEvent(z, x) ∧ HasEndEvent(z, y) ∧ HasObject(x, k) ∧
HasObject(y,m)⇒ CarEntry(x) ∧ CarExit(y) ∧ Car(k) ∧ Car(m) ∧ k = m}

The selected value for ε in this example is 0.05. Consider the next figure as the first video shot of a video.
Let us assume that the analysis results of the first video shot represented in the Abox
A1 are sent to the queue Q:
A1 = {1.3 Car(C1), 1.2 DoorSlam(DS1), Causes(C1, DS1)}
For the interpretation of the first video shot, we will call the function
MI Agent(Q,Partners,Die, (T ,A0),FR,BR,WR, ε). At the beginning of this
function, there are initializations for some variables, namely CurrentI = ∅ and
A′′ = {∅}. Afterwards extracting observations from the queue Q is performed,
which leads to Γ = A1. Determination of the most probable world W = 〈1, 1, 1〉
is performed in the next step and selecting the positive assertions and their re-
lated weights determines Γ ′ = Γ . At this step, A = ∅ since A′′ = {∅}. Addi-
tionally, A0 = ∅. Consequently, MAP (Γ ′,WR, T) = W and select(W,Γ ′) = Γ ′.

forward Chain(Σ,FR, Γ ′) = ∅ since there is no forward chaining rule applicable to Γ ′. A′ = Γ ′.
The Interpret(A′, CurrentI, Γ ′, T ,FR,BR,WR ∪ Γ, ε) is called in the next step which determines
p0 = P (Γ ′, Γ ′,R,WR, T) = 0.733. The Interpret function calls CAE function which returns
A′ = {Γ ′ ∪∆1, Γ

′ ∪∆2} where the two possible explanations ∆1 and ∆2 are defined as follows:
∆1 = {CarEntry(Ind41), HasObject(Ind41, C1),HasEffect(Ind41, DS1)}
∆2 = {CarExit(Ind41), HasObject(Ind41, C1),HasEffect(Ind41, DS1)}
Each of the above interpretation Aboxes have scoring values:
p1 = P (Γ ′, Γ ′ ∪ ∆1,R,WR, T) = 0.941 and p1 = P (Γ ′, Γ ′ ∪ ∆2,R,WR, T) = 0.935. NewI =

Γ ′ ∪ ∆1 since this is the interpretation Abox with the maximum scoring value. The termination
condition is not fulfilled since p1 − p0 = 0.208 > 0.05. The Abox difference for additions is defined
as follows: ∆+ = NewI − CurrentI = NewI − ∅ = NewI. Simiarly, ∆− = ∅ is the Abox difference
for the omissions. The CAE function returns NewI, A′ and the Abox differences ∆+ and ∆− to the
Interpret function. Consider the next figure depicts the second video shot. Assume that the analysis
results of the second video shot given in the next Abox are sent to the queue Q:

A2 = {1.3 Car(C2), 1.2 DoorSlam(DS2), Causes(C2, DS2)}
Similarly, for the interpretation of the second video shot we will call the function
MI Agent(Q,Partners,Die, (T ,A0),FR,BR,WR, ε). The observation extraction
process from Q leads to Γ = A2. Afterwards, the most probable world W = 〈1, 1, 1〉
is determined and applying select function on W gives Γ ′ = A2. Consider A ∈
A′′ where A′′ = {A1 ∪∆1,A1 ∪∆2}. Γ ′ ∪ A = {A2 ∪ A1 ∪∆1,A2 ∪ A1 ∪∆2}.
Applying MAP (Γ ′ ∪ A,WR, T) gives W = 〈1, . . . , 1〉 and applying the
select(W,Γ ′ ∪ A) function gives {A2 ∪ A1 ∪∆1,A2 ∪ A1 ∪∆2}. Since no forward
chaining rule is applicable to the above set and this set contains consistent
Aboxes, A′ = {A2 ∪ A1 ∪∆1,A2 ∪ A1 ∪∆2}. In the next step, the function

Interpret(A′, CurrentI, Γ ′, T ,FR,BR,WR∪Γ, ε) is called which determines P (Γ ′, Γ ′,R,WR, T) =
0.733. Afterwards, the CAE function is called which determines the next exaplanations:

∆3 = {CarEntry(Ind42), HasObject(Ind42, C2),HasEffect(Ind42, DS2)}
∆4 = {CarExit(Ind42), HasObject(Ind42, C2),HasEffect(Ind42, DS2)}

The CAE function generates the following agenda which contains all possible interpretation Aboxes
{I1, I2, I3, I4} where:

I1 = A2 ∪ A1 ∪∆1 ∪∆3 I2 = A2 ∪ A1 ∪∆1 ∪∆4

I3 = A2 ∪ A1 ∪∆2 ∪∆3 I4 = A2 ∪ A1 ∪∆2 ∪∆4

Afterwards applies the forward chaining rules on the above agenda. A new assertion Before(Ind41, Ind42)
is generated and added to the four interpretation Aboxes. In the following, the possible four interpre-
tation Aboxes are given:

I1 = A2 ∪ A1 ∪∆1 ∪∆3 ∪ {Before(Ind41, Ind42)}
I2 = A2 ∪ A1 ∪∆1 ∪∆4 ∪ {Before(Ind41, Ind42)}
I3 = A2 ∪ A1 ∪∆2 ∪∆3 ∪ {Before(Ind41, Ind42)}
I4 = A2 ∪ A1 ∪∆2 ∪∆4 ∪ {Before(Ind41, Ind42)}

Afterwards the backward chaining rule is applied which generates the following set only for the inter-
pretation Abox I2:

∆ = {CarRide(Ind44), HasStartEvent(Ind44, Ind41), HasEndEvent(Ind44, Ind42)}
Consequently I2 = I2 ∪∆. The interpretation Aboxes have the next scoring values:

P (A1 ∪ A2, I1,R,WR, T) = 0.964
P (A1 ∪ A2, I2,R,WR, T) = 0.978
P (A1 ∪ A2, I3,R,WR, T) = 0.952
P (A1 ∪ A2, I4,R,WR, T) = 0.959

The above values show that the interpretation Abox I2 has a higher scoring value than the other
interpretation Aboxes. Therefore the final interpretation Abox is NewI = I2. The Abox differences
for additions and omissions are defined as follows:

∆+ = A2 ∪∆4 ∪∆ ∪ {Before(Ind41, Ind42)} ∆− = ∅
For the next interpretation steps, the agenda can continue with I2 and eliminate the other interpretation
Aboxes since this Abox has a higher scoring value.

6 Manage Agenda

The manage agenda(A) function is called in the MI Agent function to improve its performance. In
this section, we briefly introduce some techniques which are applied by the manage agenda function
to an agenda A which contains multiple interpretation Aboxes.

– Elimination of the interpretation Aboxes: This technique is applied if there are multiple interpre-
tation Aboxes with different scoring values where one of the Aboxes has a higher scoring value.
At this step, we can select this Abox, eliminate the remaining interpretation Aboxes and continue
the interpretation process with the selected Abox.

– Combining the interpretation Aboxes: Consider the interpretation Aboxes I1, . . . , In. In order to
determine the final interpretation Abox, the MAP process can be applied to the union of all
interpretation Aboxes I1 ∪ . . . ∪ In. The MAP process determines the most probable world based
on the Tbox T and the set of weighted rules WR.

– Shrinking the interpretation Aboxes: This approach determines which assertions from the previous
video shots have to be considered for the interpretation process of the next video shots since
considering all assertions of the previous video shots will slow down the interpretation process. We
believe that only the high level concept assertions from the previous video shots play an important
role and not the low level concept assertions.

7 Summary

For multimedia interpretation, a semantically well-founded formalization is required. In accordance
with previous work, a well-founded abduction-based approach is pursued. Extending previous work,
abduction is controlled by probabilistic knowledge, and it is done in terms of first-order logic. Rather
than merely using abduction for computing explanation with which observations are entailed, the
approach presented in this paper, uses a probabilistic logic to motivate the explanation endeavor
by increasing the belief in the observations. Hence, there exists a certain utility for an agent for the
computational resources it spends for generating explanations. Thus, we have presented a first attempt

to more appropriately model a media interpretation agent. Additionally, we have discussed how the
video shot interpretation process is perfomed. A manage agenda is also introduced which improves the
interpretation process by applying some techniques. Describing the mentioned techniques is our future
work.

References

[Castano et al., 2008] Castano, S., Espinosa, S., Ferrara, A., Karkaletsis, V., Kaya, A., Möller, R., Montanelli,
S., Petasis, G., and Wessel, M. (2008). Multimedia interpretation for dynamic ontology evolution. In Journal
of Logic and Computation. Oxford University Press.

[Domingos and Richardson, 2007] Domingos, P. and Richardson, M. (2007). Markov logic: A unifying frame-
work for statistical relational learning. In Getoor, L. and Taskar, B., editors, Introduction to Statistical
Relational Learning, pages 339–371. Cambridge, MA: MIT Press.

[Espinosa-Peraldi et al., 2010a] Espinosa-Peraldi, S., Kaya, A., and Möller, R. (2010a). BOEMIE: State of the
Art in Ontology-based Multimedia Interpretation, chapter Logical Formalization of Multimedia Interpretation.
Springer.

[Espinosa-Peraldi et al., 2010b] Espinosa-Peraldi, S., Kaya, A., and Möller, R. (2010b). Formalizing multime-
dia interpretation based on abduction over description logic aboxes. In Cuena-Grau, B., Horrocks, I., and
Motik, B., editors, Proc. of the 22nd International Workshop on Description Logics (DL2009).

[Gries and Möller, 2010] Gries, O. and Möller, R. (2010). Gibbs sampling in probabilistic description logics
with deterministic dependencies. In Proc. of the First International Workshop on Uncertainty in Description
Logics, Edinburgh.

[Pearl, 1988] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, CA.

