Querying GIS with Animated Spatial Sketches

Volker Haarslev and Michael Wessel

University of Hamburg, Germany haarslev@informatik.uni-hamburg.de http://kogs-www.informatik.uni-hamburg.de/~haarslev/

- Motivation
- VISCO's Language Elements
- Sketching Queries for City Map Examples
- Conclusion
- (Demo Slides)

Motivation

Query Spatial Databases (GIS)

- Sketch constellation of spatial objects
 - Topological and geometric relationships between components are important
- Consider relationships in sketches as query constraints
- Interpret sketch as "sentence" of a visual query language

Explicit Meta Information

- Relaxation of geometrical (topological) constraints needed
- Derived constraints (e.g. centered)

Naive Physics Metaphor

Semantics of Query Objects

Physical properties visualize semantics

- **0-D**: marbles, nails, swivel joints e.g. marble: roll around, change position
- 1-D: (cross) beams, rubber bands, telescop antenna
 e.g. rubber band: stretch, shrink, wrap around
- **2-D**: enclosures, transparencies e.g. enclosure: fenced area trapping marbles

Vivid Spatial Constellations

Animation

- Degrees of freedom gained by relaxations
- Variations of user sketches visualized by animations

VISCO's Language Elements

Basic Building Block

- Transparency film (of an overhead projector)
 - Rectangular shape
 - Own local cartesian coordinate system
 - Can be scaled, translated, rotated, and stacked up
 - Fixpoint (w.r.t. transformations) is required
 - Any nail (isolated or as vertex) on transparency
- Users interactively draw VISCO's query elements
- Collection of drawn elements defines (sub)constellation
 - Geometrical and topological relationships are relevant

- One transparency
 as drawing sheet
- Two transparencies
 each with objects

Example: Various Quadrilaterals

VISCO: Enclosures and Points

Enclosure

- Enclosure is meta object
 - visualized by a gray texture
 - all enclosed objects are "trapped" and must stay inside of their enclosure
- Two types of enclosures
 - **translucent**: also consider relationships with other visible objects
 - **opaque**: hidden objects are excluded
- Computed ε-enclosures
 - interior or exterior (border) of an object
 - radius is required

Point

- Semantics of nails not affected
- Marbles are only allowed inside of enclosures
- Marbles may freely change their position

Example: Rectangle Touching Scalable Circle

City Map Example: Öjendorf as Subsection of Hamburg

City Map Example: Church in vicinity of subway station

Snapshots of query construction with example of intended match

- Create transparency of fixed size (300 x 300 m)
- Draw a fixpoint (nail) and attach the concept 'SubwayStation' to fixpoint
 - fixpoint may coincide with any point object in database
- Generate circular ε-enclosure
 - fixpoint as center
 - radius of 100 m
- Draw a marble inside of the enclosure and attach the concept 'Church' to marble

City Map Example: 3 adjacent buildings aligned in parallel (1)

City Map Example: 3 adjacent buildings aligned in parallel (2)

City Map Example: 3 adjacent buildings aligned in parallel (3)

Volker Haarslev, September 97

Conclusion and Ongoing Research

