Querying GIS with Animated Spatial Sketches

Volker Haarslev and Michael Wessel
University of Hamburg, Germany
haarslev@informatik.uni-hamburg.de
http://kogs-www.informatik.uni-hamburg.de/~haarslev/

- Motivation
- VISCO's Language Elements
- Sketching Queries for City Map Examples
- Conclusion
- (Demo Slides)

Motivation

Query Spatial Databases (GIS)

- Sketch constellation of spatial objects
- Topological and geometric relationships between components are important
- Consider relationships in sketches as query constraints
- Interpret sketch as "sentence" of a visual query language

Explicit Meta Information

- Relaxation of geometrical (topological) constraints needed
- Derived constraints (e.g. centered)

Naive Physics Metaphor

Semantics of Query Objects

Physical properties visualize semantics

- 0-D: marbles, nails, swivel joints
e.g. marble: roll around, change position
- 1-D: (cross) beams, rubber bands, telescop antenna
e.g. rubber band: stretch, shrink, wrap around

Vivid Spatial Constellations

- 2-D: enclosures, transparencies
e.g. enclosure: fenced area trapping marbles

Animation

- Degrees of freedom gained by relaxations
- Variations of user sketches visualized by animations

VISCO's Language Elements

Fixpoint

VISCO: Transparency Films

Basic Building Block

- Transparency film (of an overhead projector)
- Rectangular shape
- Own local cartesian coordinate system
- Can be scaled, translated, rotated, and stacked up
- Fixpoint (w.r.t. transformations) is required
- Any nail (isolated or as vertex) on transparency
- Users interactively draw VISCO's query elements
- Collection of drawn elements defines (sub)constellation
- Geometrical and topological relationships are relevant

- One transparency as drawing sheet
- Two transparencies each with objects

Example: Various Quadrilaterals

- matches at most 4 line segments
- marbles act as swivel joints and may float inside of enclosure
- rubber bands may stretch or shrink

- 4 beams as edges
- marbles act as swivel joints and may float inside of enclosure
- beams have a fixed length

- 4 beams as edges
- marbles may float inside of enclosure
- beams have a fixed length and a fixed right angle
- fixed orientation

VISCO: Enclosures and Points

Enclosure

- Enclosure is meta object
- visualized by a gray texture
- all enclosed objects are "trapped" and must stay inside of their enclosure
- Two types of enclosures
- translucent: also consider relationships with other visible objects
- opaque: hidden objects are excluded
- Computed ε-enclosures
- interior or exterior (border) of an object
- radius is required

Point

- Semantics of nails not affected
- Marbles are only allowed inside of enclosures
- Marbles may freely change their position

Example: Rectangle Touching Scalable Circle

City Map Example: Öjendorf as Subsection of Hamburg

City Map Example: Church in vicinity of subway station

Snapshots of query construction with example of intended match

- Create transparency of fixed size (300 x 300 m)
- Draw a fixpoint (nail) and attach the concept 'SubwayStation' to fixpoint
- fixpoint may coincide with any point object in database
- Generate circular ε-enclosure
- fixpoint as center
- radius of 100 m
- Draw a marble inside of the enclosure and attach the concept 'Church' to marble

City Map Example: 3 adjacent buildings aligned in parallel (1)

City Map Example: 3 adjacent buildings aligned in parallel (2)

City Map Example: 3 adjacent buildings aligned in parallel (3)

Volker Ha a rslev, September 97

Conclusion and Ongoing Research

- VISCO is innovative compared to other relevant approaches (see related work in paper)
- geometric as well as topological queries or combination of both
- high expressiveness by interpreting topological relations as qualitative constraints enriched with meta information
- simple but powerful 'naive physics' metaphor
- approximate or vague objects/constellations possible
- Prototype implementation partially completed (user interface)
- Query semantics specified by translational semantics (typed lambda calculus)
- Description logic framework for query processing and optimization is under development

