
Copyright 1997 IEEE. Published in the Proceedings of VL’97,September 23-26, 1997 in Capri, Italy. Personal use
of this material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copy-
righted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights
and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA.
Telephone: + Intl. 908-562-3966.





Published in: Proceedings, 1997 IEEE Symposium on Visual Languages, Capri, Italy, Sep. 23-26, IEEE Computer Society Press, 1997,
pp. 197-204.

Querying GIS with Animated Spatial Sketches
Volker Haarslev and Michael Wessel

University of Hamburg, Computer Science Department,
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

http://kogs-www.informatik.uni-hamburg.de/~haarslev/

Abstract

We present the design of the visual query systemVISCO that
offers a sketch-based query language for defining approx-
imate spatial constellations of objects.VISCO smoothly
integrates geometrical and topological querying with de-
ductive spatial reasoning. It is based on a strong physi-
cal metaphor visualizing semantics of query elements. Ap-
proximate queries rely on combined topological and geo-
metrical constraints enhanced with relaxations and “don’t
cares” that are visualized through live animations.
Keywords— visual query systems, visual parsing, deduc-
tive GIS, constraints.

1 Motivation and Introduction

The need to develop new interface paradigms for inter-
acting with spatial information systems or databases, es-
pecially geographical information systems (GIS), has al-
ready been noted elsewhere [1, 2]. With respect to HCI
an interface should be convenient, easy-to-use, and ac-
tively supporting the user. A strong metaphor can moti-
vate users and guide them through the interaction with a
system. In response to these considerations we present the
visual query systemVISCO (Vivid Spatial Constellations)
that provides a sketch-based query language for defining
approximate spatial constellations of objects. Our query
language can express geometric as well as topological con-
straints. The user is actively supported by animations of
queries that visualize examples of approximate constella-
tions. The query language elements are visualized with the
help of a naive physics metaphor utilizing rubber bands,
(cross)beams, swivel joints, nails, marbles, etc. The mean-
ing of VISCO’s language elements is immediately graspable
from the physical properties of their visualizations, e.g.a
rubber band may be stretched, shrunk and wrapped around
in contrast to a (rigid) beam, a marble can roll around and
change its position in contrast to a nail.

VISCO offers several novel features that correspond to
issues mentioned in a recent survey on visual query sys-
tems for databases. Catarci et al. [3] conclude this excellent
survey with a list of most significant issues for the design
of next generation visual query systems.VISCO’s features
incorporate solutions for several of these issues.

• Animation is an essential part ofVISCO and illustrates
possible variations in user sketches.

• VISCO deals with spatial data types such as points,

segments, polylines, polygons and their possible spa-
tial relationships.

• A formal semantics forVISCO is based on a space box
(SBox). This SBox [4] combines a qualitative spa-
tial calculus with a description logic (DL) (see also
[5, 6] for an introduction to DL) and is grounded on
quantitative reasoning (i.e. computational geometry).
This logic is an extension of a framework that has
been successfully applied to the specification of visual
languages [7, 5, 6].VISCO’s query language can be
mapped to expressions of this SBox language.

• Data is encoded with the help of the SBox that offers
well-defined mechanisms for inferring implicit (spa-
tial) knowledge (e.g. from stored maps).

• DL (as basic part of the SBox) is well suited for ex-
pressing incomplete or indefinite knowledge and for
dealing with metaknowledge. For instance, DL sys-
tems automatically compute the subsumption relation-
ship between DL expressions. The resulting taxonomy
can easily be utilized for query optimization.

• VISCO offers powerful tools for approximate question-
ing that may be used for formulating queries about ap-
proximate spatial constellations of database objects.

In contrast to other relevant work [2] that focuses on
topological descriptions we adopt a bottom-up approach
and parse the sketches and their geometry as drawn by the
user.VISCO takes the geometry of query sketches seriously
but supports the annotation of meta information which can
be used to specify almost pure topological queries. The user
may add meta information to a sketched query. This meta
information specifies relaxations, additional constraints or
“don’t cares” that define the interpretation of the query. The
visibility of user-defined relaxations and “don’t cares” isa
major advantage of our approach. In our opinion this ex-
plicit meta information (which has to be supplied by the
user) is important since drawings are always in a sense
“overspecified” and their (relaxed) interpretation strongly
depends on the application domain. The effects of relax-
ations are visualized through animations.

2 VISCO: Vivid Spatial Constellations

The interpretation of a user’s spatial query is a critical part
for any spatial query system. The user’s intuition about the
interpretation should match with the system’s implemented
algorithms. For instance, the concept of a right angle has a
strong significance in a CAD system but must be relaxed in

1



a GIS system. This shows that the “correct” interpretation
depends on the actual application domain. Thus,VISCO
offers tools that specify meta information resembling the
user’s idea of the interpretation. This approach demands
more skill from the user but makes the intended interpre-
tation explicit. This is the reason whyVISCO’s user inter-
face (that is derived from GenEd [6]) offers active support
through animations.

2.1 Language Elements

The building blocks ofVISCO are divided into meta ob-
jects and query objects.Query objectsconsist of points,
segments, polylines, or polygons. They represent the data-
base objects to be retrieved and can be either interactively
sketched or computed (so-calledderivedobjects) with the
help of VISCO’s operators (see Section 2.3). Most meta
objects are generated with the help ofVISCO’s interface.
However, we like to emphasize that spatial relationships
between query and/or meta objects are only computed by
parsing the query. The system ensures that distinct individ-
ual objects can always be distinguished visually (by using
color etc).

We try to reduce the burden of the user’s intuition
aboutVISCO’s language elements with the help of a strong
metaphor. This metaphor is based on common sense physi-
cal semantics. We attach to query objects the properties of
real-world objects. Thus query objects resemble marbles,
nails, swivel joints, rubber bands, and (wooden) beams (il-
lustrated in Figure 1). Their physical properties add ex-
tra semantics toVISCO’s language elements. Query ob-
jects may be further constrained to match with DL con-
cepts derived from database objects. These concepts denote
the functionality of database objects in the real world (e.g.
for maps: points as subway stations; streets as polylines;
lakes, parks as polygons, etc). Meta objects serve different
purposes. Thus most of them relax or enforce some spa-
tial constraints and guide the query interpretation process.
Supportedmeta objectsare transparency films, enclosures,
compasses and arrows, upper- and lower scaling rectangles,
guiding lines, and (constrained) crossbeams.

2.1.1 Transparency Films

Keeping this metaphor in mind the applicability ofVISCO’s
language elements is easily explained. The basic build-
ing block is atransparency film(of an overhead projector).
Every transparency has its own local cartesian coordinate
system and a rectangular shape. Users can interactively start
drawing query language elements upon a transparency. A
collection of drawn elements defines a (sub)constellation
with relevant geometrical/topological relationships. The
size of a transparency and the size and position of elements
drawn on a transparency are taken seriously and do mat-
ter. Transparencies can be scaled, translated, rotated and

Fixpoint Marble Nail Beam

Rubber Band Crossbeam (CB) CB (min) CB (max)

CB (min+max) Enclosure Compass Compass (restr.)

Figure 1: Basic language elements ofVISCO

stacked up like layers. Transparencies always have a fix-
point (with respect to transformations) which can be any
nail (isolated or as vertex) on the transparency.

Figure 2 illustrates various examples. Figure 2a shows a
simple unscalable transparency with its fixpoint in the cen-
ter. The transparencies in Figure 2b-f may be scaled as fol-
lows: only vertically down (b), any direction (c), only pro-
portionally (visualized by dashed guiding lines for the ver-
tices) in any direction (d), only proportionally down with
an uncentered fixpoint (e), only proportionally up (f). The
transparencies in Figure 2g-j also constrain the upper and/or
lower limit of scaling (visualized by dashed horizontal or
vertical lines): proportionally (g) or arbitrary (h) with lower
and upper limit, only vertically up with upper limit (i), only
vertically with upper and lower limit (j). In Figure 2k-l
we additionally allow rotation of the transparencies around
their fixpoint. This is specified by the compass disk with
the fixpoint as center and an arrow as hand. The compass
in Figure 2k allows free rotation around the fixpoint, while
that in Figure 2l constrains the possible rotation to an an-
gle interval (visualized as bold arc). In general, a compass
may constrain rotation to angle intervals and discrete angle
values (see Figure 1). A compass allowing only one dis-
crete angle may be abbreviated as a single arrow (its hand)
in order to avoid visual clutter.

2.1.2 Enclosures and Points

Imagine, we sketch an enclosure on a transparency. An
enclosure is a simple polygon (with optional holes) whose
boundary has to be a closed and not self-intersecting poly-
line. An enclosureis a meta object adding to its denoted
area the semantics that all enclosed objects must stay inside
of this (fenced) area. Also, it specifies that the positions
of some of its enclosed points have to be relaxed: a point
drawn inside an enclosure is by default amarble that can
move around but has to stay inside. However, anail cannot
change its position (even inside of an enclosure). Enclo-
sures can betranslucentor opaqueand are displayed with
a gray texture. The associated semantics is described below
(see Section 2.2). It is also possible to generate so-called
ε-enclosuresthat are computed by operators.

2



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2: Various applications of transparency films

2.1.3 Line Segments, Polylines and Polygons

Another basic language element is an (undirected) lineseg-
mentwith its two end points. Each point can be either a mar-
ble or a nail. It should be noted that all query objects except
marbles and nails are compound objects, which have com-
ponent objects. These components are itself “first class”
objects. Segments or edges (as components of polylines)
act either asbeamsof fixed length or stretchable/shrinkable
(atomic) rubber bands. A beam matches a line segment of
fixed length (as specified) in the database. A rubber band
represents a topological structure that matches an arbitrary
polyline in the database. However, anatomic rubber bandis
defined as indivisible and therefore matches a single data-
base line segment. In our physical metaphor it resembles
somehow atelescope antenna.There are three types avail-
able: the≤ (≥) atomic rubber band represents a segment
with a given maximal (minimal) length, and the “don’t care”
⋆ atomic rubber band does not enforce any constraints on
the length of segment. Vertices (points) connect edges and
also play the role ofswivel jointsthat are either marbles
or nails. Polylines may be closed but not self-intersecting.
Regions are defined as simple polygons with polylines as
boundaries.

Enclosures affect directly the position of points and in-
directly the position and/or shape of polylines (and thus
polygons). Form variability of polylines and polygons is
achieved by position (length) variability of their vertices
(edges). Furthermore, number constraints can be associated

with some query objects. Anat most constraintfor a rubber
band, polygon or polyline specifies the maximal number of
line segments of the database object that is matched against
this query object. The number of segments of a query poly-
gon or polyline always forms an implicit at least constraint.
An atomic⋆ rubber band is therefore equivalent to a rubber
band with an ‘at most one’ constraint.

For instance, Figure 3a shows a transparency containing
the specification of an arbitrary quadrilateral whose edges
are rubber bands and whose vertices are marbles that can
float inside of the enclosure (gray circle). If we discarded
the at most fourconstraint for the polygon, this query
would retrieve arbitrary polygons (with at least four line
segments). Alternatively we could have defined the quadri-
lateral without the at most constraint be using⋆ atomicrub-
ber bands instead of rubber bands. Figure 3b-d demon-
strates various other definitions: arbitrary quadrilateral with
edges of fixed length (b), floating square of fixed shape (c),
floating square of fixed shape and upright orientation (d).

The examples in Figure 3c-d use another meta object:
a crossbeamconstrains the angle between two connected
edges. A simple crossbeam freezes the angle as drawn. This
can be relaxed with minimal and maximal angles indicated
by bullets lying on the crossbeam (see Figure 1).

2.2 Relationships between Objects

At first it has to be noted that the user’s query is constructed
step-by-step usingVISCO’s interactive environment. Our

3



4

(a) (b)

(c) (d)

Figure 3: Various quadrilaterals

language is not designed to be visually complete because
the construction history of the query affects its semantics.
Parsing aVISCO query is a progressive process as the con-
struction continues. However, at each construction step
WYSIWYG is taken seriously. Whenever a new query ob-
ject is introduced, various relationships to other (partially)
visible objects are calculated. For instance, the ‘contains’
relationship (or constraint) is enforced between enclosures
and their enclosed query objects. Components of complex
query objects are considered as individual “first class” ob-
jects (e.g. the segments of a polygon). So, any discussion of
query objects applies to component objects as well.

We already mentioned that enclosures can be translucent
or opaque. An opaque, overlapping enclosure stacked in
front can (partially) hide some underlying enclosures and
also objects already drawn. If the topmost enclosure is
translucent it will not hide the underlying elements. Any
visible elements stacked below can still be addressed since
they are not hidden (WYSIWYG). Thus, we can enforce an
object to be inside various (underlying) enclosures, if they
are not hidden. This is an explicit ‘and’ constraint hold-
ing for all visible ‘inside’ relationships of this object. See
Figure 4a-b: in case a), marble 1 has to be insideA andB,
marble 2 has to be insideA. In case b), marble 1 only has to
be insideA.

If an objectY is (partially or fully, see below) visible
(with respect to occluding enclosures) at the time of creation
of a query objectX, we enforce some additional high-level
spatial constraints betweenX andY. These enforced spatial
relations strongly affect the semantics of a query. The fol-
lowing relations (and their unlisted inverses) are recognized
by VISCO:

• Enclosure × query object: contains
• Point × segment: eitherintersects(if the point lies on

the line segment) ordisjoint

(a) (b)

Figure 4: Translucent and opaque enclosures

• Segment × segment: either intersects(this includes
any constellation where two segments have at least one
common intersection point) ordisjoint.

There are no point× point relations, because the user
interface does not allow the definition of two points at the
same position. Two points are therefore always disjoint. A
common vertex of e.g. two line segments of a polygon is
assumed to be only one unique point object (and not two
objects that are equal). This also implies that there exist no
congruent query objects.

The intersectsand disjoint relations are computed be-
tween points and lines, and lines and lines regardless
whether the point or line objects are components (because
of the “first classness” of component objects). It can be eas-
ily shown –by taking into account all component point-line
relations– that the relationsintersectsanddisjoint are ex-
pressive enough to define, for example, all interesting line-
line relations (e.g. disjoint, crosses, touches, meets, over-
laps, contains, inside, covers, coveredby).

However, no relation between a compound object and
any of its components will be introduced. As an example, if
we have two individual line segments that are crossing each
other and completely visible with their two endpoints, the
system will calculate 10 relation constraints (2 line× line
tuples, 4 point× line tuples, 4 line× point tuples).

We also support relaxations of spatial relations. Relax-
ations can be achieved by abstracting from the identity of
component objects and regarding them as a proxy of their
compound object. As an example, the description of a query
where a segment crosses a polygon might include the con-
straint crosses(segment1,poly2 segment5). If we abstract
from the unique identity ofpoly2 segment5, we can rewrite
this constraint tocrosses(segment1,poly2) and could get
more matches.VISCO supports these relaxations through
a graphical annotation method which is not discussed here
due to lack of space.

Generally speaking, WYSIWYG determines whether a
disjoint or intersectsrelation is enforced. The visual infor-
mation present at creation time has to unambiguously imply
the relation constraint. For instance, if an objectA is par-
tially hidden by an enclosure containing another objectB,
one cannot visually decide at the time of creation of ob-
ject B whetherA andB are disjoint or not, and the visually
present information does not accidentally imply ambiguous
relationships (see Figure 5).

4



Figure 5: Unknown spatial relations between two objects in
different enclosures (disjoint or touching or overlapping?)

The concept of an enclosure can also be applied to
stacked transparencies and their fixpoints. The fixpoint of
a transparencyA can play the role of a marble enclosed on
a lower-level transparencyB. This implies thatA’s fixpoint
can float inside of the enclosure onB (and thus the flotation
of the whole transparencyA is constrained). Note that the
whole coordinate system ofA is affected byB’s actual trans-
formation. Enclosures for fixpoints of other transparencies
must be opaque. We restrict the visibility of fixpoints to
at most one transparency on a lower-level, i.e. a hierarchy
of stacked transparencies may result. The fixpoint of the
top-level transparency (in the hierarchy) is implicitly con-
strained to be inside a “whole world area”. See Figure 6 for
an example: this query defines a rectangle of fixed size and
shape that touches a scalable circle at the right.

2.3 Operators and Computed (Derived) Objects

VISCO’s interface supports the application of operators to
objects. When a new object is created, its component ob-
jects will be introduced as first-class objects. We call this
“top-down” creation of objects. Conversely, a new object
can be aggregated (what we call “bottom-up” creation) by
choosing existing query objects as components of the new
object (e.g. choose two existing nails as end points of a new
rubber band). Operator-created objects are also first-class
(derived) objects. For instance, the intersection point of two
crossing line segments can be computed. Type and proper-
ties of derived objects are automatically computed but can
always manually changed by the user through subsequent
operator applications. Note that derived objects are visual-
ized in a different color in order to distinguish them from
meta and other query objects. An animation of a query is
available at any time. It demonstrates possible variations
and facilitates visual inspection. Constraints can become
redundant during the incremental construction process, e.g.
a compass allowing free rotation for a beam that is fixed be-
tween two nails is superfluous and will be removed from the
query.

Due to lack of space we will not discuss all operators
of VISCO in detail. The most important ones are the fol-
lowing (of course, additional operators for changing object
positions, parameters etc. are required). Note that we con-
sider nails and marbles as points, and rubber bands, atomic
rubber bands, and beams as line segments.

Figure 6: Scalable circle touching a rectangle

• NIL: create transparency
• Transparency: create query object, create enclosure
• Enclosure: toggle enclosure’s translucency, negate

enclosure (precondition: enclosure has no holes), cre-
ate at most constraint (specifying the maximal number
of found database objects inside this enclosure)

• Query object: attach DL concept descriptor (e.g.,
“road”) to object

• Point: create (derived)ε-enclosure with radiusr
• Nail: declare as transparency fixpoint, declare as mar-

ble (precondition: nail inside an enclosure)
• Marble: declare as nail
• Point × point: aggregate line segment from points
• List of line segments: aggregate polygon, aggregate

polyline
• Beam, atomic rubber band: create compass
• Polygon, polyline: create compass, then inherit the

compass to all beams and atomic rubber band seg-
ments

• Line segment, polyline: createε-enclosure with ra-
diusr, create midpoint

• Point, line segment, polyline: declare object as a part
of a searched object (e.g. a polyline as part of a poly-
gon boundary)

• Polygon: create inner enclosure, create outer enclo-
sure, createε+-, ε−-enclosure (see Figure 7, a radiusr
is always required), create midpoint

• Beam: declare as rubber band, declare as atomic rub-
ber band

• Atomic rubber band: change type to≤, ≥ or ⋆, de-
clare as beam, declare as rubber band

• Rubber band: declare as beam, declare as atomic rub-
ber band, create at most number constraint

• (Beam ∨ atomic rubber band) × (Beam ∨ atomic
rubber band): create crossbeam between them

• Line segment × line segment: create intersection
point (precondition: acrossesrelation). The new point
will be a marble (if inside any enclosure), or a nail oth-
erwise.

• Polygon or polyline with at least one non-atomic
rubber band segment: create at most number con-
straint

5



ε+-enclosures ε−-enclosure

Figure 7: Examples ofε-enclosures

2.4 Extended Example: City Maps

In the following we present two extended examples with in-
creasing complexity of their queries. All examples are taken
from a ‘city map’ domain. Figure 8 shows a raster image
displaying a small subsection of the city of Hamburg, lo-
cated in Northern Germany. There exists a corresponding
vector version of this map that is represented in our spatial
database with the help of a space box (SBox). The data el-
ements of the vector map consist of text, points, polylines,
and polygons. All data elements have attributes describing
their role in the city (e.g. lake, pond, street, church, build-
ing, etc). The attribute values correspond to DL concept
descriptions organized in a predefined taxonomy. Data ele-
ments are represented in our SBox as instances of concept
descriptions that combine conceptual and relational (spa-
tial) knowledge.

The first example deals with a constellation where a sub-
way station is in the vicinity of a church. The intended tar-
get of the query is displayed as the first element of Figure
9. The other elements show the three construction steps of
the corresponding query.

1. Create a transparency with a fixed size of 300× 300
meters. We assume that the subway station and the
church are represented as points in our database.

2. Draw a nail on the transparency and attach the prede-
fined concept ‘subway station’. We declare the nail
as the fixpoint of this transparency. The transparency
itself is unrelated to any other transparency. This im-
plies that the fixpoint may coincide with any point ob-
ject in the database (i.e. on the map).

3. Generate with a predefined operator a circularε-
enclosure with a radius of 100 meters around the fix-
point. Afterwards, draw a point as a marble inside of
the enclosure and attach the concept ‘church’ to the
marble.

The second example describes a constellation where we
search for three buildings aligned in parallel. The size of the
buildings may vary individually. The first element of Figure
10 shows the intended match for the query while the other
elements illustrate the query construction process.

1. Create an arbitrarily scalable and rotatable trans-

Figure 8: A subsection of the city of Hamburg

Clip from Figure 8 Step 1

Step 2 Step 3

Figure 9: A subway station with a church in its vicinity

parency. Add a large rectangular enclosure to this
transparency.

2. Create three rectangles. Their vertices are declared as
marbles and their edges as rubber bands. Each rectan-
gle has to match a database polygon with exactly four
line segments. Please note that each rectangle defines
a quadrilateral (see also Figure 3a). The quadrilater-
als are enforced to stay disjoint from one another. We
attach the concept ‘building’ to each quadrilateral.

3. Attach to each edge of the quadrilaterals an arrow con-
straining the edge’s orientation to a single fixed angle
(as visualized).

6



4

4

4

Building

Building

Building

Clip from Figure 8 Step 1 Step 2

4

4

4

Building

Building

Building

4

4

4

Building

Building

Building

4

4

4

Building

Building

Building

Step 3 Step 4 Step 5

Figure 10: Three adjacent buildings aligned in parallel

4. Apply to every quadrilateral the operator “create cen-
ter point” resulting in three (derived or computed) mar-
bles.

5. Sketch an enclosure inside of the large enclosure de-
noting admissible positions for the center points of the
buildings. This area defines possible deviations for the
alignment.

2.5 Formal Semantics with SBox

VISCO’s queries are basically spatial constellations based
on topological and geometrical relationships. The spatial
parsing of queries is accomplished with a framework that
has been successfully applied to the specification of visual
languages [7, 6, 5]. This framework has been extended to
incorporate topological and geometrical relations as seman-
tically interpreted predicates for deductive spatial reasoning
[4]. The framework is implemented as a space box (SBox)
extending the semantics of a description logic (DL). The
SBox’s semantics is based on computational geometry deal-
ing with 2D polygons.

Due to lack of space we can only roughly sketch out
the ideas behindVISCO’s semantics that is explained in
detail elsewhere [8]. In general, a query is mapped to
a DL concept expression that is processed by our SBox.
The SBox provides reasoning services computing instances
(i.e. database objects) of DL concepts that fulfill the con-
straints defined by these concepts. Thus the subsumption
between concepts and queries is automatically computed
and is available for meta reasoning. For instance, query
subsumption immediately supports query optimization.

3 Related Work

VISCO can be classified as a visual query system for spatial
information systems that uses sketched queries combined
with deductive reasoning. A recent and complete survey on
visual query systems for database systems handling conven-
tional data can be found in [3]. Other relevant work [9, 2]
reviews especially visual query system for spatial informa-
tion systems. A related approach that also uses spatial re-
lations [10] deals with symbolic descriptions and retrieval
in image databases. In the following we shortly review four
approaches [9, 11, 12, 2] that come closest to the ideas and
concepts behindVISCO. We especially focus our attention
on the spatial properties of their query languages.

An iconic query language for GIS is presented in [12].
Icons represent geographic objects such as lakes, rivers,
countries, etc. Topological relationships are computed from
the icons of a query. It is also possible to specify orienta-
tions or circular search areas. The system provides a “fore-
ground” mode which is used to specify relevant relation-
ships between objects. Other accidental relationships are
interpreted as “don’t cares”. The user interface is very ab-
stract with simple visualizations. Geometrical aspects can-
not be specified. Only a small set of relations without a
formal model is allowed.

Cigales [11] is a “query by visual example” system
which also allows the user to draw a query. However,
queries cannot be sketched but have to be created with the
help of operators. Thus, the drawings are only visualiza-
tions created by the system. The implied look-and-feel
of Cigales’ user interface appears to be quite tedious and

7



modal. Furthermore, the layout of queries can change dra-
matically after their reformulation and might confuse users.

Sketch [9] was the first language proposing a metaphor
for drawing sketches on a blackboard. Sketch allows free-
form elements as components of sketches but it strictly di-
vides queries into propositional and spatial conditions. A
sketch is parsed and translated to a formula in a correspond-
ing logical calculus. The problem of “don’t care” relations
is solved by layers that can contain common objects. Topo-
logical relationships are only computed for elements of a
layer. The language Sketch has formal semantics but the
topological relationships have no mathematical foundation.
Sketch does not support the integration of geometric prop-
erties into queries. It also requires that database objects
are “pretyped”, i.e. they cannot be recognized through their
geometrical properties. For instance, think of a CAD draw-
ing of a transistor that consists of a flat unordered and un-
structured “spaghetti” collection of line segments.

Spatial-Query-by-Sketch [2] is distinct to the previous
approaches with respect to similarity matches. It uses con-
ceptual neighborhoods of topological relations for relax-
ation of queries. For instance, a ‘touches’ relationship be-
tween two objects can be very similar to a ‘disjoint’ or
‘intersects’ relationship provided the (positive or negative)
gap between the objects is below an appropriate threshold.
Spatial-Query-by-Sketch allows multi-modal user input for
specifying annotations or desired relaxations. It provides no
facilities for specifying “don’t cares” that apply to relation-
ships between objects. We argue that metric information is
existent in many domains and should not be discarded and
then subsequently added.

4 Conclusion

VISCO is in several aspects distinct to the four approaches
mentioned above. It is expressive enough to define geomet-
rical as well as almost pure topological queries or a com-
bination of both. It yields high expressiveness by inter-
preting topological relations as high-level qualitative con-
straints enriched with meta information.VISCO offers a
powerful but still quite simple physical metaphor for defin-
ing queries as spatial constellations. It is possible to spec-
ify approximate or vague objects and constellations. An-
imations are used to visualize vagueness and “don’t care”
conditions as “vivid spatial constellations”.VISCO pro-
vides a clear distinction between query and meta objects.
The meta information (i.e. additional specifications guid-
ing sketch interpretation) is directly visible to users. There
exist no ‘hidden’ relaxations that might confuse the user’s
model of query interpretation. A prototype implementation
of VISCO will be shortly available for experimental evalua-
tion.

Acknowledgment

We would like to thank our colleagues Ralf Möller and
Bernd Neumann for valuable discussions and thoughtful
comments. The maps were generated from data donated by
the ‘Amt für Geoinformation und Vermessung, Hamburg’.

References
[1] M.J. Egenhofer, “Why not SQL!”,International Journal on

Geographical Information Systems, vol. 6, no. 2, pp. 71–85,
1992.

[2] M.J. Egenhofer, “Spatial-Query-by-Sketch”, In VL’96 [13],
pp. 60–67.

[3] T. Catarci, M.F. Costabile, S. Levialdi, and C. Batini, “Visual
Query Systems for Databases: A Survey”,Journal of Visual
Languages and Computing, vol. 8, no. 2, pp. 215–260, Apr.
1997.

[4] V. Haarslev and R. Möller, “SBox: A Qualitative Spatial
Reasoner –Progress Report–”, in11th International Work-
shop on Qualitative Reasoning, Cortona, Tuscany, Italy,
June 3-6, 1997, Pubblicazioni N. 1036, Istituto di Analisi
Numerica C.N.R. Pavia (Italy), L. Ironi, Ed., June 1997, pp.
105–113.

[5] V. Haarslev, “A Fully Formalized Theory for Describing Vi-
sual Notations”, inVisual Language Theory, K. Marriott and
B. Meyer, Eds. Springer Verlag, Berlin, 1997, In press.

[6] V. Haarslev and M. Wessel, “GenEd – An Editor with
Generic Semantics for Formal Reasoning about Visual No-
tations”, In VL’96 [13], pp. 204–211.

[7] V. Haarslev, “Formal Semantics of Visual Languages us-
ing Spatial Reasoning”, in1995 IEEE Symposium on Visual
Languages, Darmstadt, Germany, Sep. 5-9. Sept. 1995, pp.
156–163, IEEE Computer Society Press.

[8] V. Haarslev, “The Backstage of VISCO: An Extended For-
mal Theory for Interpreting VL Queries”, Submitted for pub-
lication, 1997.

[9] B. Meyer, “Pictorial Deduction in Spatial Information Sys-
tems”, in1994 IEEE Symposium on Visual Languages, St.
Louis, Missouri, Oct. 4-7. Oct. 1994, pp. 23–30, IEEE Com-
puter Society Press.

[10] A. Del Bimbo, E. Vicario, and D. Zingoni, “A Spatial Logic
for Symbolic Description of Image Contents”,Journal of
Visual Languages and Computing, vol. 5, no. 3, pp. 267–
286, Sept. 1994.

[11] D. Calcinelli and M. Mainguenaud, “Cigales, a Visual Query
Language for a Geographical Information System: the User
Interface”,Journal of Visual Languages and Computing, vol.
5, no. 2, pp. 113–132, June 1994.

[12] Y.C. Lee and F.L. Chin, “An iconic query language for topo-
logical relationships in GIS”,International Journal on Ge-
ographical Information Systems, vol. 9, no. 1, pp. 25–46,
1995.

[13] 1996 IEEE Symposium on Visual Languages, Boulder, Col-
orado, USA, Sep. 3-6. IEEE Computer Society Press, Sept.
1996.

8


