
Copyright 1998 IEEE. Published in the Proceedings of VL ’98, 1-4 September 1998 at Nova Scotia, Canada.
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager,
Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331,
USA. Telephone: + Intl. 732-562-3966.

1



0



To appear in: Proceedings, 1998 IEEE Symposium on Visual Languages, Halifax, Canada, Sep. 1-4, IEEE Computer Society Press, 1998.

VISCO: Bringing Visual Spatial Querying to Reality
Michael Wessel and Volker Haarslev

University of Hamburg, Computer Science Department,
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

http://kogs-www.informatik.uni-hamburg.de/~haarslev/
http://kogs-www.informatik.uni-hamburg.de/~mwessel/

Please visit the VISCO homepage at
http://kogs-www.informatik.uni-hamburg.de/~mwessel/visco-engl.html

Abstract

This paper reports on the evolution of the spatial (sketch-
based) query language VISCO and its implementation. The
first design of VISCO’s query language was presented at
VL ’97. The language is based on a strong naive physics
metaphor for query objects (e.g. marbles, nails, rubber-
bands). We shortly review the prominent aspects of the re-
vised version of VISCO’s query language. The main focus
of this paper is on VISCO’s implementation using city maps
of Hamburg as example domain. Its innovative user inter-
face consists of three interconnected components: a graphi-
cal (syntax-directed) query editor and visual language com-
piler, a browser for inspecting the query results, and a map
viewerforbrowsing the spatial database. Wealso briefly re-
port on the process of compiling, optimizing, and executing
VISCO’s queries.
Keywords— visual query languages, environments and
systems, graphical representation of constraints, human
computer interaction (HCI), spatial information systems
(SIS), graph matching, optimizing visual language compil-
ers.

1 Introduction

At VL ’97, we presented the first design of the visual
(sketch-based) spatial query language VISCO [1]. Continu-
ing our work, this paper reports on a first prototypical im-
plementation of VISCO that integrates several components
to form a visual query system. We will mainly discuss the
user interface which is composed of three main compo-
nents: the graphical query editor offering “sketch”-based
querying of spatial databases (e.g. containing digital vec-
tor maps of the city of Hamburg), a browser-like query-
result inspector, and a powerful map-inspection tool for the
spatial database. Another component of the system is the
optimizing visual language query compiler. Our prototype
successfully demonstrates the usefulness and feasibility of
VISCO and its underlying language concepts. The current
prototype is fully implemented as described in this paper.

According to the point of view of many other authors in
the field, we assume that the term visual language denotes a
means of communicating with a visual system in a coherent
and consistent way through visual expressions (e.g. see [2]).

In our opinion, a visual query language should not be con-
sidered in isolation, but in an integrated environment pro-
viding an easy-to-use visual query system, offering active
support and feedback, strong metaphors etc. In fact, it often
becomes obvious that the usefulness of a visual language
heavily relies on an appropriate interface which therefore –
at least for the user– is the language (see [3]).

The remainderofthis paperis structured asfollows. Sec-
tion 2 briefly reviews the prominent aspects of VISCO’s re-
vised visual query language [1]. Please note that the vi-
sual appearance of the language has been slightly changed
but not the underlying key concepts. Section 3 reveals the
logical architecture of the system and describes the graphi-
cal user interface (GUI). Section 4 focuses on important as-
pects of the implementation with respect to the design of vi-
sual language compilers and reports on the abstract syntac-
tic representation, the optimizing compiler, and the process
of query execution.

2 The Visual Query Language VISCO

VISCO is a visual spatial query system designed for extract-
ing information from spatial information systems (SIS, es-
pecially GIS) in a visual way. The term spatial informa-
tion system refers to a broad class of systems which collect,
manage and offer the analysis and presentation of spatial
data (e.g. lakes, roads, and buildings in a GIS). These spa-
tial objects usually have spatial (e.g. a lake is a polygon)
and non-spatial or thematic aspects (e.g. an object is of type
“lake”). In its current stage of development, VISCO is pri-
marily targeted for querying spatial aspects of GIS data in
a visual way. Currently, no complex thematic statements
(e.g., attribute “joins”) can be expressed; we only support
simple thematic “typing” of query objects (like “city”). In-
tegrated spatial query systems or environments can be con-
sidered as a way to facilitate a number of severe problems
and limitations found in conventional non-spatialquery lan-
guages (e.g. extended SQL) with respect to spatial aspects
of the data (see [5]). Therefore, we focus on particular spa-
tialaspects: VISCO supportsthe retrievalof interesting con-
stellations of spatial objects based on their structural, topo-
logical, metric and geometric attributes and relationships
between them.

1



Figure 1: A simple VISCO query (annotations in italic font)

As a first example, the simple query shown in Figure 1
could bydescribed as“Search fora lakeof(nearly)arbitrary
form that is not bigger than 300 × 300 m.”. The semantics
of the elements used in the query are explained in the figure
by annotations.

In the following, we assume a topologically structured
vector representation of the data of interest. Data models
like the one assumed here can be found in advanced vector-
based GIS (in contrast to raster-based GIS). The data in
vector-based systems usually consists of nodes or vertices
(points), edges (lines) and faces (simple polygons). Addi-
tionally, polylines and arbitrary aggregates of these objects
can be found. The “direct component of” relationship be-
tween these objects forms aDAG (Directed Acyclic Graph).
In our case, the DAG has a maximum depth of 4 because
aggregates may contain polygons (but never other aggre-
gates), which are built from lines, and lines contain their
end points. Together, object classes and the operations on
them form the logical data model of the spatial information
system. Like SQL, which is only suitable for the relational
data model, VISCO can only be linked with (topologically
structured) vector-based SIS.

The following query language elements are handled by
VISCO (see Figure 2):
VISCO Objects: A VISCO object is any element of the vi-
sual language VISCO.
Geometric Object: Geometric objects are points, lines,
simple (non self-intersecting) polylines, simple polygons
and aggregates (see Figure 3). We distinguish two types
of geometric objects: query objects and universal objects
(see below).
Query Objects: A query object is a geometric VISCO ob-
ject that matches geometric objects in the spatial database.
We can also say, that a query object represents a database

Figure 2: Query language elements supported by VISCO
(non-shaded nodes represent auxiliary concepts; a refine-
ment for the node “Geom. Object” is given in Figure 3)

object. Geometric database and geometric VISCO objects
must be identically structured or very similar (in a way dis-
cussed above)because VISCO’s query execution is based on
graph matching.
Universal Objects: Unlike geometric query objects, which
must directly match objects in the spatial database, a uni-
versal or auxiliary object represents an object in the uni-
verse of all well-formed geometric objects. Universal ob-
jectsareprimarilyusedforexpressing additionalconstraints
on query objects, and therefore are considered as meta ob-
jects. The prototype requires, that universal objects can be
instantiated by other objects (e.g., as an operator result or
through its component objects – a universal segment could
be instantiated by its end points provided they are query ob-
jects).
Meta Objects: A meta object is a VISCO object that vi-
sualizes some additional conditions (constraints) on other
VISCO objects and therefore makes statements about these
other objects and their interpretation. Special meta objects
are enclosures, other meta objects visualize other possible
constraints (in form of arrows, text objects etc).
Enclosures: An enclosure is a meta object representing
a (connected) subset of R2. We distinguish constant (or
sketched), interior and exterior (for polygons), and ε(r)
enclosures. Enclosures may be translucent or opaque.
Opaque enclosures are used to (partially) occlude other ob-
jects and to (partially) disregard their existence. With the
help of opaque enclosures one can express spatial “don’t
cares” by ignoring spatial relationships with occluded ob-
jects. In orderto compensate forthis visual incompleteness,
VISCO’s language has to be integrated into a supporting en-
vironment because it might be impossible to reconstruct the

2



Figure 3: Geometric objects of VISCO

semantics of a query only from the final drawing.
Derived Objects: Derived objects comprise interior, ex-
terior, and ε(r) enclosures, but also derived center points,
calculated intersection points, etc.

We associate each geometric VISCO object with a
metaphorical naive physics semantics that is intended to
guide the user’s interpretation of spatial aspects in a visual
representation, e.g., a marble can roll around and change
its position in contrast to a nail (see Figure 3). Therefore,
the meaning of the aspect “position” of a visualized point
object can be immediately discovered by a user because of
the attached “naive physics” semantics. We use the follow-
ing metaphors (please note that geometric VISCO objects
are divided into query objects representing database objects
and universal objects representing objects in the universe of
geometric objects, see Figure 2):
Transparency films represent transformable aggregates
with a local coordinate system. Transparency films can
be translated, rotated, scaled, and stacked upon like layers.
Each geometric object (except transparency films) must be
defined on exactly one transparency film (the so-called car-
rier). Special constraints regarding scalability and rotata-
bility of films can be established (e.g., a film is defined as
unscalable and has an extension of 100 × 100 m or may be
scaled only proportionally, etc).
Nails and marbles are specialpoints: a nail on a film repre-
sents a point with a quantitative (exact) position (relative to
the local coordinate system of the carrying film), but a mar-
ble can rollaround in an enclosure (see below) and therefore
it has a qualitative (or vague) position. A marble has to be
inside ofat leastoneenclosure. The origin ofatransparency
film plays the role of a special nail.
Rubberbands, telescope antennas and wooden beams
are special lines. A telescope antenna (also referred to as

Figure 4: Visual appearance of various VISCO objects.

atomic rubberband) represents a straight line with arbitrary
length. A ‘≤-telescope antenna’ represents a straight line
with a given maximal length (relative to the metric of the
carrying film’s local coordinate system). A ‘≥-telescope
antenna’ represents a straight line with a given minimal
length. A wooden beam represents a straight line with an
exactly known (quantitative) length. A general rubberband
represents a polyline of straight lines (slightly simplified).

The visual appearance of various VISCO objects is
shown in Figure 4. The element “Arrow and Scale” is used
for establishing orientation constraints for origins (regard-
ingtherotatability ofthewholetransparency)andforbeams
or antennas (regarding the orientation of the element w.r.t.
to the carrying transparency). Due to lack of space we can
not discuss some other elements (e.g. the angles allowed
between beams and/or antennas can be restricted with an
element similar to “Arrow and Scale”).

Constructing a VISCO query is a progressive process: at
the time when a new object is created, various high level
topological(spatial) constraints between the new object and
already existing objects are established. Here, the notion of
(partial) visibility becomes crucial (see below). Also, each
component object (e.g. a segment of a polygon) is consid-
ered as an individual object with its own identity – how-
ever, topological constraints involving components can be
discarded if necessary, yielding more relaxed queries. The
following topological relationships between a newly intro-
duced object and any existing object that is not totally oc-
cluded by an enclosure are recognized by VISCO:

• Disjoint is established, if the other object is com-
pletely visible.

• Intersects is established, if the new object has at least
one visible intersection point with the other object.

• Inside is established, if the new object is completely

3



Figure 5: A query for searching 3 buildings.

visible inside of an enclosure.
• Contains is established between a new translucent en-

closure and any other object that is completely con-
tained within this new enclosure.

Figure 5 shows an example, where we search for
three perfectly rectangular houses (of varying size) almost
aligned in parallel that nearly lie on a straight line (please
note that equivalent natural language descriptions are im-
possible). The “U”s denote universal objects (as discussed
above) that must not be present in the database. Therefore,
the aggregate (or transparency film) composed of the three
rectangular polygons is not explicitly available in the data-
base, but must be built by the system. The same condition
holds for the derived center points of the rectangles. This is
in contrast to the rectangles which must be explicitly found
in the database.

When editing a query it is important to distinguish ex-
plicit from implicit (emergent) polygons and polylines.
Please note that a polygon is by itself an implicit object –
for instance, in the case of a triangle we only have visual
indicators for the sides of the triangle, but not for the tri-
angle itself . As a solution to this problem, we introduce
for each explicit polygon (such as the buildings in Figure
5) and polyline an iconic sign in form of a “picture of the
picture” (reduced to a small size).1 According to the above
mentioned rules, the buildings have to be disjoint from one
anotherand have to stay inside ofthe big constant surround-
ing enclosure. The (derived) centroids of the buildings have
to stay inside of the smaller constant enclosure, so that the

1Thisidea is duetoourcolleagueRalf Möller.

Figure 6: Logical architecture of VISCO.

buildings will be almost aligned on a straight line.

3 The VISCO Prototype

The logical architecture of the VISCO prototype is shown
in Figure 6 and could be termed as a “repository model”
(see [4]). We think of VISCO as a component in the ap-
plication layer of a spatial database working on an exter-
nal data model (view) provided especially for VISCO. Of
course, meta data plays a crucial role for answering ques-
tions like “What types of objects are present in the data-
base?”, etc. The GUI is given through the following two
components:

• a (syntax directed) query editor (a specialized graphi-
cal editor)

• an execution control and query result inspector (in-
cluding the map viewer, see below)

Another component is the optimizing compiler (see Sec-
tion 4). The animator (intended to visualize parts of the
extension of the current query through animations) and the
query normalizer are not yet implemented.2 These five
components work on a common abstract syntactic represen-
tation of the current query, which is maintained and man-
aged by the abstract syntax graph repository module (ASG
module). The ASG is given in form of a directed multi-
hypergraph. The syntax directed query editor enforces the
construction of correct ASGs in this repository. Some meta
data must also be reflected at the user interface — for in-
stance, it does not make sense to allow the user to query a

2Theinferenceenginecoulddetectunsatisfiablequeriesbeforeactually
doing the search as well as derive additional constraints that were only
implicitly implied in the query, therefore making them accessible to the
optimizingcompiler.

4



Figure 7: The Graphical Query Editor of VISCO: the main window (left) and the “Buttons” window (right)

CAD-database for buildings located in the vicinity of lakes.
However, further investigations at the meta level must be
done (e.g. see the work described in [6]).

We already emphasized the importance of well-designed
and easy-to-use GUIs for visual languages. In our case,
the graphical query editor shown in Figure 7 is one of
the most important parts of the VISCO GUI. The editor’s
user interface is composed of two main windows, labeled
“VISCO” and “VISCO Buttons” (handled by two commu-
nicating concurrent processes). The “VISCO” window is
the working space, allowing users to interactively construct
(execute, load, etc.) graphical queries. It consists of four
main areas: the biggest one is the “VISCO Query” pane
showing the actual graphical query (which has been already
discussed, see Figure 1), the “VISCO Infos” pane providing
helpful information and explanations, the command line for
entering textual commands, and the “VISCO Control” pane
displaying the editable query construction history, which
is automatically maintained by the system during the con-
struction of a graphical query (see below).

The current state of the query editor is maintained and
completely visualized by the “VISCO Buttons” window.
For instance, by selecting the button for “rubberband” in

the “VISCO Objects” pane, the next new line segment will
be created as a rubberband. The buttons are named as fol-
lows (from top to bottom and left to right): transparency,
constant enclosure, beam, ≤-antenna, origin, ≥-antenna,
nail, antenna, polyline (chain), marble, rubberband, poly-
gon). The (slightly set apart) block of 9 buttons labeled
“DB DB-C U” determines whether the next new geometric
VISCO object will be a geometric universal object (“U”), or
a geometric query object (“DB-C” or “DB” – the difference
between these two can be ignored here). The two blocks of
buttons in this pane must be considered columnwise; please
note that the object icons of the buttons are labeled accord-
ing to the actual selection (here, “DB-C”, “DB-C”, “DB”).

Some other graphical presentation options can be se-
lected with buttons in the “VISCO Options” pane, as well
as an operator from an iconic operator library that pops up
by pushing the currently active operator icon shown in the
“VISCO Operators” pane. Then, the selected operator can
be applied to a VISCO object (or a pair of VISCO objects in
the case of a binary operator) visible in the “VISCO Query”
area (prefix operator mode). Most commands can either be
entered textually via the command line or chosen from the
“Operators” menu in the menu line, as well as directly acti-

5



Figure 8: Vague gestures in VISCO.

vated on an object by a key sequence. However, most of the
construction (e.g. polygon “drawing” etc.) is done directly
without the need to refer to these operators.

In summary, the query editor offers the following pow-
erful features:
Parallel maintenance of an editable construction history:
By selecting a construction step in the history, the main dis-
play is updated to reflect the state of the query construction
atthe time ofthis step. Entries can be deleted (but ofcourse,
the “delete” operation can also be applied directly to their
graphical counter parts). The indentation of entries shown
in the “VISCO Control” pane reflects the graph structure of
the objects (e.g., lines having end points as parts).
Facilities that support the users’s process of query un-
derstanding and formulation: For instance, the recog-
nized topological relationships (see above) for a newly in-
troduced object can be visualized by coloring the already
visible objects, denoting the enforced corresponding spa-
tial constraint (blue means disjoint, red means intersects,
green means inside/contains). By changing the focus or cur-
rent object (this can be done in the “VISCO Control” pane),
every enforced spatial constraint for every object can be in-
spected in a stepwise manner.
Handling of and interaction with complex objects: For
instance, in the case of a polygon, the polygon as a whole
as well as its segments and their end points must be ref-
erenced and manipulated by mouse gestures through the
user. VISCO offers two mechanisms for achieving this goal:
first, the notion of a focus (or current) object (which can be
selected by pointing at the graphical object or its counter-
part in the construction history); and second the concept
of vague mouse gestures (see Figure 8). The current se-
lection (displayed in bold) depends on the distance between
themouse pointerandthe possiblytargeted objectsandtheir
size.
“Top Down” and “Bottom Up” creation of complex ob-
jects: For instance, in order to create a polygon, a user
must be able to select already present segments that af-
terwards become components of the freshly built polygon
(what we call bottom up creation or aggregation), as well
as to create some completely new segments and their end
points (what we call top down creation). If a new object
happens to be created, its type (e.g., rubberband, beam, an-
tenna, etc.) and other attributes (should a new enclosure be
opaque or translucent?) will be determined by the current

Figure 9: Execution and result inspection

state or mode of the query editor, which is maintained and
visualized in the “VISCO Buttons” window. The editor’s
state can be changed concurrently while performing a com-
plex operation (e.g. while creating a polygon, one segment
could be defined as a rubberband between marbles, but the
next segment could be a beam between two nails).
Handling of and interaction with emergent objects: For
instance, there has to be a way to materialize the emergent
rectangle formed by two overlapping rectangular polygons
or the intersection point formed by two intersecting lines.
In this example, the emergent rectangle can easily be made
explicit by a twofold application of the operator “Create in-
tersection point” and an aggregation of the four points to
create a new polygon. This is also an example for the use of
derived or computed objects: after repositioning one of the
intersecting lines, an automatic reconstruction of the scene
must follow.

Otherfeatures of VISCO, such as unrestricted multi-level
“Undo” and “Redo” (in our query editor, even a “Load” can
be undone), context-sensitive help facilities etc. are consid-
ered as obligatory nowadays.

Figure 9 shows the query execution and result inspec-
tion component, another important part of the VISCO GUI.
Here, the result of the query displayed in Figure 7 is shown.
Each tile represents a match (in this case, a lake). Another
pane shows the LISP code generated by the compiler for
performing the search. Because components of polygons
etc. are considered as individual objects, also permutations
of “one and the same constellation” appear. Single tiles can
be selected and further inspected, deleted, etc. Once a tile is
selected, it can also be inspected more thoroughly with our
advanced map inspection tool “Map Viewer” that is shown

6



Figure 10: The Map Viewer

in Figure 10: here, also the neighborhood of a match can
be inspected, neighborhood objects can be queried for their
type by selecting them, their structure, etc. The map viewer
also supports the generation of layers by selecting individ-
ual themes (each theme can be switched “on” or “off” in the
scrollable list at the left side).

4 Representing and Compiling Queries

The ASG repository maintains an abstract syntactic repre-
sentation of the current query in form of a directed multi-
hypergraph. The nodes represent objects (e.g. marbles, rub-
berbands, etc.) with their properties (e.g. an object is a
“lake”), the simple edges denote spatial relations and other
constraints (e.g. direct component of). Hyperedges repre-
sent binary (ternary, . . . ) operators (e.g. a marble can be the
derived intersection point of two beams). The ASG is con-
structed by a sequence of internal operator applications pro-
vided by the ASG module, each checking its applicability
by a list of preconditions. By the enforcement of these pre-
conditions we ensure that only syntactically correct ASGs
can be constructed. Most of the user’s interactions can di-
rectly be mapped to sequences of these internal operators.
No advanced parsing techniques from visual language the-
ory are necessary; however, the above mentioned topologi-
cal relationships between language elements are recognized
by algorithms borrowed from computational geometry.

In fact, the graphical query editor maintains an internal
construction or application sequence of these internal ASG
operators (a beautified subset of this sequence is shown in
the “VISCO Control” window). After a user operation, the
internal history is updated: an entry can be added, deleted
or modified. In the case of the removal or modification of
an entry of the history, the ASG is simply reconstructed by

Figure 11: A simple ASG and its corresponding C/E net

replaying the whole internal history. If an error is encoun-
tered during the reconstruction phase because of an unful-
filled precondition, the user’s interaction is regarded as in-
valid and automatically undone by the system. However,
in our experience this “frustrating situation” does not ap-
pear too often (the only critical interactions regarding this
are “move” and “delete”). The reconstruction of the ASG
is fast enough and therefore appears instantaneously to the
user.

The processof querycompilation canbeeasilyexplained
by using a petri net model (in fact, the compiler can be
viewed as a special petri net). A VISCO query has to be
considered as highly declarative — many possible execu-
tion plans can be expected. The optimizer determines the
best of these plans (by assigning to plans cost weights) and
uses this plan to construct a LISP program that will search
the database simply in a depth-first manner (backtracking
with “generate-and-test”). A plan itself is basically a se-
quence of nodes of the ASG representing the order of se-
quence in which query objects are matched to objects in the
spatial database. However, to find the best of these poten-
tially n! number of plans is a very hard problem and can
only be addressed heuristically.

In contrast to query objects, universal objects must be
constructed or calculated and can not be searched for (ei-
ther their operands have to be known and bound in the case
of derived universal objects or their component objects in
the case of complex universal objects). This demonstrates
the possibility of having a large number of dependencies
between objects that might reduce the number of possible
execution (search) plans.

In Figure 11, a very simple ASG and its corresponding
C/E petri net is shown.3 The nodes “Lake” and “Road”
(representing query objects) stand in an “intersects” rela-
tion (note that by taking the component relations for the –
here not shown – endpoints of the road into account, we

3In a condition event (C/E) net, each place has a maximal capacity
of one – a transition is activated, if each of its in-places is marked with
tokens and all its out-places are empty after removing all tokens fromthe
in-places.

7



Figure 12: A node “N” of a more complex ASG

Figure 13: Corresponding C/E net for node “N”

would really get something like “touching”). Two plans
are possible: first, we could search for “Lake” and then
for “Road” by using the edge E2 as a generator (we use
a spatial index supporting spatial join and selection opera-
tions based on topological relationships). This requires that
the edge E1 has to be deferred. But the reverse order is
also possible. Multiple plans can be derived by traversing
edges or their inverses. The possible plans are now given as
processes (sequences of firing transitions) of this simple net
(the transitions D1 and D2 stand for “defer E1” and “defer
E2”): D1–Lake–E2–Road or D2–Road–E1–Lake.4 A firing
transition usually generates LISP code for the search pro-
gram. In a complete plan, each double-circled place must
be marked. The quality of the generated plans can differ
dramatically (factor 10.000 or more). The heuristics used
by the optimizer can not be discussed here.

A more complex example is shown in Figure 12 and Fig-
ure 13. Sometimes, additional complex dependencies that
can not be modeled by simple C/E nets must be taken into
account. Therefore, transitions might be annotated with ad-
ditional predicates that must be fulfilled before firing (in
addition to the firing rule). Edges might be ignored under
certain circumstances if their corresponding condition is al-
ready implied by the pre-history (see the annotated transi-
tions E1I, E2I).

4The first plan is better since we have many roads intersecting other
elements (e.g.roads), but onlyvery fewlakes.

5 Conclusion and Future Work

We presented an advanced prototype (fully implemented
and operational) for an innovative new sketch-based vi-
sual spatial query language. A major advantage of our ap-
proach is the direct visibility of an objects meaning. The
strong physical metaphors for language elements make the
intended semantics and therefore the interpretation chosen
by the system explicit. The built-in browser described here
facilitates a step-wise focusing and understanding of the
current query as a whole. Mismatches between the users
intended mental meaning of the query and its interpretation
as computed by the system are therefore mostly avoided.
We argue that it can be very difficult or even impossible
(at the current stage of art in artificial intelligence) to cor-
rectly grasp theusersintentions(therelevant aspects)from a
freestyle drawn sketch (likethe onesassumedin [7]). There-
fore, in order to get a practical system working today, the
gap can not be bridged by the system alone. We still need
the semantic input from users and we need systems offer-
ing active support, so that both are meeting halfway. The
described GUI provides an embedding spatial querying en-
vironment, regarding querying as an incremental, step-wise
process of selections, result inspections and further refine-
ments. However, the system is still in its very early days
and has not been extensively tested by users or been eval-
uated yet. Due to lack of space, we refer to [1] for a more
complete discussion of related work.

References
[1] V. Haarslev and M. Wessel, “Querying GIS with animated

spatial sketches”, in 1997 IEEE Symposium on Visual Lan-
guages, Capri, Italy, Sep. 23-26. Sept. 1997, pp. 197–204,
IEEE Computer Society Press, Los Alamitos.

[2] T. Catarci, M.F. Costabile, S. Levialdi, and C. Batini, “Visual
query systems for databases: A survey”, Journal of Visual
Languages and Computing, vol. 8, no. 2, pp. 215–260, Apr.
1997.

[3] M. Graf, “Visual Programming and Visual Languages:
Lessons Learned in the Trenches”, in 1990 IEEE Workshop
on Visual Languages. 1990, IEEE Computer Society Press.

[4] I. Sommerville, Software Engineering, Addison-Wesley, 5.
edition, 1995.

[5] M.J. Egenhofer, “Why not SQL!”, International Journal on
Geographical Information Systems, vol. 6, no. 2, pp. 71–85,
1992.

[6] V. Haarslev, “A fully formalized theory for describing vi-
sual notations”, in Visual Language Theory, K. Marriott and
B. Meyer, Eds. Springer Verlag, Berlin, 1998, In press.

[7] M.J. Egenhofer, “Spatial-query-by-sketch”, in 1996 IEEE
Symposium on Visual Languages, Boulder, Colorado, USA,
Sep. 3-6. Sept. 1996, pp. 60–67, IEEE Computer Society
Press, Los Alamitos.

8


